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S U M M A R Y
Convection in planetary cores can generate fluid flow and magnetic fields, and a number
of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report
on the first community activity to compare numerical results of computer codes designed to
calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating
and the forcing of the flow is either due to thermal convection or due to moving boundaries. All
problems defined have solutions that allow easy comparison, since they are either steady, slowly
drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal
heating within the sphere under the Boussinesq approximation with boundary conditions that
are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic,
and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can
generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3
is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has
a stationary solution. Results from a variety of types of code are reported, including codes
that are fully spectral (based on spherical harmonic expansions in angular coordinates and
polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite
element and also a mixed Fourier–finite element code. There is good agreement between
codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem
by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an
adequate approximation to the system, since the results differ from whole sphere results.

Key words: Numerical solutions; Non-linear differential equations; Dynamo: theories and
simulations; Planetary interiors.

1 I N T RO D U C T I O N

The predominant theory for the generation mechanism of the Earth’s
magnetic field is that of magnetic field generation by thermal

and compositional convection, creating the so-called self-excited
dynamo mechanism. Beginning with the first 3-D self-consistent
Boussinesq models of thermal convection (Glatzmaier & Roberts
1995; Kageyama et al. 1995), there has been burgeoning interest

C© The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society. 119

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/197/1/119/686457 by guest on 19 April 2024

mailto:philippe.marti@colorado.edu


120 P. Marti et al.

in numerical solutions to the underlying equations of momentum
conservation, magnetic field generation and heat transfer. Given
the complexity and non-linearity of the physics, it has been of im-
portance to verify that the codes used correctly calculate solutions
to the underlying equations, and also to provide simple solutions
that allow newly developed codes to be checked for accuracy. It
is now over 11 yr since the undoubtedly successful numerical dy-
namo benchmark exercise of Christensen et al. (2001); Christensen
et al. (2009), hereinafter B1. This benchmark exercise was set in
the geometry of a spherical shell, with convection driven by a tem-
perature difference between an inner core and the outer boundary
of the spherical shell. In this respect, the computational domain
is similar to that of the Earth, possessing as it does a small in-
ner core. Three different benchmarks were devised, the first being
purely thermal convection, and the second and third being dynamos
(supporting magnetic fields). The latter two benchmarks differed
in the treatment of the inner core: in one case the inner core was
taken to be electrically insulating and fixed in the rotating frame,
and in the other case the core was taken to be electrically conduct-
ing and free to rotate in response to torques that are applied to it,
arising from the convection in the outer core. Central to these bench-
marks was the fact that all of them possessed simple solutions, in
the form of steadily drifting convection. As a result, energies are
constant and, together with other diagnostics, these provide very
clear solutions that could be reproduced by different numerical
techniques. A measure of the success of this exercise is given by
the fact that it has been used by numerous groups to check their
codes.

The present benchmarking exercise is one of two brethren de-
signed to broaden the scope of the original B1 and to provide fur-
ther accurate solutions for a new generation of computer codes. The
associated exercise by Jackson et al. (2013) is also set in a spher-
ical shell as in B1; it is similar to B1 but has been designed to be
particularly amenable to computer codes based on local (rather than
spectral or global) descriptions of the temperature, magnetic and
velocity fields. Thus, that benchmark allows comprehensive check-
ing of finite element, finite volume and similar computer codes, as a
result of the implementation of a local rather than global magnetic
boundary condition. This paper treats a similar situation to B1 but
differs in the removal of the inner core, and thus treats only a whole
sphere. Flows in the first two benchmarks thus defined are driven
by thermal convection, again under the Boussinesq approximation,
and in the third by a boundary forcing. There are two reasons for
defining benchmarks set in the whole sphere rather than the spher-
ical shell. First, the whole sphere represents a canonical problem,
surely a simpler geometry than the shell. There is one less degree
of freedom, since the aspect ratio of the shell is no longer a de-
fined parameter. Secondly, in the context of rapidly rotating fluid
dynamics, there is likely to be a simplification in the flow structures
generated because of the absence of an inner core. It is well known
that the dynamics of rapidly rotating systems is dominated by the
Coriolis force, thus leading to the Proudman–Taylor constraint, the
alignment of flow structures with the rotation (z) axis. In a spheri-
cal shell when viscosity is reduced, as one moves from outside the
so-called tangent cylinder (the cylinder that just encloses the inner
core) to inside the tangent cylinder, a jump is present in the length
of a column in the z-direction. Hence, there is the possibility of the
need to resolve very fine shear layers in this region; for a recent dis-
cussion, see Livermore & Hollerbach (2012). The presence of very
fine structures that need to be resolved can have very deleterious ef-
fects on a numerical method, particularly a spectral method based on
spherical harmonics (again, for a discussion, see Livermore 2012).

Thus, the choice of a full sphere is likely to be advantageous in the
limit in which the viscosity is dropped to insignificant levels.

We note in passing that the whole sphere geometry is particularly
relevant to the generation of magnetic fields in the early Earth,
prior to the formation of the inner core. In this time period, the
convection in the core was driven by secular cooling (and possibly
internal heating), and this is precisely the scenario studied here in
Benchmarks 1 and 2. Associated with this geometry is a possible
numerical obstacle that has perhaps been responsible for the dearth
of full-sphere calculations in the literature. Working in a spherical
coordinate system (r, θ , φ), that is presumably convenient from the
point of view of boundary conditions, the presence of the origin of
the spherical coordinate system (r = 0) in the integration domain
leads to additional numerical challenges. The results presented here
show that the employed methods are able to correctly handle this
singularity in coordinates.

The Benchmarks 1 and 2 set up here differ from those of B1 in
their use of stress-free boundary conditions, rather than non-slip
conditions. This arose purely as a result of our survey of parame-
ter space while searching for whole-sphere dynamos that possess
simple solutions with clear diagnostics suitable for a benchmark.
In performing this survey, we did not find a dynamo that had a
steady character similar to that in B1; this is not to say that one
does not exist. The dynamo solution in Benchmark 2 shows an ex-
act periodic character with energy conversion between kinetic and
magnetic forms. It thus allows very precise comparison. The use of
stress-free boundaries can cause problems with angular momentum
conservation (see the discussion in Jones et al. 2011), but these were
handled gracefully in the solutions we report.

We mention in passing the other benchmarks that have recently
been provided to the community. A new benchmark for anelastic
convection has recently been described by Jones et al. (2011) and
already used as a comparison for the newly developed code of Zhan
et al. (2012). This benchmark again is set in a spherical shell, but
has a background state with a very large change in density across
the shell. Three solutions are again compared, the first two (pure
thermal convection and dynamo action, respectively) possessing
simple drifting solutions with very precise diagnostics. A solar
mean field benchmark has also recently been provided by Jouve
et al. (2008).

The layout of the paper is as follows: in Section 2, we describe
the physical problems to be addressed. Benchmarks 1 and 2 are
driven by internal heating and Benchmark 3 by boundary forcing.
In Section 3, we give a brief overview of the different numeri-
cal methods that have been employed by the different contributing
teams. In Section 4, we present and discuss the results from the
different codes.

2 T E S T C A S E S

Three benchmarks for incompressible flows in a rapidly rotating
whole sphere are considered. The first two test problems, Bench-
marks 1 and 2, are subject to the thermal forcing of a homoge-
neous distribution of heat sources in the volume. Benchmark 1 is
a purely hydrodynamic problem while Benchmark 2 consists of a
self-sustained dynamo problem. Benchmark 3 extends the scope
of these test cases by considering the mechanical forcing induced
by moving boundaries. In all cases, the system consists of a whole
sphere of radius ro, filled with a fluid of density ρ and a kinematic
viscosity ν. The system rotates at a rotation rate �. The fluid motion
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is described by the velocity field u and, for Benchmarks 1 and 2,
the temperature field is denoted by T.

2.1 Benchmark 1: thermal convection

Benchmark 1 is a purely hydrodynamic problem with the motion of
the fluid described in the reference frame of the mantle. The system
is described within the frame of the Boussinesq approximation,
neglecting the density fluctuations except for the ones responsible
for the buoyancy. Under the action of a gravitational field

g = g
r

ro
(1)

and in the presence of a homogeneous heat source distribution S,
the basic state is given by

Tb = β

2

(
r 2

o − r 2
)

(2)

with β = S/3κ , where κ is the thermal diffusivity. The equations
are non-dimensionalized using the radius ro as length scale, the
diffusion time r 2

o /ν as timescale and βr 2
o as temperature scale.

The three non-dimensional parameters are chosen to be the Ekman
number E

E = ν

2�r 2
o

, (3)

the Prandtl number Pr

Pr = ν

κ
(4)

and the modified Rayleigh number Ra

Ra = gαβr 3
o

2�κ
, (5)

with α the thermal expansion coefficient. The motion of the fluid is
then described by the non-dimensional Navier–Stokes equation and
the incompressibility condition for the velocity field u

E
(
∂t − ∇2

)
u = Eu ∧ (∇ ∧ u) + RaTr − ẑ ∧ u − ∇π, (6)

∇ · u = 0 (7)

with ẑ being the rotation axis. The evolution of the temperature T
is described by the non-dimensional transport equation(

Pr∂t − ∇2
)

T = S − Pr u · ∇T, (8)

and the non-dimensional basic state is given by

Tb = 1

2

(
1 − r 2

)
. (9)

The system is subject to stress-free and impenetrability mechanical
boundary conditions and a fixed temperature at the outer boundary.
Thus, while the radial velocity component has to vanish, a non-zero
horizontal velocity component is possible at the boundary.

The benchmark solution is obtained for an Ekman number
E = 3 × 10−4, a Prandtl number Pr = 1, a Rayleigh number
Ra = 95 and a source term S = 3. This choice of parameters is
close to the critical values for the onset of convection. More than
one solution exists for this choice of parameters. To select the right
solution branch, the following initial condition should be used for
the temperature field:

T = 1

2

(
1 − r 2

) + 10−5

8

√
35

π
r 3

(
1 − r 2

)
(cos 3φ + sin 3φ) sin3 θ.

(10)

For the sake of completeness, the second solution branch might
be selected by replacing the spherical harmonic perturbation of
degree and order 3 by a spherical harmonic perturbation of degree
and order 4. The velocity field can safely be initialized to zero

u = 0. (11)

After the initial transient, the solution to Benchmark 1 settles in a
quasi-stationary solution with a threefold symmetry. The alternative
branch would lead to a similar solution with fourfold symmetry. To
illustrate the solution, a few equatorial and meridional slices of the
velocity field are provided in Figs 1 and 2.

Once the stable regime is reached, the solution exhibits a constant
kinetic energy

Ek = 1

2

∫
V

u2dV (12)

providing an ideal diagnostic for the comparison among the different
submissions (Fig. 3).

Furthermore, the whole solution is slowly drifting at a constant
drift frequency. Similarly to what was done in B1, the velocity field
of the solution can be described as

u = u(r, θ, ϕ − 2π fdt), (13)

where fd is the drift frequency in units of s−1. The drift frequency
fd is related to the angular velocity or drift rate ωd in units of rad s−1

by

ωd = 2π fd. (14)

With this choice of definition, due to the threefold spatial symmetry
(see Fig. 1a), the drift frequency fd represents the frequency at
which a given flow pattern will pass through a fixed point in space.

Figure 1. Equatorial slices of (a) the radial component ur and (b) the azimuthal component uϕ of the velocity field for Benchmark 1. The velocity field is
equatorially antisymmetric and thus the latitudinal component uθ is zero in the equatorial plane.
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Figure 2. Meridional slices of the velocity field u for Benchmark 1: (a) radial component ur, (b) latitudinal component uθ and (c) azimuthal component uϕ .
The slices are chosen such that they contain the maximal amplitude of the velocity field |u|.

Figure 3. Typical time evolution of the kinetic energy Ek for Benchmark 1.
After the initial transient, the kinetic energy reaches a constant value.

The whole solution pattern completes a full rotation at a frequency
f̃d = fd/3.

To compare the results of the six participants in Benchmark 1,
the constant kinetic energy Ek and the drift frequency fd of their
solution were requested.

2.2 Benchmark 2: thermally driven dynamo

Benchmark 2 extends the first benchmark by incorporating the gen-
eration and evolution of magnetic fields. While still working within
the frame of the Boussinesq approximation, the sphere is now filled
with a conducting fluid with magnetic diffusivity η and magnetic
permeability μ. It is still thermally forced through the presence of
a homogeneous distribution of heat sources resulting in the basic
state given by eq. (2). The system of equations is extended by the
induction equation to describe the evolution of the magnetic field B.
The equations are non-dimensionalized using the radius ro as length
scale, the magnetic diffusion time r 2

o /η as timescale, βr 2
o as the tem-

perature scale and the magnetic field is rescaled by
√

2�ρμη. The
four required parameters are the Ekman number E

E = ν

2�r 2
o

, (15)

the magnetic Rossby number (also referred to as the magnetic
Ekman number) Ro

Ro = E

Pm
= η

2�r 2
o

, (16)

the Roberts number q

q = Pm

Pr
= κ

η
, (17)

with κ the thermal diffusivity and the Rayleigh number Ra

Ra = gαβr 3
o

2�κ
, (18)

with α the thermal expansion coefficient. To ease the conversion to
different choices of non-dimensionalizations, the Prandtl number
Pr

Pr = ν

κ
= Pm

q
= E

q Ro
, (19)

and the magnetic Prandtl number Pm

Pm = ν

η
= E

Ro
, (20)

are also introduced. The motion of the conducting fluid is described
by the non-dimensional Navier–Stokes equation and the incom-
pressibility condition for the velocity field u(

Ro∂t − E∇2
)

u = Rou ∧ (∇ ∧ u) + (∇ ∧ B) ∧ B

+ q RaTr − ẑ ∧ u − ∇π, (21)

∇ · u = 0. (22)

The magnetic induction equation and the solenoidal condition for
the magnetic field B read as(
∂t − ∇2

)
B = ∇ ∧ (u ∧ B) , (23)

∇ · B = 0, (24)

and finally the transport equation for the temperature T is given by(
∂t − q∇2

)
T = S − u · ∇T . (25)

As for Benchmark 1, the outer boundary is maintained at fixed
temperature and a stress-free mechanical boundary condition is
imposed. Furthermore, the outer region is considered to be a perfect
insulator.

The thermal dynamo solution for Benchmark 2 is obtained for
an Ekman number E = 5 × 10−4, a magnetic Rossby number
Ro = 5

7 × 10−4, a Roberts number q = 7, a Rayleigh number
Ra = 200 and a source term S = 3q = 21. In terms of the Prandtl
numbers, the Benchmark 2 is obtained for a Prandtl number Pr = 1
and a magnetic Prandtl Pm = 7. This parameter regime is approx-
imately two times supercritical and a magnetic field is generated
and sustained by the system. Although the solution for Benchmark
2 can be obtained by starting from a small initial perturbation, the
convergence to the final state is extremely slow and requires pro-
hibitively high computational resources. Furthermore, the presence
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of several solution branches can not be excluded even if it was not
seen during the computations. To reduce the computational load
to a reasonable level, a special initial condition exhibiting a much
faster convergence has been worked out.

The temperature field T should be initialized with the background
conducting state with a small perturbation as a spherical harmonic
of degree and order 3

T = 1

2

(
1 − r 2

) + ε

8

√
35

π
r 3

(
1 − r 2

)
(cos 3ϕ + sin 3ϕ) sin3 θ

(26)

with ε = 10−5. The magnetic field should be initialized with a purely
toroidal magnetic field given by

Br = 0, (27)

Bθ = −3

2
r
(−1 + 4r 2 − 6r 4 + 3r 6

)
(cos ϕ + sin ϕ) , (28)

Bϕ = −3

4
r
(−1 + r 2

)
cos θ

[
3r

(
2 − 5r 2 + 4r 4

)
sin θ

+ 2
(
1 − 3r 2 + 3r 4

)
(cos ϕ − sin ϕ)

]
. (29)

Finally, the velocity field should be initialized with a purely toroidal
velocity given by

ur = 0, (30)

uθ = −10r 2

7
√

3
cos θ

[
3
(−147 + 343r 2 − 217r 4 + 29r 6

)
cos ϕ

+ 14
(−9 − 125r 2 + 39r 4 + 27r 6

)
sin ϕ

]
, (31)

uϕ = − 5r

5544

{
7
[
(43 700 − 58 113r 2 − 15 345r 4

+ 1881r 6 + 20 790r 8) sin θ

+ 1485r 2
(−9 + 115r 2 − 167r 4 + 70r 6

)
sin 3θ

]
+ 528

√
3r cos 2θ

[
14

(−9 − 125r 2 + 39r 4 + 27r 6
)

cos ϕ

+ 3
(
147 − 343r 2 + 217r 4 − 29r 6

)
sin ϕ

]}
. (32)

For simulations using spherical harmonics and a toroidal/poloidal
decomposition, the expression of the initial conditions can be writ-
ten in a simpler form. Assuming that the magnetic field is decom-
posed as B = ∇ ∧ T r + ∇ ∧ ∇ ∧ P r , the initial field is given by
the two scalars

T = r

[(
3

4
−3r 2+ 9

2
r 4− 9

4
r 6

)
+

(
3

4
−3r 2+ 9

2
r 4− 9

4
r 6

)
ı

]
Y1

1

+ r 2

(
3

2
− 21

4
r 2 + 27

4
r 4 − 3r 6

)
Y0

2 + c.c., (33)

P = 0, (34)

where c.c. stands for the complex conjugate without the m = 0
modes and Ym

l are Schmidt normalized complex spherical harmon-
ics. Similarly assuming that the velocity field is decomposed as
u = ∇ ∧ T r + ∇ ∧ ∇ ∧ P r , the initial condition is given by

T = r 2

[ (
30 + 1250

3
r 2 − 130r 4 − 90r 6

)

+
(

105 − 245r 2 + 155r 4 − 145

7
r 6

)
ı

]
Y1

2

+ r

(
−54 625

198
+ 350r 2 + 625

2
r 4 − 325r 6

)
Y0

1

+ r 3
(
45 − 575r 2 + 835r 4 − 350r 6

)
Y0

3 + c.c., (35)

P = 0. (36)

Details of the definition and the normalization of the spherical
harmonics Ym

l are given in Appendix A.
The structure of the solution to Benchmark 2 is much more

complicated than for Benchmark 1 and no longer exhibits a sim-
ple symmetry. Nevertheless, after the initial transient the system
settles into a regime with periodic kinetic and magnetic energies.
The amplitude and frequency of these oscillations provide a good
diagnostic for Benchmark 2 (Fig. 4).

To illustrate the structure of the velocity field, a few equatorial
slices are shown in Fig. 5. The time-dependent features of the solu-
tions can be seen in the Hammer projection snapshots of the flow
close to the outer boundary (Fig. 6) and the Hammer projections
of the radial component of the magnetic field at the outer bound-
ary (Fig. 7). The two comma shaped flux patches of opposite sign

Figure 4. Kinetic energy Ek and magnetic energy Em for Benchmark 2. (a) Typical time evolution of Ek and Em. After the initial transient, both energies settle
into a periodic oscillation. (b) Detailed view of the oscillations in Ek and Em. The magnetic energy has been rescaled by ξ = Ck

Cm
≈ 39 (see eqs 37 and 40) to

show the phase shift between Ek and Em.
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Figure 5. Equatorial slices of the velocity field u at t = 4.43241 for Benchmark 2: (a) radial component ur, (b) latitudinal component uθ and (c) azimuthal
component uϕ .

Figure 6. Hammer projections of three snapshots of the azimuthal velocity component uϕ at the outer boundary (r = ro) for Benchmark 2.

Figure 7. Hammer projections of six snapshots, spanning approximatively two periods, of the radial magnetic field Br at the outer boundary r = ro for
Benchmark 2.

emerge periodically. The lower part moves eastwards while rising
to higher latitudes until they vanish. Fig 7 shows snapshots over
approximately two periods.

The solution to Benchmark 2 will solely be characterized by the
computed kinetic and magnetic energies. Their periodic behaviour
allows us to define several diagnostic quantities used to compare the
solutions from different simulations. The kinetic energy is decom-
posed into a constant component Ck, the amplitude of the leading
oscillating term Ak, the frequency of this oscillation fk and a phase
shift ζ k. Using these definitions,the kinetic energy Ek is written as

Ek = 1

2

∫
V

u2dV = Ck + Ak cos(2π fkt + ζk) + · · · (37)

Furthermore, decomposing the velocity into its equatorially sym-
metric [labelled as (s)] and equatorially antisymmetric part [la-
belled as (a)], the velocity field was found to be purely equatorially

symmetric

E (s)
k = Ek, (38)

E (a)
k = 0. (39)

Using the same decomposition, the magnetic energy Em can be
written as

Em = 1

2Ro

∫
V

B2dV = Cm + Am cos(2π fmt + ζm) + · · · (40)

Decomposing the magnetic field into its equatorially symmetric
and antisymmetric parts, the magnetic field is found to be purely
equatorially antisymmetric

E (s)
m = 0, (41)

E (a)
m = Em. (42)
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Figure 8. (a) Frequency spectrum of the kinetic energy Ek and magnetic energy Em for Benchmark 2 after a flat top window has been applied on the time-series.
(b) Details of the peak of the main amplitude of the kinetic and magnetic energies after a Kaiser window with parameter β = 14 has been applied to the
time-series. Note the use of a logarithmic scale for the ordinate, meaning that the frequency localization is extremely good. Both spectra have been obtained on
a time-series over approximatively 0.35 diffusion times at a sampling rate of 1.75 × 105 obtained by (MJ) at N = 31 and L = M = 63 (see Section 3 for details).

It was found and confirmed by all participants that the oscillations
in the magnetic energy and kinetic energy have the same frequency.
In addition, as can be seen in Fig. 4(b), there is a phase shift between
the magnetic and kinetic energy. This relative phase shift (ζk − ζm)
is found to have value 1.91rad but is not included in the benchmark.
The six constants Ck, Ak, fk, Cm, Am and fm defined above are
the diagnostic values that were requested from all submissions to
Benchmark 2.

The computation of decompositions 37 and 40 requires some
further explanations as several different approaches are possible.
The first one involves computing the Fourier series. To reduce the
spectral leakage, a flat top window (Oliphant 2007) is applied on
the time-series. The amplitude of the different modes can then eas-
ily be extracted as shown in Fig. 8(a). Conversely, to compute an
accurate frequency, a Kaiser window (Kaiser & Kuo 1966) with
parameter β = 14 is applied to the time-series. The peaks in the
spectrum are then well approximated with a parabolic fit allowing
for interpolation between the available frequencies. The peak for
the main oscillation is shown in Fig. 8(b). The frequencies can also
be computed by counting the zero crossings. Both approaches pro-
vide the frequency within a relative error of 10−4 per cent. There
is a simpler approach to obtain the requested data without using
a Fourier transform. Assuming Emin

i , Emax
i are the minimum and

maximum of the time-series for the energy, the constant component
is approximatively given by

Ci ≈ Emin
i + Emax

i

2
, (43)

and the amplitude of the main oscillation is approximatively given
by

Ai ≈ Emax
i − Emin

i

2
. (44)

These relations are not exact because the time-series do also include
higher frequencies as shown in Fig. 8(a). Using the Fourier series, it
is possible to bound the relative errors generated by the simplified
approach. By including the second peak with a frequency of 2fi and
accounting for the phase shift, a comparison with the approxima-
tions 43 and 44 provides the relative errors εCk and εAk on Ck and
Ak for the kinetic energy

εCk = 3 × 10−2 per cent, (45)

εAk = 5 × 10−2 per cent. (46)

The same analysis on the magnetic energy provides the relative
errors εCm and εAm on Cm and Am

εCm = 0.4 per cent, (47)

εAm = 0.6 per cent. (48)

These relative errors have been obtained by assuming that Emin
i and

Emax
i are exact. An accurate value for the minimum and maximum

requires a time-series sampled at a high frequency but it does in
principle only require one cycle. On the other hand, an accurate
Fourier series will require a long time-series. The errors made by
using this simplified approach depend strongly on the relative mag-
nitude of the higher frequencies. For the kinetic energy, the second
oscillation with a frequency of 2fk has an approximatively 63 times
smaller amplitude which leads to the rather small errors given in
eqs (45) and (46). On the other hand, the second oscillation in the
magnetic energy is only approximatively 10 times smaller leading
to the larger errors given in eqs (47) and (48). In both cases, the
third oscillation with a frequency 3f can be neglected as it is more
than 20 times smaller than the second oscillation.

2.3 Benchmark 3: boundary forced rotating bubble

Benchmark 3 is again a purely hydrodynamic problem. It provides a
simple test problem for boundary driven flows in a whole sphere as
they might, for example, arise in precession or libration problems.
The proposed system describes the motion of an incompressible
fluid inside a spherical bubble rising in a rotating fluid. It is an
important addition to the first two cases as it replaces the internal
thermal forcing by a mechanical forcing due to an imposed tangen-
tial flow over the boundary. The bubble is assumed to be of unit
radius ro = 1 and is described by the Navier–Stokes equation and
incompressibility condition

∂t u + u · ∇u + 2� ẑ ∧ u = −∇ p + ν∇2u, (49)

∇ · u = 0 (50)

with ν the viscosity of the fluid and � the rotation rate of the
bubble. The rotation axis is parallel to ẑ. The tangential flow over
the boundary imposes a non-homogeneous boundary condition on
the fluid at the surface of the bubble

uθ = −u0 cos θ cos φ, (51)

uφ = u0 sin φ, (52)
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Figure 9. In the top row, velocity field in the x–z plane (φ = 0) and in the bottom row, velocity field in the y–z plane (φ = π/2) for Benchmark 3.

Figure 10. Velocity field in the x–y (equatorial) plane for Benchmark 3.

which is the gradient of a pure l = 1, m = 1 spherical harmonic
Y1

1 (θ, φ).
The solution to Benchmark 3 is obtained for a boundary velocity

u0 =√
3

2π
, a viscosity ν = 10−2 and a rotation rate � = 10. It does

not require any particular initial condition and can be started with a
zero initial velocity field.

The flow converges quickly to a stationary solution with a dom-
inant m = 1 component. Interestingly, the solution contains an im-

portant and non-trivial flow through the centre of the bubble. As
such, it provides a good diagnostic for this numerically challeng-
ing region. To illustrate the flow of the solution, the velocity field
components in the x − z and y − z planes are shown in Fig. 9. The
velocity field in the x − y plane, which is orthogonal to the rotation
axis (i.e. the equatorial plane) is shown in Fig. 10.

The solution to Benchmark 3 was characterized by five diagnostic
values. The first diagnostic is the constant kinetic energy
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Ek = 1

2

∫
V

u2dV (53)

reached after the initial transient. When available, the energy in the
spherical harmonic orders m = 0, m = 1 and m = 2 have also been
collected. Secondly, the ẑ component of the angular momentum
Lz is reported. The three components of the velocity field u at the
centre of the bubble provide that last diagnostic data.

3 C O N T R I B U T I N G N U M E R I C A L C O D E S

There was a total of nine contributors to the benchmark but each did
not necessarily provide results for all three cases. A short description
of the algorithm used by each simulation is provided below. Further
references are given for a more detailed description.

Marti and Jackson (MJ): Spectral simulation using spherical har-
monics for the angular component and polynomials developed by
Worland (2004) and Livermore et al. (2007) in radius (see Marti
2012). The Worland polynomials satisfy exactly the parity and
regularity conditions required at the origin of the spherical co-
ordinate system. Specifically, the radial basis used is of the form
r l P (−1/2,l−1/2)

n (2r 2 − 1) for a given harmonic degree l, with P (α,β)
n (x)

the Jacobi polynomials. The incompressibility condition is guaran-
teed by the use of a toroidal/poloidal decomposition of the vector
fields. A second-order predictor–corrector scheme is used for the
time integration. No specific treatment is required to conserve an-
gular momentum.

Hollerbach (H): An adaptation of the previous spherical shell
code described by Hollerbach (2000), based on spherical harmonics
and a toroidal/poloidal decomposition of the vector fields. Instead
of expanding in the full set of Chebyshev polynomials in radius,
regularity and parity conditions at the origin are now accommo-
dated by expanding as r · T2k − 1(r) for odd harmonic degrees and
r2 · T2k − 1(r) for even harmonic degrees for the toroidal/poloidal
scalars. The temperature is similarly expanded as T2k − 2(r) for de-
gree l = 0, r · T2k − 2(r) for odd degrees, and r2 · T2k − 2(r) for even
degrees. Angular momentum conservation is explicitly imposed by
a modified stress-free boundary condition.

Aubert (A): Spectral simulation using the code PARODY-JA,
which uses spherical harmonics for the angular component and a
second-order finite differences in radius (see Dormy et al. 1998;
Aubert et al. 2008). The time marching is done with a semi-implicit
Crank–Nicolson/Adams–Bashforth scheme. The radial mesh in-
cludes a gridpoint exactly at the centre of the sphere. Spectral
toroidal and poloidal components of order l behave like r l at the
centre. Angular momentum conservation is achieved by correcting
for solid-body rotation at each time step.

Schaeffer (S): Spectral simulation using spherical harmonics for
the angular component and second-order finite differences in radius
(Monteux et al. 2012). The numerical instability near the origin is
overcome by truncating the spherical harmonic expansion at �tr(r)
before computing the spatial fields that enter the non-linear terms.

Specifically, the truncation is �tr(r ) = 1 + (�max − 1)
(

r
ro

)α

, where

α = 0.5 gives good results, and also saves some computation time.
The time stepping uses a semi-implicit Crank–Nicolson scheme for
the diffusive terms, while the non-linear terms can be handled ei-
ther by an Adams–Bashforth or a predictor–corrector scheme (both
second-order in time). The SHTns library (Schaeffer 2013) is used
for efficient spherical harmonic transforms. Angular momentum
conservation is achieved by adjusting the solid-body rotation com-
ponent at each time step.

Takehiro, Sasaki and Hayashi (TSH): Spectral simulation using
spherical harmonics for the angular components and the polynomi-
als developed by Matsushima & Marcus (1995) and Boyd (2001) in
radius (see Sasaki et al. 2012). The radial basis functions satisfy ex-
actly the parity and regularity conditions at the origin of the spherical
coordinate system. Specifically, the used radial basis is of the form
r l P (α,β)

n (2r 2 − 1) for a given harmonic degree l, with Pn(x) the Ja-
cobi polynomials. The incompressibility condition is guaranteed by
the use of a toroidal/poloidal decomposition of the vector fields. The
time integration is performed with the Crank–Nicolson scheme for
the diffusive terms and a second-order Adams–Bashforth scheme
for the other terms. No specific treatment is required to conserve
angular momentum.

Simitev and Busse (SB): Pseudospectral numerical code using
spherical harmonics expansion in the angular variables and Cheby-
shev polynomials in radius. Time stepping is implemented by a com-
bination of the implicit Crank–Nicolson scheme for the diffusion
terms and the explicit Adams–Bashforth scheme for the Coriolis
and the non-linear terms; both schemes are second-order accurate.
Early versions of the code are described in Tilgner & Busse (1997)
and Tilgner (1999). The code has been extensively modified and
used for a number of years (Simitev & Busse 2005, 2009, 2012;
Busse & Simitev 2006, 2008). This is a spherical shell code and no
special effort was made to convert it to the full sphere geometry.
Instead, the full sphere is approximated by placing a tiny inner core
with radius ratio ri/ro = 0.01 at the centre of the shell. Angular
momentum conservation is achieved by correcting for rigid-body
rotation if required.

Cébron (C): Finite elements method simulation using the standard
Lagrange element P2–P3, which is quadratic for the pressure field
and cubic for the velocity field, and a Galerkin Least-Squares (GLS)
stabilization method (Hauke & Hughes 1994). The (unstructured)
mesh is made of prisms in the boundary layer and tetrahedrons in
the bulk. The incompressibility is imposed using a penalty method.
The time stepping uses the Implicit Differential-Algebraic solver
(IDA solver), based on variable-coefficient Backward Differencing
Formulae (e.g. Hindmarsh et al. 2005). The integration method
in IDA is variable-order, the order ranging between 1 and 5. At
each time step, the system is solved with the sparse direct linear
solver PARDISO (www.pardiso-project.org) or a multigrid GMRES
iterative solver. This is all implemented via the commercial code
COMSOL Multiphysics R©.

Nore, Luddens and Guermond (NLG): Hybrid Fourier and finite
element method using a Fourier decomposition in the azimuthal
direction and the standard Lagrange elements P1–P2 in the merid-
ian section (with P1 for the pressure and P2 for the velocity field).
The meridian mesh is made of quadratic triangles. The velocity and
pressure are decoupled by using the rotational pressure-correction
method. The time stepping uses the second-order Backward Dif-
ference Formula (BDF2). The non-linear terms are made explicit
and approximated using second-order extrapolation in time. The
code is parallelized in Fourier space and in meridian sections [do-
main decomposition with METIS (Karypis & Kumar 2009)] us-
ing MPI and PETSC (Portable, Extensible Toolkit for Scientific
Computation; Balay et al. 1997, 2012a,b). This is implemented
in the code SFEMaNS (for Spectral/Finite Element method for
Maxwell and Navier–Stokes equations; Guermond et al. 2007, 2009,
2011).

Vantieghem (V): Unstructured finite-volume simulation (see
Vantieghem 2011) using a grid of tetrahedral elements with smaller
elements close to the wall. The spatial discretization is based on
a centred-difference-like stencil that is second-order accurate for
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regular tetrahedra. Time stepping is based on a canonical fractional-
step method (Kim & Moin 1985), and the equations are integrated
in time with a fourth order Runge–Kutta method. A BiCGstab(2) al-
gorithm is used to solve the pressure Poisson equation. The reported
Fourier components are obtained by an a posteriori interpolation
of the results on a regular grid in terms of spherical coordinates
(Nr = 36, Nθ = Nϕ = 18), which is subject to considerable addi-
tional numerical (interpolation) errors.

Table 1. Contributions to Benchmark 1. The labels
used for the different codes are defined in Section 3.
The values are shown with the number of significant
digits provided by the authors. As all these codes are
based on a spherical harmonics expansion for the an-
gular component, the resolution is given as the radial
resolution N, the highest harmonic degree L and the
highest harmonic order M.

Code Ek fd N L M

(MJ) 29.08502 12.38841 8 15 15
(MJ) 29.07661 12.38860 8 23 23
(MJ) 29.12178 12.38604 12 23 23
(MJ) 29.12064 12.38619 16 23 23
(MJ) 29.12064 12.38619 16 31 31
(MJ) 29.12068 12.38619 23 47 47
(MJ) 29.12068 12.38619 31 63 63
(H) 29.11784 12.3862 12 23 23
(H) 29.12054 12.3862 16 31 31
(H) 29.12053 12.3862 23 31 31
(H) 29.12053 12.3862 23 47 47
(H) 29.12053 12.3862 31 63 63
(S) 29.219 12.388 120 31 31
(S) 29.1446 12.387 250 63 63
(S) 29.13501 12.38648 320 85 85
(TSH) 29.03074 12.3878 16 21 21
(TSH) 29.12878 12.3863 32 42 42
(TSH) 29.12878 12.3863 48 85 85
(SB) 29.00617 11.89445 33 42 42
(A) 29.12062 12.3931 1600 63 63

4 R E S U LT S

There is quite an important diversity in the type of simulations
that took part in these benchmarks. All the diagnostics that have
been considered for these benchmarks should be straightforward
to obtain whenever the simulation code is based on some spec-
tral expansion or on a local method. On the other hand, a direct
comparison of the resolution used is a more subtle problem. The
comparison will be done by comparing solutions based on the num-
ber of degrees of freedom present at the time stepping level. For
local methods, the resolution R is computed as R = N 1/3

grid where
Ngrid is the number of gridpoints and for spherical harmonic–based

codes R = {
Nr · [

Lmax(2Mmax + 1) − M2
max + Mmax + 1

]}1/3
. The

same approach was used in B1.

4.1 Benchmark 1

There were six participants in Benchmark 1 and all of them used
a spherical harmonics–based simulation . They agree qualitatively
quite well and no important discrepancies were found. The details of
all the solutions obtained by the participants is given in Table 1. At
the quantitative level, a few interesting observations can be made.
The results for the total kinetic energy are summarized in Fig. 11(a).
The five codes (MJ), (H), (TSH), (S), (A) do all eventually converge
to the same solution within 5 × 10−2 per cent. While using a com-
pletely different radial expansion, (MJ) and (H) even converge very
rapidly within 5 × 10−4 per cent. The last code (SB) working in a
spherical shell rather than a sphere comes within 0.4 per cent. Note
that the results obtained with a very high radial resolution (1600
gridpoints) by (A) matches very closely to the solutions from the
fully spectral codes. The other finite differences–based code (S)
shows a clear convergence towards the same solution and would
most likely have reached it at a higher resolution.

The picture is very similar for the drift frequency (Fig. 11b). The
codes (MJ), (H) and (TSH) agree within 6 × 10−4 per cent , the
solution by (S) is within 2 × 10−3 per cent and the solution by (A)
is within 6 × 10−2 per cent. Finally, the solution by (SB) is within
4 per cent.

Figure 11. Summary of the solutions of the participants of Benchmark 1. (a) Constant kinetic energy Ek, as defined in eq. (12), reached after the initial
transient. (b) Drift frequency fd, defined in Section 2, of the threefold symmetric structure of the solution (see Fig. 1). The black horizontal line is the standard
value given in Table 2. The error corridor for the standard values is represented by a greyed out area, but as the errors are very small it is only barely visible.
The labels used for the different codes are defined in Section 3.
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Table 2. Summary table and standard values obtained for
Benchmark 1. The Ekman number E, the Prandtl number
Pr and the modified Rayleigh number Ra as well as the
governing equation for the velocity u and the temperature T
are given in Section 2. The kinetic energy Ek is defined in
eq. (12) and the drift frequency by eq. (13).

Benchmark 1: Thermal convection

Parameters

E Pr Ra
3 × 10−4 1 95

Boundary conditions

u: stress-free
T: fixed temperature

homogeneous heat sources

Requested values

Ek 29.1206 ±1 × 10−4

fd 12.3862 ±1 × 10−4

A standard value for the kinetic energy and drift frequency for
Benchmark 1 is derived from the three simulations showing the
best convergence to a common result. The values as well as a short
summary of the problem definition are given in Table 2. The very
high convergence to a common solution allow to provide these with
roughly six significant digits.

4.2 Benchmark 2

All the groups participating in Benchmark 1 also participated in
Benchmark 2, except for (A). There are thus again only solutions
from spherical harmonics–based simulations. The overall picture is
very similar to Benchmark 1. The fully spectral simulations con-
verge very rapidly to their final solution and which are in most cases
very close to each other. The finite differences simulation, while
requiring higher radial resolution, eventually reaches a similar so-
lution. As was already observed in Benchmark 1, the simulation
by (SB) which approximates the whole sphere as a shell with a

tiny inner core, shows the largest discrepancy. The details of all the
solutions to Benchmark 2 are given in Table 3.

The solutions obtained by the different simulations are summa-
rized in Figs 12(a)–(e). For the constant part of the kinetic (Ck) and
magnetic (Cm) energies, excluding the solution by (SB), all results
lie within 2 × 10−2 and 0.3 per cent, respectively. A good conver-
gence to a common solution was also observed for the amplitude
of the oscillations in the kinetic energy. The solutions provided by
(MJ), (H) and (S) lie within 7 × 10−3 per cent. The solution of (TSH)
does not seem to converge to exactly the same value but remains
within 0.4 per cent of the three other values. The convergence is
not as good for the amplitude in the oscillation of the magnetic en-
ergy. All the results lie within 1 per cent. The solution by (MJ), (H)
and (TSH) seem to show the clearest convergence trend and their
solutions lie within 0.2 per cent. Finally, the frequency of the oscil-
lations of the kinetic and magnetic energies have been compared.
All groups reported the same frequency f for both energies. The
summary of the solutions for the frequency is shown in Fig. 12(e).
The results for (MJ), (H), (TSH) and (S) lie within 0.3 per cent while
(SB) is a little bit further away with 0.6 per cent.

While the spread in the solutions is clearly more important for
Benchmark 2, the general situation is very similar to Benchmark 1.
The solutions by (MJ) and (H) do nearly overlap for all five diagnos-
tic values and do exhibit a very fast convergence. As was explained
in Section 3, the extraction of the different components of the ener-
gies requires some post-processing. The choice of methodology by
each author, for example, to extract the oscillation amplitude, might
explain a part of the somewhat larger discrepancies compared to
Benchmark 1. The standard values given in Table 4 are obtained
by taking the average of the highest resolution by (MJ) and (H).
The error bars are chosen such that at least one additional solution
is included in the error corridor. This choice is based on the fast
convergence of both codes to essentially the same value for all the
requested data.

While it was not part of the actual benchmark, the phase shift
between the kinetic and magnetic energy (see Fig. 4b) is also re-
ported in Table 4 to provide a more complete characterization of
the solution. The reported value has been computed by (MJ) from

Table 3. Spectral method contributions to Benchmark 2. The labels used for the different codes are defined in
Section 3. The values are shown with the number of significant digits provided by the authors. The decomposition
of the kinetic energy Ek into Ck, Ak and fk is defined in eq. (37) and the equivalent decomposition of the magnetic
energy Em into Cm, Am and fm is defined in eq. (40). As all these codes are based on a spherical harmonic
expansion for the angular component, the resolution is given as the radial resolution N, the highest harmonic
degree L and the highest harmonic order M.

Code Ck Ak fk Cm Am fm N L M

(MJ) 35 141.84 1836.287 302.2623 1153.695 51.77003 302.2623 12 23 23
(MJ) 35 548.95 1881.661 302.6947 922.3073 38.54002 302.6947 16 31 31
(MJ) 35 542.15 1880.460 302.6858 924.5757 38.48190 302.6858 23 31 31
(MJ) 35 551.33 1880.055 302.7018 908.9870 37.47705 302.7018 23 47 47
(MJ) 35 550.93 1879.837 302.7015 908.8059 37.45069 302.7015 31 63 63
(H) 35 378 1855 302.48 1043.77 46.16 302.48 12 23 23
(H) 35 588 1885 302.71 904.30 37.61 302.71 16 31 31
(H) 35 540 1881 302.66 925.64 38.50 302.66 23 31 31
(H) 35 551 1880 302.67 909.67 37.48 302.67 23 47 47
(H) 35 550 1880 302.67 909.46 37.47 302.67 31 63 63
(S) 35 544 1878.1 302.2 951.59 41.33 302.2 120 31 31
(S) 35 568 1881.0 302.65 908.69 37.951 302.65 250 63 63
(S) 35 552 1880.1 302.11 910.75 38.064 302.11 320 85 85
(TSH) 35 619.63 1887.200 303.0303 881.6272 36.97913 303.0303 32 42 42
(TSH) 35 564.30 1872.702 303.0303 905.8444 37.60794 303.0303 48 85 85
(SB) 35 951.5 1843.38 304.308 1046.12 38.08 304.308 41 96 96
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Figure 12. Summary of the solutions of the participants to Benchmark 2. The decomposition of the kinetic energy Ek into a constant part Ck, the amplitude of
the main oscillation Ak and its frequency fk is defined in eq. (37). The equivalent decomposition for the magnetic energy Em, defining the three constants Cm,
Am and fm is given in eq. (40). The black horizontal line is the standard value given in Table 4. The error corridor for the standard values, defined such that the
three most converged solutions are included, is represented by a greyed out area. The labels used for the different codes are defined in Section 3.

time-series of the kinetic and magnetic energy at the highest re-
ported resolution (N = 31, L = M = 63). The phase shift has been
extracted from the Fourier series shown in Fig. 8.

4.3 Benchmark 3

Benchmark 3 had the highest number of participants with eight
codes taking part. It is also the only case where results from local
methods are available. The computation for Benchmark 3 does not
require a very high horizontal resolution. For example, spherical
harmonics–based codes exhibit a very good convergence at reso-

lutions as low as Lmax = 30 and Mmax = 10. However, it is more
demanding in the radial direction. The centre requires a sufficiently
high resolution to describe flow crossing it properly as well as the
moving outer boundary which is forcing the system.

The solutions obtained by the different groups are summarized in
Figs 13(a)–(e). Note that some of the solutions obtained by spher-
ical harmonics–based codes have been obtained with a reduced
longitudinal resolution while a triangular truncation was used for
Benchmarks 1 and 2. The details for each solution are given in
Table 5 for the spectral methods and in Table 6 for the local meth-
ods. A good convergence of the kinetic energy Ek is observed.
Surprisingly, it is the solution by (TSH) which shows the largest
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Table 4. Summary table and standard values obtained for Benchmark 2. The
Ekman number E, the magnetic Rossby number Ro, the Roberts number q
and the modified Rayleigh number Ra, as well as the governing equations
for the velocity u, the magnetic field B and the temperature T are given in
Section 2. The decomposition of the kinetic energy Ek into constant and
oscillating components is defined in eq. (37) and the decomposition of the
magnetic energy is defined in eq. (40).

Benchmark 2: Thermally driven dynamo

Parameters

E Ro q Ra
5 × 10−4 5/7 × 10−4 7 200

Boundary conditions

u: stress-free
B: insulating
T: fixed temperature

homogeneous heat sources

Requested values

Kinetic energy Ek

Ck 35 550.5 ±1.5
Ak 1879.84 ±0.26

Magnetic energy Em

Cm 909.133 ±1.62
Am 37.4603 ±0.1476

Frequency f = fk = fm 302.701 ±0.33

Additional characteristic

Phase shift |ζk − ζm| 1.91rad

discrepancy (0.4 per cent) while all the other solutions agree within
0.1 per cent at least. (MJ), (H), (S), (C) and (NLG) show the clearest
convergence with solutions within 8 × 10−3 per cent. The values
obtained for the vertical component of the angular momentum show
the largest discrepancies among the diagnostics for Benchmark 3.
The solutions by (H), (S), (C), (NLG), (V) seem to converge to the
same value within 7 × 10−2 per cent. While a very high agreement
was achieved for the kinetic energy solutions, simulations by (MJ),
(TSH) and (A) seem to converge to a lower value of Lz but still
within 0.4 per cent. The last two diagnostic values involve the eval-
uation of the velocity field at the centre of the spherical domain.
While all simulations lie within 0.15 per cent for the velocity along
the y-axis, the velocity along the x-axis shows a larger discrepancy
with values within 0.3 per cent.

Considering the very fast convergence it showed for all diagnos-
tics, the standard value will be taken as the final solution by (H).
As for the other two benchmarks, the error bars are chosen such
that at least two additional solutions lie within the given bounds.
These standard values and error bars for Benchmark 3 are given in
Table 7.

5 D I S C U S S I O N

The combination of the results for all three test cases paints a
uniform and unambiguous picture of a successful benchmarking
exercise. With the wide range of classes of problems covered by

Figure 13. Summary of the solutions of the participants to Benchmark 3. The vertical velocity component uz is not shown as it was consistently shown to be
zero. The black horizontal line is the standard value given in Table 7. The error corridor for the standard values is represented by a greyed out area. Except for
(c) which has larger errors, the error corridor is mostly hidden by the black line. The labels used for the different codes are defined in Section 3.
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Table 5. Spectral method contributions to Benchmark 3. The labels used for the different codes are defined in Section 3. The values are shown with the number
of significant digits provided by the authors. As all these codes are based on a spherical harmonics expansion for the angular component, the resolution is given
as the radial resolution N, the highest harmonic degree L and the highest harmonic order M.

Code Ek Ek, m = 0 Ek, m = 1 Ek, m = 2 Lz Ux Uy N L M

(MJ) 6.18485e−2 4.35430e−4 6.12948e−2 1.17244e−4 2.78499e−2 −1.06714e−2 4.00811e−2 12 23 23
(MJ) 6.18338e−2 4.31265e−4 6.12841e−2 1.17319e−4 2.76877e−2 −8.91803e−3 3.86386e−2 16 23 23
(MJ) 6.18338e−2 4.31265e−4 6.12841e−2 1.17319e−4 2.76877e−2 −8.91803e−3 3.86386e−2 16 31 31
(MJ) 6.18291e−2 4.32506e−4 6.12783e−2 1.17195e−4 2.77151e−2 −8.21402e−3 3.83418e−2 23 31 31
(MJ) 6.18291e−2 4.32506e−4 6.12783e−2 1.17195e−4 2.77151e−2 −8.21402e−3 3.83418e−2 23 47 47
(MJ) 6.18286e−2 4.32813e−4 6.12776e−2 1.17118e−4 2.77204e−2 −8.27886e−3 3.83230e−2 31 47 47
(MJ) 6.18286e−2 4.32813e−4 6.12776e−2 1.17118e−4 2.77204e−2 −8.27885e−3 3.83230e−2 31 63 63
(H) 6.1832e−2 4.3521e−4 6.1278e−2 1.1762e−4 2.7783e−2 −1.0066e−2 3.7817e−2 12 12 4
(H) 6.1831e−2 4.3515e−4 6.1277e−2 1.1754e−4 2.7796e−2 −8.3410e−3 3.8318e−2 15 15 5
(H) 6.1831e−2 4.3514e−4 6.1277e−2 1.1754e−4 2.7796e−2 −8.2654e−3 3.8307e−2 18 18 6
(H) 6.1831e−2 4.3514e−4 6.1277e−2 1.1754e−4 2.7796e−2 −8.2644e−3 3.8307e−2 21 21 7
(H) 6.1831e−2 4.3514e−4 6.1277e−2 1.1754e−4 2.7796e−2 −8.2644e−3 3.8307e−2 24 24 8
(S) 6.15237e−2 4.25401e−4 6.09814e−2 1.15913e−4 2.748153e−2 −8.121293e−3 3.778225e−2 150 20 7
(S) 6.17682e−2 4.33033e−4 6.12169e−2 1.17198e−4 2.772647e−2 −8.230440e−3 3.820168e−2 300 20 7
(S) 6.17537e−2 4.32675e−4 6.12028e−2 1.17133e−4 2.771565e−2 −8.226658e−3 3.817840e−2 300 31 10
(S) 6.18047e−2 4.34295e−4 6.1252e−2 1.17400e−4 2.776804e−2 −8.251015e−3 3.826415e−2 500 31 10
(S) 6.18239e−2 4.34907e−4 6.12705e−2 1.17501e−4 2.778725e−2 −8.262105e−3 3.829847e−2 1000 31 10
(TSH) 5.98943e−2 3.63627e−4 5.94187e−2 1.10888e−4 2.53084e−2 −3.29031e−2 1.22471e−1 12 10 10
(TSH) 6.07755e−2 4.20777e−4 6.02401e−2 1.13600e−4 2.73295e−2 −8.27489e−3 3.81288e−2 24 21 21
(TSH) 6.23624e−2 4.42463e−4 6.17993e−2 1.19543e−4 2.80304e−2 −8.28375e−3 3.84550e−2 32 42 42
(TSH) 6.15750e−2 4.31638e−4 6.10257e−2 1.16576e−4 2.76827e−2 −8.25493e−3 3.82359e−2 48 85 85
(A) 6.1771e−2 4.3704e−4 6.1220e−2 1.1753e−4 2.7702e−2 −8.359e−3 3.8316e−2 200 63 63

Table 6. Local method contributions to Benchmark 3. The labels used for the different codes are defined in Section 3. The values are shown with the number
of significant digits provided by the authors. The kinetic energy Ek in the m = 0, m = 1 and m = 2 modes has to be computed in a post-processing step which
is likely to introduce additional errors in the codes (C) and (V). For this reason, these values were not mandatory for Benchmark 3. The resolution R is given
as the third root of the total number of gridpoints Ngrid.

Code Ek Ek, m = 0 Ek, m = 1 Ek, m = 2 Lz Ux Uy N 1/3
grid

(C) 6.1814e−2 N/A N/A N/A 2.7553e−2 −8.8469e−3 4.0492e−2 26.4
(C) 6.1839e−2 N/A N/A N/A 2.7787e−2 −8.8469e−3 4.0492e−2 32.8
(C) 6.1831e−2 N/A N/A N/A 2.7808e−2 −8.2943e−3 3.8329e−2 45.0
(C) 6.1829e−2 N/A N/A N/A 2.7797e−2 −8.2943e−3 3.8329e−2 54.2
(C) 6.1830e−2 N/A N/A N/A 2.7797e−2 −8.2637e−3 3.8305e−2 74.5
(NLG) 6.1847e−2 4.4376e−4 6.1285e−2 1.1733e−4 2.8158e−2 −8.3649e−3 3.8332e−2 56.4
(NLG) 6.1831e−2 4.3534e−4 6.1277e−2 1.1754e−4 2.7803e−2 −8.2946e−3 3.8308e−2 82.0
(NLG) 6.1831e−2 4.3515e−4 6.1277e−2 1.1754e−4 2.7796e−2 −8.2686e−3 3.8307e−2 124.
(V) 6.19485e−2 4.2922e−4 5.6011e−2 1.1883e−4 2.77393e−2 −8.33047e−3 3.80877e−2 139.4
(V) 6.19288e−2 4.3333e−4 5.7559e−2 1.1808e−4 2.77620e−2 −8.31833e−3 3.82237e−2 206.3
(V) 6.18951e−2 4.3379e−4 5.7707e−2 1.1707e−4 2.77724e−2 −8.28240e−3 3.82734e−2 280.8

these three test cases, ranging from purely hydrodynamic problems
with thermal or boundary forcing to non-linear dynamo simulations,
these results do support the confidence that is put into numerical
simulations in a full sphere geometry. The different codes used to
compute numerical solutions, while based on wide range of numer-
ical methods, all agreed very well with each other. As was observed
in similar benchmarking exercises (e.g. Christensen et al. 2001;
Jackson et al. 2013) in a spherical shell geometry, the fully spectral
simulations showed the fastest convergence to the final solutions
followed by the mixed spherical harmonics and finite difference
codes. The simulations using local methods exhibited a very good
agreement but required a much higher resolution to converge. How-
ever, one should keep in mind that the simple spherical geometry
and solutions with a simple structure do favour spectral methods.

With at least five different implementations taking part in each
benchmark case, the provided standard values and error bounds
can be trusted to be accurate. Benchmark 1 showed the strongest
convergence among all the solutions proposed. Maybe somewhat
suprisingly, Benchmark 2 showed a somewhat larger discrepancy.

Benchmark 3 showed also quite good convergence from all codes,
except for the value of the angular momentum where a larger scat-
ter in the solutions was observed also among the spectral codes
that agreed well for Benchmarks 1 and 2. Interestingly, the two
codes by (MJ) and (H) did exhibit a remarkably similar behaviour
and produced nearly the same results for all values in Benchmarks
1 and 2. While both use a spherical harmonic expansion, the ra-
dial discretization is quite different. (H) uses a parity constrained
Chebyshev expansion while (MJ) uses a basis set that satisfies the
regularity conditions at the origin exactly.

Two physical issues have emerged as part of these calculations.
The use of stress-free boundary conditions in Benchmarks 1 and
2 imply that angular momentum must be conserved. As was also
discovered in Jones et al. (2011), it was not the case in all the
codes. Several groups simply monitored the evolution of the angular
momentum and reported no problem with the provided resolutions.
On the other hand, some of the codes needed to correct every few
time steps to avoid building up unphysical angular momentum. The
relatively long integration time required to reach Benchmark 2 did
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Table 7. Table of the standard values obtained for Benchmark 3. The vis-
cosity ν, the rotation rate � and boundary velocity u0 are used to parametrize
Benchmark 3. The governing equation for the velocity u is given in Sec-
tion 2. The kinetic energy Ek is defined in eq. (53). Lz is the ẑ component
of the angular momentum. ux and uy are the x̂ and ŷ components of the
velocity through the centre of the bubble.

Benchmark 3: Boundary forced rotating bubble

Parameters

ν � u0

10−2 10
√

3
2π

Boundary conditions

Tangential flow: ubc = u0∇Y1
1 (θ, φ)

Requested values

Ek 6.1831 × 10−2 ±1 × 10−6

Lz 2.7796 × 10−2 ±1 × 10−6

Velocity through centre
ux −8.2644 × 10−3 ±2.3 × 10−6

uy 3.8307 × 10−2 ±2 × 10−6

exacerbate the problem as even small errors do accumulate to a
sizeable value over a large number of time steps. (H) did follow a
different approach and imposed a modified boundary condition to
explicitly impose conservation.

The full sphere dynamo problem is of great geophysical im-
portance, as it accurately represents the Early Earth prior to the
formation of the inner core (see Jacobs 1953). The results from
Benchmarks 1 and 2 show that even a small inner core may result in
solutions that strongly differ from the full sphere solutions. Indeed
the use of a small inner core systematically produced less accurate
solutions. Problems in a full sphere geometry, like the simulation of
Early Earth’s dynamo, should be addressed with specialized codes.
It is expected that this issue will become even more important in
more complex flows.

A C K N OW L E D G E M E N T S

This work was partly funded by ERC grant 247303 ‘MFECE’ to AJ.
AJ and PM acknowledge SNF grant 200021-113466, and are grate-
ful for the provision of computational resources by the Swiss Na-
tional Supercomputing Centre (CSCS) under project ID s225. PM
acknowledges the support of the NSF CSEDI Programme through
award EAR-1067944. For this work, DC was supported by the ETH
Zurich Post-doctoral fellowship programme as well as by the Marie
Curie Actions for People COFUND Programme. JLG acknowledges
support from the University Paris-Sud, the National Science Foun-
dation (grants NSF DMS-1015984 and DMS-1217262), the Air
Force Office of Scientific Research, (grant FA99550-12-0358) and
the King Abdullah University of Science and Technology (Award
No. KUS-C1-016-04). The computations using SFEMaNS were
carried out on IBM SP6 of GENCI-IDRIS (project 0254).

R E F E R E N C E S

Aubert, J., Aurnou, J. & Wicht, J., 2008. The magnetic structure of
convection-driven numerical dynamos, Geophys. J. Int., 172(3), 945–956.

Balay, S., Gropp, W.D., McInnes, L.C. & Smith, B.F., 1997. Efficient man-
agement of parallelism in object-oriented numerical software libraries,
Modern Software Tools in Scientific Computing, pp. 163–202, eds Arge,
E., Bruaset, A.M. & Langtangen, H. P., Birkhäuser, Boston.
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A P P E N D I X A : S P H E R I C A L H A R M O N I C S

The Schmidt quasi-normalized spherical harmonic basis was used to
provide a simpler expression for the initial conditions. The spherical
harmonic Ym

l of degree l and order m is given by

Ym
l (θ, ϕ) = Pm

l (cos θ )eimϕ, (A1)

where the Pm
l (cos θ ) are the Schmidt quasi-normalized associated

Legendre functions. The above definition of the spherical harmonic
can also be written as function of the normalized associated Legen-
dre functions P̂m

l (cos θ ) leading to the expression

Ym
l (θ, ϕ) =

√
(l − m)!

(l + m)!
P̂m

l (cos θ )eimϕ. (A2)

The orthogonality relation for the Ym
l defined above is given by∫ π

0

∫ 2π

0
Ym

l Ym′
l ′

∗
d� = 4π (2 − δm0)

2l + 1
δll ′δmm′ , (A3)

where the ∗ denotes the complex conjugate.
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