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S U M M A R Y
Probabilistic tsunami hazard analysis (PTHA) relies on computationally demanding numerical
simulations of tsunami generation, propagation, and non-linear inundation on high-resolution
topo-bathymetric models. Here we focus on tsunamis generated by co-seismic sea floor dis-
placement, that is, on Seismic PTHA (SPTHA). A very large number of tsunami simulations
are typically needed to incorporate in SPTHA the full expected variability of seismic sources
(the aleatory uncertainty).

We propose an approach for reducing their number. To this end, we (i) introduce a simplified
event tree to achieve an effective and consistent exploration of the seismic source parameter
space; (ii) use the computationally inexpensive linear approximation for tsunami propagation
to construct a preliminary SPTHA that calculates the probability of maximum offshore tsunami
wave height (H Max) at a given target site; (iii) apply a two-stage filtering procedure to these
‘linear’ SPTHA results, for selecting a reduced set of sources and (iv) calculate ‘non-linear’
probabilistic inundation maps at the target site, using only the selected sources. We find
that the selection of the important sources needed for approximating probabilistic inundation
maps can be obtained based on the offshore H Max values only. The filtering procedure is
semi-automatic and can be easily repeated for any target sites.

We describe and test the performances of our approach with a case study in the Mediterranean
that considers potential subduction earthquakes on a section of the Hellenic Arc, three target
sites on the coast of eastern Sicily and one site on the coast of southern Crete. The comparison
between the filtered SPTHA results and those obtained for the full set of sources indicates that
our approach allows for a 75–80 per cent reduction of the number of the numerical simulations
needed, while preserving the accuracy of probabilistic inundation maps to a reasonable degree.

Key words: Probability distributions; Tsunamis; Computational seismology; Subduction
zone processes; Europe.

1 I N T RO D U C T I O N

In recent years, the tsunami science community has strived to de-
fine a set of best practices and standards for probabilistic tsunami
hazard analysis (PTHA; Geist & Parsons 2006), mainly based on ex-
plicit modelling of seismically-induced tsunamis. Particularly fol-
lowing the 2004 December 26, Indian Ocean tsunami, and with
additional motivation following the 2011 Tohoku earthquake, such
methods have been progressively employed for different regions
and coasts exposed to tsunami risk (Annaka et al. 2007; Liu et al.
2007; Thio et al. 2007, 2010; Burbidge et al. 2008; González et al.
2009, 2010, 2013; Heidarzadeh & Kijko 2011; Mitsoudis et al.
2012; Sørensen et al. 2012; Suppasri et al. 2012; Lane et al.
2013; Omira et al. 2013; Horspool et al. 2014; Leonard et al.
2014). Earthquake-generated tsunamis are indeed the majority of
those observed (NGDC/WDS Global Historical Tsunami Database;

The Euro-Mediterranean Tsunami Catalogue, Maramai et al. 2014).
We will refer to the hazard analysis for this kind of events as seismic
PTHA (SPTHA).

In any probabilistic analysis of natural hazards there exists a
trade-off between the accuracy and precision of the assessment and
its practical feasibility. Modelling natural phenomena with sufficient
resolution to characterize their full variability is a very demanding
computational problem. For example, most probabilistic seismic
hazard analysis (PSHA) efforts aim to explore extensively the source
parameter space through a zone-based approach (Cornell 1968) by
uniformly distributing earthquakes in a given seismogenic surface
or volume. Specific simplifications are then adopted to make the
hazard assessment practically feasible, for example using empirical
ground motion prediction equations instead of performing explicit
numerical simulations. However, these choices may decrease the
precision and, potentially, the accuracy of hazard estimates.
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Sørensen et al. (2012) recently proposed a PSHA-reminiscent
approach based on earthquake catalogues generated with a Monte
Carlo technique to take into account properly the aleatory uncer-
tainty of potentially tsunamigenic earthquakes in the Mediterranean
Sea. The exceedingly large size of this kind of simulated earth-
quake catalogues prevents the calculation of inundation maps, how-
ever, and SPTHA end up being expressed in terms of maximum
wave height (H Max) probability offshore, that is computationally
cheaper. Furthermore, this approach makes it difficult to honour the
geometric variability of subduction zones, since the probability of
earthquakes is assumed homogenous inside a volume.

SPTHA methods have been indeed traditionally based on the use
of extended faults and explicit numerical tsunami modelling (e.g.
Rikitake & Aida 1988; Annaka et al. 2007). This choice is due
to the strong tsunami sensitivity to fault geometry and earthquake
mechanism (e.g. regarding generation efficiency and tsunami direc-
tivity), and to the large anisotropy of tsunami propagation over a
complex bathymetry. Exploring the full possible source variability
and performing an explicit numerical tsunami simulation for each
realization of the source parameters, however, can be extremely
demanding from the computational viewpoint. This feasibility is-
sue arises, in particular, when probabilistic inundation maps—and
hence very high-resolution non-linear simulations—are needed. For
this reason, most of the times a selection including a few major
earthquakes—for example, the most likely events for a given av-
erage return period (ARP)—is assumed to be sufficient for the
assessment (e.g. González et al. 2009). This might be an effec-
tive approach, provided that: (i) long enough ARPs are considered,
when the effect of more frequent smaller earthquakes is expected
to be negligible compared with the larger ones and (ii) the analy-
sis is conducted in a relatively simple geophysical context where,
for example, tsunami hazard is dominated by large earthquakes oc-
curring in subduction zones, whose geometry is reasonably well
constrained. These assumptions help making SPTHA computation-
ally feasible but may decrease its accuracy. In particular, there is a
chance that the hazard is severely underestimated in complex and
fragmented tectonic environments (e.g. the Caribbean Sea and the
Mediterranean Sea) or when shorter ARPs need to be considered.
Additionally, even when considering ARPs on the order of several
hundreds of years, sampling too coarsely the distributions of source
parameter may result in an underestimation of the near-field tsunami
hazard.

Recent SPTHA studies for both Australia (Burbidge et al. 2008)
and California (Thio et al. 2010) proposed a method for adequately
estimating earthquake source variability while keeping major earth-
quakes bound to their causative faults. This approach uses SPTHA
de-aggregation and offshore H Max matching to select only the
earthquakes that are judged to be relevant for subsequent inunda-
tion calculations. In the frame of an application for the southeastern
Aegean Sea, Mitsoudis et al. (2012) exploited some convergence
properties of the estimators for the maximum of a given tsunami
inundation measure, using a Monte Carlo approach. They used a
quasi-deterministic scenario-based method, however, as they con-
sider only the most likely maximum earthquake magnitude (the
mode) while randomly varying the epicentres.

In this study, we propose a computationally cheaper approach
to treating aleatory uncertainty in SPTHA that would reduce the
number of input earthquake scenarios while keeping the results sta-
ble and consistent with those obtained with a full scenario set. Our
method seeks a balance between avoiding an excessive reduction
of the assumed source variability and an excessive simplification

of the tsunami simulations. It is worth noting that the selection
of sources is based on the resulting tsunami variability at a given
site, not on the similarity of causative earthquakes. SPTHA indeed
cannot be considered a simple extension of PSHA because the sim-
plifications and the assumptions usually made for PSHA, while
suitable for representing earthquake variability, might not repre-
sent the full tsunami variability. For example, the 2011 Tohoku
catastrophe clearly showed that the sources of the strong ground
shaking and of the tsunami may originate at different places on
the fault plane (e.g. Lay & Kanamori 2011; Romano et al. 2012,
2014; Satake et al. 2013); thus, the sources for SPTHA need a spe-
cial treatment based on how the potentially threatened sites would
be impacted. We share this same basic point with some of the
above mentioned analyses (Burbidge et al. 2008; Thio et al. 2010;
Mitsoudis et al. 2012), along with the attempt to reduce the com-
putational cost associated with inundation maps. Nevertheless, our
approach uses a more systematic and quantitative method of se-
lecting the significant sources, to be performed before calculating
inundation maps.

To illustrate our method we initially define a quite general frame-
work for the PTHA due to any type of source, and then focus on
SPTHA. We approach only the seismic aleatory variability (the va-
riety of possible earthquake realizations) by means of an event tree
(ET). Conversely, we do not manage epistemic uncertainties; various
strategies exist for doing this, the most commonly used in SPTHA
being the logic tree (LT) approach (e.g. Bommer & Scherbaum
2008). Each node of a LT corresponds to a set of modelling as-
sumptions, and a specific SPTHA hazard curve is developed for
each branch. Within such a strategy, the ET would be nested into
each branch of the LT.

The ET provides a controlled discretisation of the earthquake
parameter space that allows us to assess conditional probabilities,
which are normally easier to deal with. The discretisation is per-
formed by heuristically oversampling each parameter distribution,
in an attempt to preserve all relevant information. The resulting—
and likely redundant—set of earthquake parameters is then used
to obtain the SPTHA within a Green’s functions approach, using
HMax offshore as the hazard intensity measure. By doing this we ob-
tain a region-wide, homogeneous and computationally inexpensive
‘linear’ SPTHA.

To set up a feasible local hazard assessment for any selected target
area where one may need inundation maps we propose a two-stage
filtering procedure. In the first stage we identify and eliminate all
the sources that give a negligible contribution at the target location,
for example the smallest earthquakes or those directing most of the
tsunami energy elsewhere. In the second stage we search within the
remaining set of sources for parameter clusters that produce similar
H Max patterns offshore of the target. For each magnitude level we
thus identify a representative scenario for each cluster; we assign
to this scenario the probability of the entire cluster. The subset of
sources resulting from the filtering is finally used for calculating
‘non-linear’ SPTHA, that is, probabilistic inundation maps at the
target location.

We illustrate and quantitatively test our approach by means of a
SPTHA case study in the Central Mediterranean Sea, using potential
subduction earthquakes occurring in the western portion of the
Hellenic Arc, and using target sites on the coasts of eastern Sicily,
Italy and southern Crete (Greece). The performance of the method
is then tested by comparing the inundation maps obtained for the
target sites with the reduced (filtered) set of sources against those
obtained with the complete set of sources included in the ET.
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2 O P E R AT I O NA L S P T H A F R A M E W O R K

Probabilistic hazard analysis is a methodology that estimates the
likelihood that various levels of intensity ψ will be exceeded at
a given location x in a given future time period �T (exposure
time) due to whatever source. The results of such an analysis
are usually expressed as estimated probabilities per year or esti-
mated annual frequencies (e.g. SSHAC 1997; Cornell & Krawinkle
2000; Geist & Parsons 2006), properly extended over �T assuming
their stationarity. This probability will be hereinafter indicated as
Pr (ψ ≥ ψ̄ ; x, �T ), where ψ̄ is a threshold value for the specific
tsunami metric ψ .

Tsunami sources may be of different nature such as earthquakes,
landslides, meteorite impacts or even atmospheric phenomena. In
principle, all the possible sources should be considered and com-
bined together. In practice, several tsunami sources may be more
important than others at a specific location and/or some of them
may have a negligible impact for a given ARP. In order to sepa-
rate the tsunamis due to different sources, assuming their statistical
independence, we may write:

Pr (ψ ≥ ψ̄ ; x, �T ) = 1−
∏

s

[1 − Pr (ψ ≥ ψ̄ ; x, �T, s)], (1)

where each Pr (ψ ≥ ψ̄ ; x, �T, s) represents the hazard posed by
the source s. In eq. (1), one of the possible source types is earthquake
(s = E), but also non-seismic sources can be present (s = {nE}).
Note also that the assumption of independence is common (e.g.
Parsons & Geist 2009; Grezio et al. 2012) but not granted, since
among non-seismic sources there are, for example, seismically in-
duced landslides that cannot be considered statistically independent
from earthquakes.

From now on, we will concentrate only on SPTHA, that is, that
part of the tsunami hazard due to earthquake sources that directly
cause tsunamis, hereafter indicated by Pr (ψ ≥ ψ̄ ; x, �T, E). No-
tice that SPTHA will coincide with the total PTHA only if other
possible sources, including seismically induced landslides, have a
negligible occurrence probability and/or an overall negligible effect,
so that

Pr (ψ ≥ ψ̄ ; x, �T, {nE}) � Pr (ψ ≥ ψ̄ ; x, �T, E). (1a)

The degree at which such an assumption holds may be referred to
as ‘source type coverage’. If the source type coverage is small, one
must consider that SPTHA is just a factor of PTHA, to be combined
with the PTHA relative to other significant sources, which is most
likely the case at many locations.

If we consider a finite set of independent possible earthquake fault
zones (Zi , i = 1, 2, . . . , NZ ), for which we can model geometry and
behaviour, the probability that at least one of them is activated in
�T , producing a tsunami with ψ ≥ ψ̄ , can be calculated as:

Pr (ψ ≥ ψ̄ ; x, �T, E) ≈ Pr (ψ ≥ ψ̄ ; x, �T, E ∈ Zi )

= 1−
NZ∏
i=1

[1 − Pr (ψ ≥ ψ̄ ; x,�T, Zi )],

(2)

if

Pr (ψ ≥ ψ̄ ; x, �T, E /∈ Zi ) � Pr (ψ ≥ ψ̄ ; x, �T, E ∈ Zi ).

(2a)

The degree at which the pre-defined set of earthquake fault zones
effectively represents all possible seismic sources may be referred

to as ‘seismic source coverage’. If we can assume that the seismic
sources in each zone are known to a reasonable degree, each seismic
source and the ensuing tsunami may be fully modelled with quasi-
deterministic procedures. However, it might be necessary to devise
a more complicated approach than the one presented here, with at
least a statistical treatment of possibly unknown sources.

Summarizing, the quantification of SPTHA due to the pre-
selected earthquake fault zones represents a good estimation of the
total PTHA only if both source type coverage and seismic source
coverage adequately satisfy the above conditions (1a) and (2a), that
is:

Pr (ψ ≥ ψ̄ ; x, �T ) ≈ Pr (ψ ≥ ψ̄ ; x, �T, E)

≈ 1−
NZ∏
i=1

[1 − Pr (ψ ≥ ψ̄ ; x, �T, Zi )]. (3)

This assumes that PTHA is solely due to earthquakes constrained
to occur on mapped faults, and it dominates over all other non-
seismic sources for the considered time window at a given loca-
tion. If such assumptions are not satisfied, significant bias in the
PTHA evaluation may be introduced. For an effective assessment
of tsunami hazards it is essential to discuss in detail both source
type and seismic source coverage, although this is out of the scope
of this paper.

For simplicity, we can assume that the distribution of observed
tsunamis at the target location x can be represented as a Poisson
arrival time process (e.g. Geist & Parsons 2006; Parsons & Geist
2009), so that the annual probability that at least one tsunami will
occur at the given site is

Pr (ψ ≥ ψ̄ ; x, �T = 1yr )

≈ 1 − exp

(
−

NZ∑
i=1

λi (ψ ≥ ψ̄ ; x, Zi ) × 1yr

)
, (4)

where λi is the mean annual frequency of ψ ≥ ψ̄ (annual rate of ex-
ceedance of the intensity due to an earthquake in the fault zone Zi ).
Following eq. (4), SPTHA may be evaluated via the contributions
due to each independent fault zone Zi .

In each zone, all of the events that may occur can be operatively
discretised in a finite number of possible different earthquakes. Such
possible seismic events will be hereinafter indicated as ‘seismic
scenarios’ (σ j , j = 1, 2, . . . , Nσ ) for the zone. Assuming that this
set of scenarios is complete (i.e.

∑Nσ

j=1 Pr (σ j |Zi ) = 1), the annual
exceedance rate related to the zone can be written as

λi (ψ ≥ ψ̄ ; x, Zi ) = λZi

Nσ∑
j=1

Pr (σ j |Zi )Pr (ψ ≥ ψ̄ |σ j ; x). (5)

In eq. (5), there are three terms. The first, λZi , is the mean annual
frequency of earthquakes in the ith seismic zone. The second term,
Pr (σ j |Zi ), represents the probability that an earthquake occurs in
the zone corresponding to the jth scenario σ j ; in other words, it
represents the aleatory variability of the seismic source. This is the
most complicated factor to be evaluated, and it will be the subject
of the next section. The third term, Pr (ψ ≥ ψ̄ |σ j ; x), represents
the exceedance probability for a given earthquake in the fault zone
with scenario σ j . This term may be assessed through direct models
of tsunami propagation and inundation. Almost all PTHA studies
assume that this term is completely deterministic, so that its value
will be either 0 or 1 (e.g. Rikitake & Aida 1988). This disregards
uncertainties in the generation, propagation and inundation model,
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which are sources of epistemic uncertainties. However, we do not
deal with this in our study.

We remark that the distinction between aleatory and epistemic
uncertainty may sometimes become quite fuzzy. An operational
definition might be to consider the aleatory uncertainty as the in-
trinsic variability of a certain ‘model of the world’, while that
concerning the lack of knowledge regarding the validity of the
model itself is classified as epistemic uncertainty (SSHAC 1997).
We here try to comply with the distinction made by Geist & Parsons
(2006), considering as epistemic the uncertainty that can be reduced
by collection of additional data, and as aleatory that inherent in the
physical process considered. Note, in fact, that eq. (5) corresponds,
for each zone Zi , to the integral form of eq. (7) in section 2.2 of
Geist & Parsons (2006), which accounts for the conventional way
of dealing with aleatory uncertainty. In both PSHA and PTHA,
analytic probability models are usually developed for the uncer-
tainty, and their probability density function (PDF) is integrated
into the rate (frequency) term. We here introduce a different, discre-
tised form, for this equation. The corresponding probabilities will
also be discretised within the ET framework introduced in the next
section.

3 T H E E V E N T T R E E ( E T ) F O R
S A M P L I N G T H E A L E AT O RY
VA R I A B I L I T Y O F T H E S E I S M I C
S O U RC E

We explore the aleatory uncertainties for a fault zone through an
ET. An ET is a branching graph representation of events in which
individual branches are alternative steps from a general prior event,
state, or condition, and which evolve into increasingly specific sub-
sequent events. ET analysis is then a logical inductive process used
to determine the path from an initiating event to the various con-
sequences and the expected frequency of each consequence, and it
has found application in many fields of science (e.g. Clifton & Eric-
son 2005), including geophysics (e.g. Newhall & Hoblitt 2002). Its
different branches represent different possibilities, not ‘alternative
models’ as in LTs (e.g. Bommer & Scherbaum 2008). Here, the ET
provides a controlled discretisation of earthquake parameter space,
in order to (i) define the set of scenarios σ j that may be originated
in the zone and (ii) assess the probability of occurrence Pr (σ j |Zi )
for each σ j , leading to the assessment of the overall hazard related
to the zone Zi through eq. (5). The main purposes of a controlled
discretisation are to avoid oversimplifications in the treatment of
source parameters, and to cover their entire range without ending
up with huge synthetic catalogues.

We analyse all of the source parameters at the different ET nodes
(or levels) in a pre-defined logical order, according to dependence
of each node on the previous one. Although we define the ET for
all the parameters, we keep some of them fixed in our example.
Thus, while this schematization of the assessment through an ET is
general, the following parameterization is intentionally simplified
for clarity.

Each parameter range is discretised with a finite number of val-
ues, each of them representative of a finite interval. We assume
that the discretisation steps are small enough not to influence final
results (Bazzurro & Cornell 1999). The probability of occurrence
associated with each interval is evaluated at each node. Possible
correlations among parameters are considered through conditional
probabilities to parameter values at the previous nodes. We here
consider six nodes:

(1) Node 1: Magnitude M of the event.
(2) Node 2: Length L of the seismic rupture.
(3) Node 3: Width W of the seismic rupture.
(4) Node 4: Geometrical centre x of the rupture area along the

strike direction.
(5) Node 5: Geometrical centre y of the rupture area along the

dip direction.
(6) Node 6: Slip S (6a) and rake angle r (6b) distributions inside

the rupture area.

The actual procedures adopted for each node, and the evalua-
tion of the associated conditional probabilities, are detailed in what
follows. To simplify notations, the distinction between symbols of
intervals and their representative values is omitted where possible.

Node 1: We define a set of n1 magnitudes Mk (k = 1, 2, . . . , n1)
covering the complete range of expected magnitudes within the
source zone. In order to evaluate the probability of Mk , we assume
that it represents the interval Ik = [Mk, Mk+1[, being the minimum
magnitude in an interval the most probable (the mode). This approx-
imation holds if the interval is chosen small enough. The probability
of occurrence of each magnitude interval is then assessed by:

P1(k)
def= Pr (M ∈ Ik) = � (mk+1) − � (mk) , (6)

where �(mk)
def= Pr(m ≤ mk) is the cumulative distribution func-

tion adopted for the seismic moment mk corresponding to magnitude
Mk (Kanamori & Brodsky 2001). Here, we use the truncated Pareto
distribution (Kagan 2002, eq. 9).

Nodes 2–3: The geometrical characterization of the rupture area
for each magnitude is based on the empirical earthquake scaling law
considered appropriate for the source zone. Here, we simplify these
two nodes by considering for each Mk only the expected values,
〈Lk〉 and 〈Wk〉, and neglecting the uncertainty associated to the
chosen scaling laws for L and for W . Therefore, the probability at
these nodes is equal to 1:⎧⎨
⎩ P2(k)

def= Pr (〈Lk〉|Mk) = 1

P3(k)
def= Pr (〈Wk〉|Mk) = 1

. (7)

Node 4: The length of the fault is divided into equal parts that
define N4 possible geometrical centres of the rupture area xl along
the strike. Again, as for the earthquake magnitude intervals, the
value of N4 is selected so that the distance between two adjacent
points should be small enough to be undetectable in terms of the
resulting tsunami at the target coast, for all possible magnitudes.
Thus, with increasing magnitude, progressively more edge points
can no longer accommodate the associated earthquake size, since
their distance from the fault edge is too small (i.e. < 〈Lk/2〉); these
points thus have a null probability of being the centre of such events.
Conversely, for all the other nk

4 remaining points (with nk
4 ≤ N4), an

equal probability of occurrence is assumed:

P4 (l, k)
def= Pr (xl |Mk) = 1/nk

4. (8)

Node 5: The width of the fault in the position xl is divided into
equal parts that define N5 possible centres ym along dip. Similarly
to node 4, some of the defined points have a null probability of
occurrence, since their distance from the fault edge is too small
(i.e. < 〈Wk/2〉). Also in this case, we assume that the remaining nk

5

points are equally probable:

P5 (m, k)
def= Pr (ym |Mk) = 1/nk

5. (9)

In setting up the probabilities for nodes 4–5 we implicitly assume
that the tectonic rate is constant along fault strike, a roughly constant
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Figure 1. Sketch of the simplified event tree (ET). Graphical representation of the simplified ET that includes only NODES 1, 4 and 5, that is, earthquake
magnitude and position of the geometrical centre. Symbols are defined in the text. Modelled earthquake magnitude is the minimum (most probable) magnitude,
Mk , in each Ik = [Mk , Mk+1[ interval.

seismogenic width, and constant frictional properties over the fault
plane; that is, the slip rate for unit area is constant over the fault
plane.

Node 6: Similarly to nodes 2–3, a further simplifying as-
sumption is made here by taking the slip instantaneous, con-
stant and equal to its average value over the rupture area 〈Sk〉 =
mk/(〈Lk〉 × 〈Wk〉 × μ), where μ is the assumed constant rigidity
value, and mk is the seismic moment corresponding to magnitude
Mk . The rake angle is taken equal to the expected value r from tec-
tonic data for the source zone Zi . Also at this node the probability
is thus equal to 1:

P6 (l, m, k)
def= Pr ( 〈Sk〉 , 〈r〉| xl , ym, Mk) = 1. (10)

The probability of σ j , for j = 1, . . . , Nσ , that is, the second
term of eq. (5), can then be evaluated by taking the product of eqs
(6)–(10):

Pr (σ j |Zi ) =
6∏

n=1

Pn = � (mk+1) − � (mk)

nk
4nk

5

, and

Nσ =
∑

k

nk
4nk

5. (11)

With the discretisation scheme and the simplifying assumptions
adopted in our example, each scenario that has a magnitude M ∈ Ik

is modelled by assigning to it the magnitude Mk , its best guess
geometrical size, and uniform average slip, so that each earth-
quake scenario σ j is operatively defined by the set of parameters
[Mk, 〈Lk〉, 〈Wk〉, xl , ym, 〈Sk〉, 〈r〉]. Each path within the ET thus
characterizes a possible seismic event (the scenario σ j ) through a
controlled discretisation of the parameter space. Each path repre-

sents a class of events, that is those included in the same 6-D interval
represented by the above parameter set. Actually, only magnitude
and position are explored here. The resulting ET is a simplified case
for the purpose of illustrating the methodology, and it reduces to
the three levels constituted by the nodes 1, 4 and 5 (Fig. 1).

4 ‘ L I N E A R ’ S P T H A R E S U LT S

In this section, the use of the ET is illustrated by means of a case
study. A regional SPTHA is achieved in terms of maximum wave
height offshore, using linear tsunami modelling. Fig. 2(a) shows the
section of the Hellenic Arc used as the source zone for our case study
in the Mediterranean Sea. Figs 2(b) and (c) are a zoom on the target
sites and the telescopic nested grids of increasing resolution that
will be used later on for (non-linear, higher resolution) inundation
calculations. All of the details concerning the setup of this case
study are reported in the Supporting Information, both regarding the
source zone characterization, and the simulation setup for SPTHA
calculations.

The Hellenic Arc subduction zone was chosen because it is gener-
ally considered capable of hosting great tsunamigenic earthquakes,
such as the 365 AD, M8+, Crete Earthquake (Guidoboni et al.
1994; Papazachos & Papazachou 1997; Shaw et al. 2008). This
tsunami was observed in at least 11 localities all over the Mediter-
ranean Basin (NGDC/WDS Global Historical Tsunami Database).
Its deposits have been found on the eastern Sicily coast and on the
Mediterranean Sea bottom (De Martini et al. 2010; Polonia et al.
2013). This zone has already been considered by many scenario-
based tsunami hazard studies including, for example, sites on the
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Figure 2. Fault zone and target sites for the Hellenic Arc case study. Fig. (a) (in the middle) shows the considered segment of the subduction interface, and the
domain used for non-linear inundation calculations. The latter is embedded in the much larger computational domain used for linear calculations (see Fig. 3).
Fig. (b) (to the left) is a close-up view showing the telescopic nested grids used for the Messina (ME), Catania (CT) and Augusta (AU) target sites, along the
Eastern Sicily coast. Fig. (c) (to the right) is a close-up view around the Timpaki (TI) target site in Crete. For all target sites, the intermediate grids are indicated
by black bounding boxes, whereas the highest resolution grids, those used for inundation calculations, are plotted in purple. The control points on the 50 m
isobaths offshore of each target site are plotted in red.

Italian coasts (Tinti et al. 2005; Lorito et al. 2008a; Tiberti et al.
2008; Tonini et al. 2011; Basili et al. 2013).

SPTHA due to this source zone requires calculating all the terms
in eq. (5). The annual rate λZi is estimated essentially from the seis-
micity of the Hellenic Arc and from other assumptions such as the
maximum magnitude (see Supporting Information). The probability
Pr (σ j |Zi ) of each scenario is obtained by eq. (11).

The term Pr (ψ ≥ ψ̄ |σ j ; x) can be evaluated through numerical
simulation of the tsunami generated by the Nσ scenarios σ j . The
number Nσ of modelled independent sources is equal to the number
of ET branches with non-zero probability included in eq. (11).
Despite the simplifications we made at some nodes in the ET, this
number can still be rather high. Therefore, the computational cost of
full inundation models for each node, and in case one should include
several different source zones, can become a very serious issue. Yet,
the computational cost remains reasonable for linear simulations of
the maximum wave height H Max offshore, which we set as our
intensity measure ψ . In fact, relatively coarse grids can be employed.
Moreover, instead of performing one tsunami simulation for each
of the Nσ scenarios, linearity can be exploited using the common
approach of Green’s functions summation. The H Max j due to the
scenario σ j are here obtained as a linear combination of the tsunamis
due to elementary sources that approximate σ j . At each location x,
H Max j (x) is checked against a chosen threshold H Max and

Pr (ψ ≥ ψ̄ |σ j ; x) = H (
H Max j (x) − H Max

)
, (12)

where H(H Max j (x) − H Max) is the Heaviside function, being
equal to 1 for H Max j (x) ≥ H Max , and 0 otherwise. As stated
above, in this way, uncertainties due to numerical modelling, for ex-
ample, deriving from the use of shallow water approximation, and/or
those related to bathymetry models, are completely neglected.

Fig. 3 shows the simulation domain for linear calculations, the
chosen 50 m isobaths that are used as target points in the entire
Mediterranean basin (Aegean Sea excluded), and the linear SPTHA
results expressed as the annual exceedance probability for different
thresholds H Max , ranging from 0.25 to 8 m. Note that H Max j

values are calculated on the 50 m isobaths and then extrapolated
to 1 m depth adopting the widely used Green’s law approximation.
This is a quite crude approximation of the expected tsunami runup,
as it ignores focusing/defocusing effects, and it is generally also
a quite conservative choice, as attenuating effects such as bottom
friction and wave breaking are neglected. This adds up to the use
of shallow water equations, which is likely to be a conservative ap-
proach as well. Other convenient approaches to parametric run-up
estimation have been recently explored in order to avoid computa-
tionally expensive simulations of the inundation process (Løvholt
et al. 2012).

The regional SPTHA from this section of the Hellenic Arc pro-
duces local maxima on the Greek coast in the near-field and along
the African coast between 20 and 25◦E, where the tsunami energy
is focused. The strike of the Hellenic Arc poses this African stretch
of coast on a bearing roughly perpendicular to the broad side of
the modelled earthquake ruptures. Additionally, tsunamis of weak
to medium intensity might also affect the entire central and eastern
Mediterranean Basin, with an annual frequency of at least 0.001–
0.002 (Fig. 3), corresponding to an ARP of 500–1000 yr, or even
with a higher frequency at least in the central Mediterranean. Ac-
cording to these calculations, if considering ARPs on the order of
1000 yr or more, catastrophic tsunamis featuring waves of one to
several meters, originating in this source zone, may hit almost the
entire central and western Mediterranean.

5 T W O - S TA G E L I N E A R S P T H A
F I LT E R I N G

Our aim now is to reduce the total number of simulations required
to obtain inundation maps, by excluding the sources that are not
relevant for a specific target site or whose contribution to hazard can
be approximated by sources producing similar effects. The selection
is based on the analysis of offshore H Max probability.

We focus on the four target sites shown in Fig. 2, namely: Messina
(ME), Catania (CT) and Augusta (AU), on the eastern Sicily coast;
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Figure 3. Probability of exceeding different offshore H Max thresholds for the considered portion of the Hellenic Arc. The probability values are those
obtained with the full set of subduction earthquake scenarios considered in our case study. The values represented by the coloured bars along the 50 m isobaths
are those after correction with the Green’s law amplification factor. The domain shown is that used for linear calculations of tsunami propagation.

Timpaki (TI) on the southern coast of Crete. These sites were cho-
sen for testing the method under different tsunami propagation con-
ditions associated with different source–target pairs. The relative
orientation of the source–target pairs is quite variable among the
three sites on the Sicilian coast. Furthermore, tsunamis generated
on the Hellenic Arc subduction zone would have diverse paths to
the sites, such as through the Messina Straits. The site responses
are also expected to be different, because AU and ME harbours
are different, and CT is a coastal plain. The Timpaki (TI) site is
considered since the source variability in the near-field is expected
to have a relatively stronger control on the hazard results with re-
spect to tsunami propagation (Geist 2002).

A target site is operatively defined by selecting a number of Q
consecutive ‘control’ points x ∈ X target

Q along the 50 m isobaths,

and the corresponding set of H Max j (x ∈ X target
Q ) values already

obtained for each source scenario σ j . At each selected site we apply
the two-stage filtering procedure described in what follows.

For the first stage, our assumption is that an overall negligible
H Max on the set of offshore control points leads to negligible
inundation at the nearby coast (Filter 1). We thus filter out all sources
that would produce such a negligible H Max profile. To this end we
construct an empirical cumulative function of the absolute maxima
of the H Max j (x ∈ X target

Q ) profile due to each scenario at a given

test site, and discard those that are below a chosen threshold H Max .
Only the subset of sources {σ 1

j } which ‘pass’ through Filter 1, are
then carried on, that is

{
σ 1

j

} def=
{
σ j : max

x

[
H Max j

(
x ∈ X target

Q

)]
> H Max

}
. (13)

For all the discarded scenarios, we just set Pr (ψ ≥ ψ̄ |σ j ; x) = 0
in eq. (5). The H Max j corresponding to selected scenarios {σ 1

j }
will be hereafter indicated as Hmax1

j .

In our example, we set the threshold H Max = 0.25 m (Fig. 4a),
thereby obtaining a first significant reduction of the scenarios at
each of test site: on the order of 20 per cent for all of the far-field
Sicily sites (ME, CT and AU), and on the order of 10 per cent for
the TI near-field site on Crete, where larger tsunami amplitudes can
be expected.

In the second stage (Filter 2), we perform a hierarchical cluster
analysis (HCA) on the set of sources {σ 1

j } which passed Filter 1. The

basic assumption is that similar H Max j (x ∈ X target
Q ) profiles along

a sufficiently extended set of control points in front of the target
coast will correspond to a roughly similar inundation pattern. Thus,
if clusters can be found among sources {σ 1

j } that generate similar
enough Hmax1

j profiles, then one single simulation for each cluster
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Figure 4. Illustration of the filtering procedure for the selected target sites. Fig. (a) shows the empirical cumulative density functions (CDF) at the target sites
of Messina (ME), Catania (CT), Augusta (AU) and Timpaki (TI). For each source, the CDF is obtained with the corresponding maximum of the H Max values
along the offshore control profiles of Fig. 2. A reduction on the order of 20 per cent is obtained by applying Filter 1 with the chosen threshold of 0.25 m. Fig. (b)
shows a typical branching graph resulting from the clustering analysis and a few examples of the σ c

j sources (red dots) representing one cluster c of sources of
the same magnitude (area enclosed by yellow dots) after application of Filter 2 (see eq. 15). Fig. (c) compares hazard curves for offshore control points at the
target sites before (black curves) and after the two-stage filtering (red dashed curves with dots). The curves obtained with only 20–25 per cent of the full set of
earthquakes are very similar to those calculated with the full set. The probability thresholds are those corresponding to ARPs of 500 and 5000 yr used for the
inundation maps in Figs 5 and 6.

may be chosen as representative of any source belonging to that
cluster. The basics of this cluster analysis method can be found in
Anderberg (1973) and Hartigan (1975); below we indicate only a
few necessary details of our analysis.

First, we recognize that earthquake magnitude controls H Max
to first order. Therefore, separate HCA are performed for each
magnitude (one for each k of eq. (6)). A ‘cluster distance’ needs to
be defined among the profiles Hmax1

j (x ∈ X target
Q , k). We choose a

distance dC F that has been previously used as a cost function for
non-linear inverse problem, and that is known to be sensitive to both
amplitude and phase of the profile (Piatanesi & Lorito 2007; Cirella

et al. 2008; Lorito et al. 2008b, 2010, 2011; Romano et al. 2010,
2012; Cirella et al. 2012):

dC F

(
H Max1

u , H Max1
v

)
=

[
1 − 2

∑
t H Max1

u,t H Max1
v,t∑

t (H Max1
u,t )

2 + ∑
t (H Max1

v,t )
2

]
. (14)

Here, t runs over the x ∈ X target
Q coordinates of the H Max1 pro-

files generated by the u-th and v-th source scenario, which have
the same magnitude Mk . Sensitivity tests based on linear SPTHA
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residuals show that this distance works better in our application than
the simple Euclidean distance.

As in all HCA, there does not exist a closed-form method to select
the ideal number of clusters (Priestley 1981), such that this num-
ber is small enough to avoid overfitting and large enough to avoid
grouping profiles that differ significantly from each other. To define
this number, we adopt the so-called Beale test. For each potential
number of clusters Ck (from 1 to the total number of scenarios with
magnitude Mk), we evaluate the within-cluster variance (Priestley
1981; Davis 2002). This variance monotonically decreases with
increasing Ck , but decreases more rapidly with new clusters that
‘explain’ the data significantly better than when fictitious clusters
(essentially due to noise) are present. The optimal number of clus-
ters is then defined as the ‘knee’ of this curve (Tarassenko 1998).
In order to completely automate the selection, we analyse the in-
tracluster variance as a function of the number of clusters with a
change point analysis scheme based on the Kolmogorov–Smirnov
tests (Mulargia & Tinti 1985; Mulargia et al. 1987), and the optimal
Ck is then selected as the smallest among the significant change
points found at a confidence level α of 0.01.

Once the optimal number of clusters is found, one representative
event source for each cluster, σ c

j , is defined as that which has the
closest profile to the cluster centroid, that is, the one that has the
minimum distance dC F from the average profile in the cluster c. The
set of sources passing through Filter 2 is then:{
σ 2

j

} def= {
σ 1

j : σ 1
j ≡ σ c

j , ∀c
}
, (15)

that is, a scenario σ 1
j is promoted to σ 2

j if it is the representative
of a cluster c. This subset contains all the sources for which an
explicit tsunami numerical simulation is required. Summarizing,
after each filter, the SPTHA can be calculated using a decreasing
number of simulations, that is, {σ j } → {σ 1

j } → {σ 2
j }, and eq. (5)

can be approximated as:

λi (ψ ≥ ψ̄ ; x, Zi ) = λZi

Nσ∑
j=1

Pr (σ j |Zi )Pr (ψ ≥ ψ̄ |σ j ; x)

≈︸︷︷︸
Filter 1

λZi

∑
j∈{σ 1

j }
Pr

(
σ 1

j |Zi

)
Pr

(
ψ ≥ ψ̄ |σ 1

j ; x
)

≈︸︷︷︸
Filter 2

λZi

∑
j∈{σ 2

j }

⎡
⎢⎣∑

σ 1
j ∈c

Pr
(
σ 1

j |Zi

)⎤⎥⎦
×Pr

(
ψ ≥ ψ̄ |σ 2

j ; x
)
. (16)

In practice, only one source for each cluster will be used for
inundation modelling. The probability of occurrence for the entire
set of scenarios belonging to cluster c is then attributed to the
representative source event scenario σ c

j .
We now compare the linear SPTHA curves obtained with the

complete set (no filters) with those obtained with the selected set
of scenarios (after Filter 2), for each target location. In this way, we
check the sensitivity of the results to our approximation regarding
source selection. In the next section, we make the same comparison
for inundation maps, to assess the extent at which the offshore
H Max probability can be used to guide the subsequent SPTHA
based on non-linear inundation simulations, and to assess the order
of magnitude and other features of the uncertainty induced by this
source selection.

Fig. 4(b) shows a few examples illustrating the cluster analysis.
Examples of H Max profiles that were grouped together in a single

cluster c are shown, along with the extension of the representative
source σ c

j , compared to the zone covered by all the sources in the
cluster. By applying this method to the case study, we obtain an
overall reduction on the order of 75–80 per cent, with the combined
action of the two filters, irrespective of the near- or far- field location
of the target site. Fig. 4(c) shows the linear SPTHA expressed as the
annual probability of exceedance as a function of the wave height,
for some control points in front of the target sites. The SPTHA
curves obtained with just the selected sources or with the complete
set of sources are almost the same despite the substantial reduction
of the scenarios behind them. This could lead to consideration of
a further reduction by increasing the threshold of 0.25 m used for
Filter 1 or by allowing a larger intra-cluster variability (increasing
the size of the clusters). However, this cannot be done without first
looking at the effect of filtering on the inundation maps in the next
section, to see if they are stable and well approximated by the re-
duced set of tsunami simulations. Nevertheless, we argue that there
might be a dependency of the optimal Filter 1 threshold on the ARP
to be considered for a specific application. Here, we have fixed this
threshold deterministically: because we never consider H Max val-
ues lower than that in hazard curves, and because we assume that
a 0.25 m offshore H Max does not lead to significant inundation.
Therefore, there is no relation here with the ARP to be considered.
However, higher earthquake magnitudes have longer ARPs and, at
first order, they induce larger tsunamis. Then, choosing a higher
threshold for long enough ARPs, might optimize the analysis. Con-
versely, since the cluster analysis is performed for each magnitude
interval, the Filter 2 is less dependent on the ARP of interest. As
already stated, ET sampling could instead be a function of the cho-
sen ARP, which could in turn indirectly improve the efficiency of
the cluster analysis.

In order to achieve stable results, we had to tune also the length
of the control profile x ∈ X target

Q . Note that the initial size Q of

X target
Q —the length of the profile in front of the coast—essentially

depends on the extension and morphology of the target site. A
compromise has then to be reached, because we empirically found
that the longer the ARP of the scenario under scrutiny, the longer is
the optimal profile. The relation between the length and the spatial
step of the points forming the control profile with the tsunami
and/or H Max profile typical wavelengths could be worth of further
investigation. However, an overall good approximation was found
for all the target sites using a profile slightly longer than the involved
coastal stretch.

6 I N U N DAT I O N M A P S

In this section, we analyse the performance of the filters by compar-
ing the inundation maps obtained with only the selected scenarios
with those obtained with the full set. Due to the various simplifying
assumptions we made, and to the fact that only one source zone was
used, we keep this analysis at a quite basic level, in order to avoid
overinterpretation of results. In addition, we used in some cases
quite inaccurate digital elevation models, as better data were un-
available to us, with the only exception, perhaps, of the ME target
site. Consequently, the inundation maps presented and discussed
here are not ready for operational purposes; these results are only a
test of the proposed methodology.

Figs 5 and 6 present inundation maps for maximum flow depth
and maximum volume flux (current speed times flow depth), respec-
tively, at the Messina (ME) target site before and after the two-stage
filtering. They also show the residuals between the two in both map
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Figure 5. Flow depth inundation hazard maps for 500 and 5000 yr ARPs at Messina harbour. The maps in the first column are those corresponding to the full
(unfiltered) set of sources, that is the same set of sources used to calculate the linear hazard shown in Fig. 3. The second column shows the maps obtained with
the sources selected after filtering, and the third column presents the residuals between the two. The residuals are also shown as histograms of the absolute and
relative differences; red dashed lines indicate the 16th and 84th percentiles and grey shaded areas indicate the region where differences are within ±10 per
cent. The maps presented are a close-up of the most inundated zone around Messina harbour. The inundation map for the full zone corresponding to the purple
rectangle in Fig. 2 is presented in the Supporting Information, along with those for the other target sites.

and histogram format. All the results are plotted for two different
ARPs, 500 and 5000 yr; in other words, they are the maximum flow
depth values that have an annual exceedance probability of 0.002
and 0.0002, respectively. The residuals are obtained by subtracting
the unfiltered hazard intensity from the filtered hazard intensity (Fil-
ter 2 minus No Filter), at each ‘wet’ point on one of the two maps.
Thus, a positive residual means that filtered maps overestimate the
hazard, and vice versa. The relative residuals, only shown as his-
tograms, are obtained by dividing the residuals by the unfiltered
value. Note that Figs 5 and 6 show a close-up view on the most
inundated part within the innermost (highest resolution) grid for
the ME case, that is around the Messina harbour. The inundation
maps for the entire innermost grid of all target sites (ME, CT, AU
and TI) are reported in Figs S6–S13.

At first glance, we note that the overall inundation pattern is
left unchanged by the filtering. In particular, a visual comparison
between maximum inundation lines indicates that they remain stable
or change only slightly for all the cases here considered. Also,
significant differences between the values are mainly limited to
rather isolated points. This is quite satisfactory, given the inherent
uncertainty in modelling of inundation maps, whose finest details
are seldom used for operational purposes.

It is important to recall that we noted a dependence of the results
on the length of the control profile. We found that, after adjusting the
control profile in order to obtain a stable approximation for linear
SPTHA curves (Fig. 4c), also the corresponding inundation map
remains stable. This is not shown here, as too many plots would be
needed to illustrate this feature. Therefore, some effort is needed

for finding the optimal length for the profile, but then the stability of
inundation maps can be reasonably well predicted by only analysing
the offshore H Max probability.

The analysis of the histograms of the residuals, and of the relative
residuals, indicate that the former are generally less dispersed than
the latter, at least for target sites in the far-field of the source. In the
far-field, the residuals are more significant for the shortest ARP of
500 yr. The inundation in this case is quite limited in most cases, and
this may cause some instability in the histograms, due to the small
sample size. Thus, the filtering seems to perform better where more
sustained inundation probability is present due to the longer ARP.
In the near-field of the source, the situation is quite the opposite, as
some extra dispersion of the residuals appears for the longer 5000
yr ARP.

Taken together, the above results indicate that the procedure is
able to capture the overall features of the inundation maps, even
if they have been obtained with a limited set of scenarios. Some
fine-tuning of the filters is needed not only depending on the ARP
of interest, but also considering whether the target site is in the
near-field or far-field of the causative source.

7 D I S C U S S I O N

The procedure proposed in this study focuses on a careful treat-
ment of the aleatory variability of the seismic source; however, we
made several simplifying assumptions. Some (or even all) of these
simplifications should be avoided for actual hazard assessments.
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Figure 6. Volume flux inundation hazard maps for 500 and 5000 yr ARPs at Messina harbour. Same as Fig. 5, for the volume flux, that is speed times flow
depth.

For example, exploring a synthetic catalogue of stochastic hetero-
geneous slip distributions would likely be necessary when dealing
with run-up at coastal sites in the near-field of the seismic source
(Geist 2002; McCloskey et al. 2007; González et al. 2009; Thio
et al. 2010).

Here, we propose the ET as a tool for the controlled factorization
and discretisation of the parameter space. For example, exploring
low probability events (e.g. great or mega earthquakes with longer
ARPs) with more classical approaches, such as Monte Carlo, may
result in exceedingly large synthetic earthquake catalogues. Con-
versely, with the ET approach, the tails of the assumed PDF can be
efficiently explored. This is important because the parameters (e.g.
size, peak slip) of ‘extreme’ tsunamigenic events, such as Sumatra-
Andaman 2004 or Tohoku 2011, are likely falling in these tails and,
if so, one may think of them as responsible for quite heavy tails of
tsunami hazard and risk distributions. The ET nodes may be also var-
iously explored, for example depending on the ARP of interest for a
specific application, by adjusting the ranges and the sampling steps
as needed. Here we did not fully explore this possibility; instead we
chose the source-parameter sampling scheme quite heuristically. As
illustrated in the Supporting Information, the only exception is per-
haps the uneven sampling of the magnitude, with an increasingly
finer sampling at higher magnitudes. Also other parameters that we
kept fixed to their expected values without exploring their aleatory
variability could be subject to optimization, such as the earthquake
geometrical parameters deriving from scaling laws.

A comparison between ETs with different levels of complexity
may also provide a systematic assessment of the SPTHA sensitivity
to the different source parameters (ET levels), either in general
or for a specific source zone-target coast pair. A classic example
to illustrate this is that the nodes accounting for the variability

of the geometrical parameters, or the degree of heterogeneity of
the slip distribution, are expected to have enhanced relevance with
respect to earthquake magnitude in the near-field of the source.
Such a hierarchization of the source parameters with respect to
their influence on the hazard intensity would help optimize the
sampling scheme, and a finer sampling could be adopted when
hazard sensitivity is higher.

In order to obtain satisfactory results at any specific site by
adopting the filtering procedure it is necessary to find an opti-
mal length for the controlling set of offshore points on the 50 m
isobath. This optimal length condition appears to be met when the
offshore H Max hazard curves are stable with respect to the source
selection. The parameters of the filters, in addition to those of the
ET, could be likely optimized as a function of the application. For
example, the longer the ARP considered, the higher the thresh-
old of Filter 1. Future studies might be oriented at developing a
more thorough approach by considering current speed in conjunc-
tion with H Max at offshore profiles. We have also noted that an
interdependence between the ET and filter optimization might be
envisaged.

We demonstrated that our source-filtering procedure preserves
the fundamental features of inundation maps reasonably well, both
at near- and far-field distances from the source. At this point of
the analysis, however, we are not able to say how our modelling
of flux might be improved. It may be that the basic shallow wa-
ter assumption is less appropriate for tsunami currents or, given
the higher spatial variability of currents, that a better topographic
model and a finer grid are required. Improvement might also be
achieved by incorporating (more densely spaced) flux profiles into
the source filtering procedure, which currently employs only wave
height profiles on coarsely spaced offshore points.
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In addition to treating aleatory uncertainty as discussed above, a
thorough SPTHA study also requires consideration of epistemic un-
certainty (e.g. SSHAC 1997). We thus discuss some major sources
of epistemic uncertainty underlying our case study and that should
be considered for operational assessments. For example, we ignored
epistemic uncertainties related to the parameters of the assumed
probability functions for the aleatory variables (e.g. the parame-
ters of the Pareto CDF, or the earthquake scaling law), and the
geometrical parameters of the source zone. We also assumed that
the convergence rate and the depth limits of the seismogenic zone
are constant on the fault plane; that is to say, we assumed a uni-
form slip probability everywhere. Another issue not addressed here
is the likely depth-dependent rigidity of the fault (Bilek & Lay
1999). As noted by Blaser et al. (2010), if there is a systematic
relationship between fault area and seismic moment, stress drop
should be constant, and then slip and rigidity should be inversely
proportional.

In addition to these well-recognized sources of epistemic un-
certainty there are others sources of uncertainty that sometimes
receive little or no attention. A few examples include the uncertain-
ties related to the limited knowledge of potential offshore sources,
particularly in complicated tectonic contexts (Basili et al. 2013; Ma-
tias et al. 2013); to modelling of the tsunami generation mechanism
(Kervella et al. 2007; Nosov & Kolesov 2011; ASCETE project,
http://www.ascete.de, accessed 14 November 2014); and to the pos-
sibility of activation of secondary structures, such as splay faults
(Wendt et al. 2009). In particular, the limited knowledge on offshore
sources may seriously affect SPTHA, especially in the near-source
region. Less constrained offshore structures capable of generating
earthquakes may exist. For example, several crustal source zones
with hardly predictable geometrical parameters are known to lie
in the Mediterranean. Oversimplified assumptions that just ignore
such sources would affect the ‘seismic source coverage’, thus in-
troducing uncontrolled biases in the SPTHA. Also, when dealing
with reasonably well-constrained faults, there may still be poorly
known parameters that are likely to control the results to a very
first order, thus representing a significant challenge even in PSHA
studies (Stein et al. 2012; Kagan & Jackson 2013). One exam-
ple is the almost never well-constrained maximum magnitude for
a given fault MMAX

Zi
(Holschneider et al. 2014; Rong et al. 2014),

which has first order control on SPTHA estimates. Another impor-
tant example is the rate of activity or the slip rate, that here we
derived quite heuristically from observed seismicity and from geo-
dynamic considerations. To address these potential limitations all
operational SPTHA studies should be integrated with a compari-
son to all available evidence at the target site, such as paleo- and
historical tsunami recurrence rates and hazard intensity estimates
(González et al. 2009; Parsons & Geist 2009).

Finally, we need to mention that we disregarded epistemic uncer-
tainties related to tsunami numerical modelling, such as those in the
generation, propagation and inundation model, and those due to the
potential inaccuracy of the topo-bathymetric data set.

Various strategies exist for incorporating epistemic uncertainty
into hazard studies; for example, the Bayesian approach (Marzocchi
et al. 2010), the expert elicitation (Selva et al. 2012) or the classical
LT approach (Geist & Parsons 2006; Annaka et al. 2007; Basili
et al. 2013). In the Bayesian and expert elicitation approaches,
epistemic uncertainty evaluation is addressed contextually at each
ET node or level. Conversely, in the LT case, each node corresponds
to a set of modelling assumptions, and for each node of the LT
a complete modelling chain (including a specific ET) should be
developed.

8 C O N C LU S I O N S

We have presented a methodology for SPTHA that significantly
lowers the computational cost of probabilistic inundation maps by
reducing the number of required source scenarios without degrad-
ing significantly the quality of the results. The procedure consists of
two modules: a controlled factorization and discretisation of source
parameters, in a logical order, with a series of conditional prob-
abilities in an ET; and a two-stage filtering scheme that reduces
the number of scenarios necessary for the production of inundation
maps.

Source selection is based on the expected tsunami effects at target
sites rather than on similarities among the sources themselves. That
is to say, the criteria for source selection and sampling are inten-
tionally designed for SPTHA purposes instead of being borrowed
from PSHA. In our approach the selection of sources is based solely
on relatively inexpensive H Max calculations on control offshore
profiles in front of the coast. The process of filtering sources is then
very cost-effective. It may also provide a tool not only for SPTHA,
but also for appropriately selecting worst-case scenarios (e.g. for
the definition of evacuation maps) or design scenarios for a specific
target site, through de-aggregation of a limited set of inundation
maps.

The proposed two-step filtering procedure is semi-automatic and
can be easily repeated for different target locations before calcu-
lating inundation maps. In order to get satisfactory results at any
specific site, however, it is necessary to find an optimal length for
the controlling set of offshore points on the chosen isobath. The
whole procedure, as regards ET sampling and tuning of the filters,
can perhaps be optimized if results are needed for a specific ARP
and/or specific source/site pairs.

For describing and testing the performance of our approach we
simulated the occurrence of subduction earthquakes on a section of
the Hellenic Arc and applied our SPTHA scheme to several loca-
tions on the coasts of eastern Sicily and southern Crete. We found
that the method reduces the computational effort of inundation mod-
elling by almost 80 per cent.

Further work is needed to compare the uncertainties introduced
by this scheme with those inherent to the seismic source treatment
and tsunami modelling commonly adopted for SPTHA. The discrep-
ancies introduced by our approximation likely fall within epistemic
uncertainties that are not considered here, such as those related to
tsunami generation and propagation models, bathymetric and to-
pographic models, or other basic and less constrained unknowns
related to earthquake activity rates or slip distribution probability.
We recommend that these epistemic uncertainties be thoroughly
assessed in order to identify the acceptable level of discrepancy
introduced by filtering before starting any operational SPTHA.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online
version of this article:

Table S1. Subduction parameters for the adopted MFD.
Table S2. Parameters of sample ruptures.
Figure S1. Upper panel: Map of the Hellenic subduction zone show-
ing colour-coded tessellation of the slab section analysed in this
study. Convergence rates normal to mapped boundaries are from
block modelling of geodetic data by Vernant et al. (2014). Lower
panel: Generalized tectonic setting of the Mediterranean Sea. Leg-
end for tectonic plates: EU, Eurasian; AF, African; AE, Aegean;
AT, Anatolian; AR, Arabian; AD, Adria microplate. The square
indicates the area mapped in the upper panel.
Figure S2. MFDs for various maximum magnitude (Mx) and cou-
pling coefficients (C) compared to earthquake distribution from
SHEEC. Maximum magnitude range (9.0–9.7) reflects global esti-
mation for subduction zones from Kagan & Jackson (2013). Cou-
pling coefficients are chosen to symmetrically encompass earth-
quake distribution. The distribution adopted in this study is the one
marked by the solid black line with dots representing the magnitude
values in Fig. S3 and Table S2.
Figure S3. Diagrams showing the relationship among the various
parameters of the subfaults used to sample the G-R relationship
shown in Fig. S2. Notice how the magnitude separation decreases
with increasing magnitude values.
Figure S4. Mesh of 480 quadrilaterals subfaults re-projected on
the fault surface. Yellow circles represent the positions of possible
geometrical centres of the earthquakes defined by the ET NODES
4 and 5 (Fig. 1) on the projection of the subduction interface at the
Earth’s surface.
Figure S5. Diagram (a) showing the total number of subfault com-
binations found for each magnitude value in Fig. S3, and map views
(b) of the subfault centres.
Figure S6. Flow depth inundation hazard maps for 500 and 5000
yr ARPs at Messina harbour. The maps in the first column are those
corresponding to the full (unfiltered) set of sources, i.e. the same set
of sources used to calculate the linear hazard shown in Fig. 3. The
second column shows the maps obtained with the sources selected
after filtering, and the third column presents the residuals between
the two. The residuals are also shown as histograms of the absolute
and relative differences; red dashed lines indicate the 16th and 84th
percentiles; grey shaded areas indicate the region where differences
are within ±10 per cent. The maps presented here correspond to the
purple rectangle in Fig. 2.
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Figure S7. Volume flux inundation hazard maps for 500 and 5000
yr ARPs at Messina harbour.
Figure S8. Flow depth inundation hazard maps for 500 and 5000
yr ARPs at Catania.
Figure S9. Volume flux inundation hazard maps for 500 and 5000
yr ARPs at Catania.
Figure S10. Flow depth inundation hazard maps for 500 and 5000
yr ARPs at Augusta.
Figure S11. Volume flux inundation hazard maps for 500 and 5000
yr ARPs at Augusta.
Figure S12. Flow depth inundation hazard maps for 500 and 5000
yr ARPs at Timpaki.

Figure S13. Volume flux inundation hazard maps for 500 and 5000
yr ARPs at Timpaki.
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