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S U M M A R Y
Data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission can be
used to estimate the mass change rate for separate drainage systems (DSs) of the Greenland
Ice Sheet (GrIS). One approach to do so is by inversion of the level-2 spherical harmonic data
to surface mass changes in predefined regions, or mascons. However, the inversion can be
numerically unstable for some individual DSs. This occurs mainly for DSs with a small mass
change signal that are located in the interior region of Greenland. In this study, we present
a modified mascon inversion approach with an improved implementation of the constraint
equations to obtain better estimates for individual DSs. We use separate constraints for mass
change variability in the coastal zone, where run-off takes place, and for the ice sheet interior
above 2000 m, where mass changes are smaller. A multi-objective optimization approach
is used to find optimal prior variances for these two areas based on a simulation model.
Correlations between adjacent DSs are suppressed when our optimized prior variances are
used, while the mass balance estimates for the combination of the DSs that make up the
GrIS above 2000 m are not affected significantly. The resulting mass balance estimates for
some DSs in the interior are significantly improved compared to an inversion with a single
constraint, as determined by a comparison with mass balance estimates from surface mass
balance modelling and discharge measurements. The rate of mass change of the GrIS for the
period of January 2003 to December 2012 is found to be −266.1 ± 17.2 Gt yr−1 in the coastal
zone and areas below 2000 m, and +8.2 ± 8.6 Gt yr−1 in the interior region.

Key words: Inverse theory; Satellite gravity; Time variable gravity; Glaciology; Arctic
region.

1 I N T RO D U C T I O N

The Gravity Recovery and Climate Experiment (GRACE) mission
was launched in March 2002. Several studies have shown that ice
mass decrease takes place on Greenland using data from the GRACE
mission, (Schrama et al. 2011; Jacob et al. 2012; Sasgen et al.
2012; Shepherd et al. 2012; Barletta et al. 2013; Luthcke et al.
2013; Velicogna & Wahr 2013; Schrama et al. 2014). An advan-
tage of satellite gravimetry is that one can directly derive the total
ice mass balance after correcting for glacial isostatic adjustment
and atmospheric, oceanic and continental hydrology mass changes.
An alternative method is to measure surface elevation change by
satellite altimetry, in which case the density of the snowpack, the
firn and the deeper ice must be known to estimate the mass change
of an ice sheet. A drawback of satellite gravity measurements is
the relatively low spatial resolution compared to satellite altimetry
measurements (Zwally et al. 2005). The nature of satellite gravity
in combination with the post-processing is such that leakage effects
can be seen in the maps of gravity change as a result of the signal

spreading outside the source region (Velicogna & Wahr 2005; Chen
et al. 2007).

In order to deal with GRACE measurement error and leakage
effects different approaches have been suggested. By means of av-
eraging kernels, cf. Velicogna & Wahr (2005) and Swenson & Wahr
(2007), one can minimize the combined GRACE measurement error
and leakage effects to derive an average mass change for the GrIS
or for larger subregions of the GrIS. Velicogna & Wahr (2005) as-
sume an averaging function that is computed under the assumption
of uniform mass change distributed in the coastal zone and zero in
the interior of Greenland. However, several studies have indicated
that neither the mass change in the coastal zone is evenly distributed
nor mass change in the interior of Greenland is zero (Johannessen
et al. 2005; van den Broeke et al. 2009). Furthermore, the averag-
ing function for the GrIS extends to the neighbouring land areas
of northern Canada where mass changes also occur (Luthcke et al.
2013).

The mass concentration (mascon) methods described in Luthcke
et al. (2006, 2013) and Rowlands et al. (2010) result in mass changes
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for a global set of mascons directly from the K-band ranging data
from the GRACE satellites (the so-called level-1b data) and from
information on the orbit of the GRACE satellites determined by
GPS tracking and accelerometer measurements. In Luthcke et al.
(2013) the mascons are taken to be 1◦ × 1◦ blocks. In order to
suppress leakage and signal loss as a result of filtering, this approach
considers GRACE data with the full GRACE noise covariance. The
study of Luthcke et al. (2013) considers anisotropic constraints for
neighbouring mascons, and it assumes separate GrIS regions below
and above 2000 m. It is shown by Luthcke et al. (2013) that for
smaller areas, that is for 34 subregions of the GrIS, meaningful
regional mass changes still can be revealed from the GRACE data
when proper constraints are introduced.

Other studies have estimated regional mass changes from the
GRACE level-2 potential coefficients. Wouters et al. (2008) (here-
after W08) implement a forward modelling approach similar to the
mascon layout used by Luthcke et al. (2013) whereby a fixed number
of basin-shaped regions on the GrIS are considered. For a discus-
sion about the definition of GrIS basins see Rignot & Kanagaratnam
(2006). Scaling factors for each region are adjusted iteratively to find
a best match between the equivalent water heights obtained from
GRACE and their equivalent that follows from the forward model
used by W08. Regional mass changes from this approach match the
results from the mascon method described in Luthcke et al. (2006)
as well as other studies (Sasgen et al. 2012; Shepherd et al. 2012). A
least-squares inversion approach described in Schrama & Wouters
(2011; hereafter SW11) also employs the basin shaped mascons,
but it is different from the forward method as in W08, since the
least-squares approach is introduced. This approach improves the
effectiveness of the approach of W08 by reducing the required
computing power. SW11 show that the approximated regional mass
balance agrees with the results retrieved via the mascon method in
eight major GrIS drainage basins.

The least-squares inversion approach described in SW11 leads
to correlation between adjacent regions. An increase in mass loss
in one region can be compensated by mass gain in adjacent regions
so that the overall mass balance is unchanged. We will address the
correlation effect in Section 2 but here we discuss two solutions to
this problem which are given in SW11. The first is that the solution
becomes more stable when several adjacent regions are combined
into a single estimate. The second solution is to implement regu-
larization in the least-squares estimation (Tikhonov 1963), which
means that the approximations of the regional mass changes are
constrained by prior information. This solution is also referred to
as constrained least-squares adjustment (SW11). With the second
approach, the question is which values should be used as constraint.
When the constraints are too tight the regional mass change esti-
mates are biased towards a priori information. On the other hand
the instability can remain in regions if the constraint is too loose.
SW11 applied a loose constraint by assuming that the prior variance
imposed on each basin is less than 106 relative to the variance of
the EWT observation. In SW11 several basin configurations were
considered for the GrIS. The 13 basin configuration where the area
above 2000 m on the GrIS was taken as one mascon was preferred
in that study because the inter-region correlation was supressed
compared to the 20-basin solution.

To determine the optimal prior variances for the 20-region con-
figuration, Bonin & Chambers (2013; hereafter BC13) implemented
the constrained least-squares approach assuming one prior variance
(referred to as process noise in their study) for 16 GrIS subareas
and one for mascons in the surrounding ocean as well as in northern
Canada. In BC13, the constraint variance is optimized by means of

a simulation model based on the annual elevation change rate found
by Zwally et al. (2005). However, according to BC13, the mass
changes estimated for some regions still contain noticeable errors.
We will discuss these errors when applying the same optimal prior
variance as constraint in Section 2. Thus a single constraint for
all regions in Greenland yields suboptimal results in least-squares
inverted GRACE level 2 data. Another study of constraining the in-
version approach using simulation is that of Baur & Sneeuw (2011),
in which point masses are used instead of basin shaped mascons.
In Baur & Sneeuw (2011), the approximation norm and the resid-
ual norm associated with a series of constraint are compared in an
L-curve (Hansen 1992) and the one in the ‘corner’ of the L-curve
is considered to be the optimal.

The goal of this paper is to build on SW11 and BC13 and to inves-
tigate whether an alternative constraint model for the basin-shaped
mascons can be justified that results in improved mass change esti-
mates for individual regions

The inversion modelling approach from SW11 is described in
Section 2. We improve the regional mass balance approximation,
in particular in the GrIS interior, by assuming separate constraints
for regions above and below 2000 m. Optimal prior variances for
different regions are found by applying the inversion approach to
simulated monthly mass changes over the GrIS. In this simulation
approach, discussed in Section 3, we rely on RACMO2 model output
(Ettema et al. 2009) and satellite radar interferometry observations
of the ice discharge (Rignot & Kanagaratnam 2006). In Section 4,
we will introduce an optimization procedure for prior variances for
different GrIS regions by searching for the optimal combinations
using a genetic algorithm. In Section 5, we will apply the optimal
prior variances in the least-squares inversion modelling approach,
and discuss the effect on regional mass changes from GRACE level-
2 data. The conclusions are summarized in Section 6.

2 I N V E R S E M O D E L L I N G O F G R I S
R E G I O NA L M A S S C H A N G E S

The GRACE derived monthly geopotential changes are represented
by potential coefficients. In Wahr et al. (1998) it is shown how
monthly geopotential changes can be converted into surface mass
changes expressed in water equivalent thickness under the assump-
tion that one takes away the effects of tides, air pressure loading,
mass changes in the ocean, and glacial isostatic adjustment. The in-
verse modelling approach used here aims at representing the equiv-
alent water changes that follow from Wahr et al. (1998) by average
water equivalent changes in predefined regions within the GrIS and
the surrounding areas.

A sensible choice for obtaining predefined regions is to divide the
GrIS into regions according to their natural drainage system (DS).
Here we follow the definition of the DS described in Zwally et al.
(2011) so that we arrive at an 8-region layout (Fig. 1). In addition
we divide each DS at the 2000 m elevation contour, with the interior
region being the one above 2000 m, cf. Thomas et al. (2001), W08,
SW11 and BC13. SW11 compared multiple layouts for the GrIS as
well as the surrounding regions which are Ellesmere island, Baffin
island, Iceland and Svalbard (EBIS). When considering the GrIS as
one single region SW11 found a mass loss of −150 Gt yr−1 between
2003 and 2010. Their conclusion was that a single mascon results in
underestimated mass changes for the GrIS compared to other studies
using GRACE data (Sasgen et al. 2012; Shepherd et al. 2012). The
accuracy of the approximation in SW11 was improved by applying a
20-region setup which separated the GrIS into 8 DS each divided in
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Figure 1. Drainage system divides according to Zwally et al. (2012). The
digits are the ID’s of the drainage basins. The subregion is marked by the
character after the decimal. The characters ‘a’ and ‘b’ refer to the GrIS
margin and interior regions, respectively. Note that in this figure Svalbard is
not displayed but it is included in the 19-region layout.

a region above and below 2000 m elevation. EBIS areas were treated
as four separate regions as well. With this configuration SW11 found
an annual mass loss rate of around −250 Gt yr−1 which agrees with
other studies. So when using the least-squares inversion approach,
it is also possible to approximate the GrIS mass changes in small
regions while providing reasonable estimates of the mass change for
the whole GrIS. However, when using the GRACE level-2 potential
coefficients, the spatial resolution is limited by the maximum degree
and order. In this study, we use the CSR GRACE coefficients that
are truncated at maximum degree and order 60. Therefore regional
mass balances derived from these truncated GRACE level 2 data
should not rely on subregions that are too small. In this study we will
use the same amount of subregions as SW11. Moreover, compared
to other region layouts, as described in Luthcke et al. (2013), we use
a more conservative 2000 m divide. The GRACE EWT map used
in this study has a resolution of 1◦ which is close to a 110 × 110 km
square on the equator. In our layout, a grid cell is considered as
interior only if 80 per cent of the area of the grid cell has an altitude
higher than 2000 m. We find that only six cells in DS 5 are above
2000 m, so in our layout we chose not to separate DS 5. W08 and
SW11 found that the mass changes above the GrIS observed by
GRACE contain leakage from the EBIS areas which is the reason
for including these areas in the inversion. Overall, as depicted in
Fig. 1, we define 15 GrIS regions and four EBIS regions.

In order to implement the method, we first assume a uniformly
distributed water layer with unit thickness within each region, that
is fk (θ, λ) = 1 when [θ, λ] is within the domain of the region and 0
outside, where the subscript k = 1, 2, 3, . . . , n indicates each region.
We convert the mass distribution fk into potential coefficients up
to degree and order 60 which are filtered by an isotropic Gaussian
filter as described in Swenson & Wahr (2002) with half width r1/2 =
300 km. Then we convert the coefficients to EWT in the spatial
domain and order the values as a column vector, which becomes
the influence function gk(fk). Both SW11 and BC13 have discussed
the consequences of using different half widths in the inversion
approach. A half width of r1/2 = 300 km was found in SW11 and
BC13 to be the best compromise (compared to 0, 500 and 700 km)
between suppressing the noise in GRACE data and being able to
compute mass changes in our configuration of regions.

We construct a matrix H = [g1, g2, . . . , gn] and a vector of scal-
ing factors x = [a1, a2, . . . , an]T associated with the assumed mass
distribution fk, so that:

y = Hx + ε (1)

The vector ε contains the misclosures between the observations
y and the model Hx. y contains the global mass changes ordered
as a column vector, which in this study is either derived from the
simulation model (see Section 3) or from the GRACE observations
(see Section 5). The best approximation can be found by minimizing
the sum of the squared residuals. To do so, we solve eq. (1) using
a least-squares approach. As in SW11, we define the cost function
for the least-squares approach as

J = εT ε (2)

the minimization of which yields, under the assumption of a uniform
variance of all observations in the vector y,

x̂ = (HT H)−1HT y (3)

Eq. (3) is an unconstrained solution because no other informa-
tion was considered than the observations. As a result, the residuals
are minimized for the entire GrIS but the solution is numerically
unstable. The numerical instability manifests itself in the form of
anticorrelation between neighbouring regions so that we can see the
typical high-low-high patterns as demonstrated by BC13, also cf.
Baur & Sneeuw (2011). Such a pattern will be called anticorrelation
error in the following. One way to deal with this problem is to av-
erage the mass changes in the anticorrelated neighbouring regions,
for example by combining the area above and below 2000 m in
one DS (Sasgen et al. 2012) or by combining the interior regions
cf. SW11. Although the errors are reduced by combining regions,
they still exist in sub-areas. For instance, in SW11, when separating
each drainage area by the 2000 m elevation contour, the approxi-
mated mass balance of the entire GrIS is obtained with a relatively
low uncertainty, that is −201.4 ± 21.0 Gt yr−1 during 2003–2010.
However the uncertainties for separated GrIS margin and interior
areas became larger, that is −263.3 ± 55.6 and 62.0 ± 46.5 Gt yr−1,
respectively.

The regional instability can be reduced by introducing prior vari-
ances as constraints on the mass changes for each region, also known
as the Tikhonov regularization (Tikhonov 1963). Note that in gen-
eral Tikhonov regularization, P = λR where R is the regularization
matrix and λ is the regularization parameter. In this study we as-
sume that in the prior matrix, all the regions are equally weighted,
yielding R = I. Also we use the prior variance σ 2 of the regional
mass variations in each regions as the regularization parameter so
that the constraint can be written as P = σ 2I, and the cost function
becomes:

J = (εT ε + xT P−1x) (4)

where the residual norm εT ε is associated with the observations
with unit weight and the approximation norm xT P−1x contains the
prior information. With this information we restrict the variance of
the regional scaling factor x, in order to reduce the anticorrelation
errors, cf. SW11. In this case eq. (3) becomes:

x̂ = (HT H + P−1)−1HT y (5)

All regions are considered to have the same prior variance in
SW11 and BC13. However, it has been found in BC13 that with
the optimized prior variance σ 2, the anticorrelation still remained
in some oversensitive regions that have a higher than average mass
change per grid cell. For instance, in DS 6, the area of the coastal
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Figure 2. Mass change simulation model results based on the IOM. (a) shows the gridded EWT change trend on a 1◦ × 1◦ grid for the time period
January 2003 to April 2012. The unit is cm yr–1. Panel (b) shows EWT change trend of the simulation model y. The simulation is based on (a) after spherical
harmonic analysis and synthesis up to degree and order 60 and Gaussian filtering (r1/2 = 300 km), and also includes noise in the GRACE data. The average
EWT change trend for each region computed from the IOM is x′, and the associated simulated GRACE data (after smoothing) y′ = Hx′ is shown in (c). Panel
(d) shows the annual EWT trend retrieved from the GRACE data for the same time span.

region is around 1.6 × 105 km2 and for the interior region it is
around 1.2 × 105 km2. In these two similar sized regions, the mass
change rates are significantly different. According to the modelling
of the surface mass balance, the mass changes in this interior region
are smaller than in the margin region (Ettema et al. 2009; Fettweis
et al. 2011). Also in the same DS, from GRACE data, Luthcke et al.
(2013) found a much lower mass change rate in the interior and
much more mass loss near the margin by using the direct mascon
approach with geolocatable constraints for the mascons below and
above 2000 m. However, when applying the same constraint as in
BC13, the mass change estimates for DS 6 from GRACE data were
−8.9 ± 4 and −9.8 ± 3.7 Gt yr−1, for the margin and for interior
regions, respectively. So the mass balance approximations in both
regions are likely in error because the interior region should lose less
mass than the margin because run-off is smaller. BC13 quantified
this type of error with a simulation method and found that in DS 6,
when using the same optimal constraint the regional mass estimates
were anticorrelated, and the associated error was −8.4 Gt yr−1 for
the GrIS margin area and +11.2 Gt yr−1 for the interior region.
Hence in order to further improve the least-squares approximation
in regions, the constraint P matrix will be composed of a group
of non-identical prior variances. In our case an optimal P is based
on a full time-series simulation model which will be described in
Section 3.

3 S I M U L AT I O N O F T H E G R I S M A S S
B A L A N C E

In this section, we introduce a simulation model that produces a
reasonable representation of monthly mass changes on Greenland

and its surrounding areas so that optimal prior constraint variances
can be determined. For this purpose we use the RACMO2 model and
discharge data to simulate 108 months (January 2003 to April 2012)
of surface mass changes on the spatial domain with a resolution of
1◦ × 1◦. RACMO2 estimates the SMB by modelling the regional
precipitation, runoff, refreezing and evaporation/sublimation and is
accurate to within ∼18 per cent, according to Sasgen et al. (2012).
To compute the total mass balance for Greenland we also use ice
discharge data that have been derived from SAR data (Rignot &
Kanagaratnam 2006) to yield a discharge mass flux at the glacier
boundary. The remaining areas of the world are set to zeroes. This
model describes the mass conservation of GrIS and will be referred
to as Input-Output Model (IOM) in the following cf. Shepherd et al.
(2012).

In Fig. 2(a), the IOM output is in the form of the gridded annual
EWT change rate for Greenland and the surrounding EBIS regions.
We convolve the gridded mass distribution over the Earth’s surface
and obtain the potential coefficients in response to this distribution
up to degree l = 60.

Additionally, the noise in GRACE level-2 data potentially in-
creases the variability of the monthly regional mass balance. There-
fore we also simulate the GRACE noise by applying the approach of
BC13. In this approach the noise is isolated from the GRACE data
by removing from it all known components, including the continen-
tal hydrology, all the glacier regions and GIA, using the following
external information:

(1) The model output from the Global Land Data Assimilation
System (Rodell et al. 2004; GLDAS) using the Noah Land Surface
Model.
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(2) Annual mass changes on land glaciers outside the GrIS from
Jacob et al. (2012).

(3) The GrIS regional mass changes from Sasgen et al. (2012).
(4) The GIA model of Paulson et al. (2007).

This information is converted into monthly potential coefficients
complete up to degree and order 60 and removed from GRACE po-
tential coefficients. From the remaining coefficients, a covariance
matrix is constructed, which is subsequently used to generate ran-
dom potential coefficients according to the procedure in appendix
A of BC13. In this study, we simulate the GRACE noise for every
month, then add it to the potential coefficients of the IOM model.
We apply a Gaussian filter with a smoothing radius r1/2 = 300 km on
the combined coefficients and calculate the EWT map for the com-
plete simulation model. The simulation model in terms of annual
EWT change is shown in Fig. 2(b).

Due to the uncertainty in the RACMO2 and discharge estimates,
there will be regional differences between the simulation model and
GRACE observations as can be seen in Figs 2(b) and (d), but we use
the simulation only as a reasonable mass change signal to derive
constraints. In the next section, we will use the above described
simulation model to optimize the prior covariance matrix P in our
inversion algorithm.

4 O P T I M I Z AT I O N O F T H E
C O N S T R A I N T S I N L E A S T - S Q UA R E S
A P P ROA C H

In order to find the optimal priori covariance matrix P, we apply
eq. (5), replacing y by simulated data. Since x̂ is supposed to rep-
resent the average regional mass balances, we compare them to
the regionally averaged simulated data without noise, being just
the IOM model output averaged by region (see Fig. 2c). To distin-
guish from the simulated data we label the regionally averaged IOM
model output with y′. Note that the GRACE noise is not included
in y′.

4.1 Optimization of constraint

The optimal constraint covariance matrix P is achieved when the
differences between the approximation Hx̂ and the averaged model
y′ reaches a minimum. Using eq. (5) the difference is a function of
the prior covariance matrix P:

f (P) = y′ − H(HTH + P−1)−1HTy. (6)

Note that eq. (6) is different from the cost function in eq. (4) for
the least-squares inversion, because y′ contains only the regionally
averaged IOM model output, which means that f (P) is different
from the residual ε in eq. (1) and eq. (2).

BC13 considered a uniform prior variance factor σ 2 for all re-
gions to form the P matrix (which we denote as constraint matrix
P1), so that σ 2

1 = σ 2
2 = . . . = σ 2

n = σ 2 and P1 = σ 2I. Here we con-
sider different variances on the diagonal of the P matrix. We use the
notation P3 to define our P matrix because we define 3 prior vari-
ances factors. To form the P3 matrix, for the regions below 2000 m
we define the associated prior variance elements as σ 2

1...8 = σ 2
d . For

the regions above 2000 m, a different prior variance is applied,
i.e. σ 2

9...15 = σ 2
u , and we use σ 2

16...19 = σ 2
E B I S to describe the prior

variance of the EBIS areas.

We evaluate eq. (6) and take the root-mean-square (rms) differ-
ence to the simulation as the first objective function:

G1 =
√∫ ∫

�
f 2 (P)

A
, (7)

where � defines the area which we use for comparison, between
40◦–85◦N and 255◦–385◦W, and A is the total surface area of �.

Since the evaluation is based on the trend difference during the
simulated time span, it only describes the long-term behaviour of
the mass change rate in each region. As discussed in W08 and BC13,
the inter-region correlation should also be taken into account for as-
sessing the quality of approximated solutions. Hence, we introduce
a second objective function during the optimization:

G2 =
√∑n

i, j=1

(
r 2

i j − r̂ 2
i j

)2

n2
. (8)

It is the rms of the difference between the inter-region correla-
tion coefficient matrix for the simulation model R = [

r 2
i j

]
and the

inter-region correlation coefficient matrix for the approximation
R̂ = [

r̂ 2
i j

]
, where rij

2 and r̂ 2
i j are the correlation coefficients between

the time series of approximated monthly regional mass changes in
region i and region j from 2003 to 2012, in the simulation and the
approximation, respectively. They state the correlation in monthly
mass changes between two regions. n is the total number of mas-
con regions in the least-squares inversion. Examples of the inter-
region correlation can be found in Fig. 5, which will be discussed in
Section 4.5.

4.2 Evaluation of objective functions

First, we evaluate the objective function eqs (7) and (8) using a
priori covariance matrix P1 as the constraint where varies σ 2 from
0.001 to 1000 m2. We find that when σ 2 = 1000 m2 the influence
of P1 on the approximation in eq. (5) becomes negligible, so that an
unconstrained approximation is obtained. The corresponding rms
difference of the EWT trend G1 = 0.44 cm. For σ 2 < 1 m2 G1

is larger than the unconstrained solution thus these variances are
rejected. The objective function as a function of the prior variance
is shown in Fig. 3(a). As can be seen in this figure, the minimum
of the objective function G1 = 0.35 cm is achieved when σ 2 =
3 m2. However, we find the minimum of the inter-region correlation
difference, G2 = 0.44, when σ 2 = 5 m2. Also when we gradually
increase the value of σ 2 from 3 to 5 m2, the evaluation of G1

diverges from the minimum while the evaluation of G2 is converging
towards to its minimum. Thus, there is a trade-off between these
two objective functions within the range where the optimal σ 2 is
mostly likely to be found. In this study, in order to choose from
two values for the prior variance which both yield the optimal
scores but for different objective functions, we assess the overall
return when altering the solution. For instance we chose σ 2 = 5 m2

as the optimal solution for P1, because when comparing to σ 2 =
3 m2, G2 is reduced by 6 per cent while G1 is increased by only
1 per cent. One may argue that the differences are small. However,
the objective functions G1 and G2 are computed as spatial averages,
and when the averaged difference is integrated over the indicated
region with a total area of approximately 2.6 × 107 km2, significant
differences can be found. We will discuss the spatial differences in
Section 4.4.

The optimization process becomes more complicated when P3

is used as the constraint covariance matrix, since the dimension of
the search space of P3 increases by 2 compared to P1. Manually
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Figure 3. (a) The blue line shows the rms differences in the annual trend between the approximated solution and the simulation model, that is the objective
function G1. The green line shows the objective function G2 which is the rms difference of the inter-region correlation matrix for the simulation and for the
approximation. Panel (b) shows the performance of all the dominating solutions P3 (blue circles) along the Pareto front with respect to the objective functions
G1 (x-axis) and G2 (y-axis). The values are normalized to a range of 0–1. The dominating solutions are categorized into two groups, the dominating solutions in
the pink box are better for the objective function G1; the green box contains the solutions that yield a smaller objective function G2. For each box, we compute
the slope of the vector from the upper-left point to the bottom right point, marked by solid red circles.

testing each possible P3 to locate the minimum with both objective
functions turns out to be time consuming. For this reason we employ
a genetic algorithm (GA) technique, the Non-Dominating Sorting
Genetic Algorithm (NSGA-II; Deb et al. 2002), that is built-in
the Matlab optimization toolbox, version 2012. NSGA-II is a fast
multi-objective optimization algorithm that is designed to find the
optimal solution in case there are multiple objectives that need to be
minimized/maximized and also allows easy extension of the method
to more than three prior constraints. NSGA-II iteratively evaluates
and updates the solution. In GA the term population is defined as
a group of solutions each consisting of different combinations of
variables. In this study these variables are the variance factors in

P3. In the NSGA-II algorithm the population is evaluated at every
iteration through the objective functions, and the populations are
ranked based on the outcome. The NSGA-II algorithm ranks the
population by applying the ‘non-domination’ rule. If an individual is
worse than at least one other individual regarding all the objectives,
then it is dominated by those individuals. Individuals which are
not dominated by any others are the dominating individuals and
the collection of the dominating individuals is the Pareto front. For
instance, in Fig. 3(a) when using the covariance matrix P1 as the
constraint and letting σ 2 = 3, 5 and 20 m2, we find that G1 is 0.35,
0.36 0.40 cm and G2 is 0.51, 0.45, 0.49, respectively. The solution
σ 2 = 20 m2 yields the largest approximation error in both objective
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functions, so it is a dominated solution and will not be selected.
Although σ 2 = 3 m2 is a better solution than σ 2 = 5 m2 regarding
the cost function G1, the opposite is true when considering the cost
function G2. So σ 2 = 3 m2 and σ 2 = 5 m2 are both dominating
solutions. In NSGA-II, during every generation, the individuals on
the Pareto fronts are given the top rank, while the individuals on
the second best front are given the second rank, and so on. NSGA-
II repeats this process until the entire population in the current
generation is ranked.

Individuals with parents with high rank will provide the infor-
mation used for creating a new population in the next generation,
also referred to as children. For instances, if the covariance matrix
Pi

t and Pj
t are the parents at generation t, then in generation t+1,

NSGA-II will create a new Pt+1 which is identical to either Pi
t or Pj

t

in part of the dimensions. In addition, we apply a mutation in one
or more of the dimensions during the process of generating chil-
dren, in order to avoid the solutions converging to a local minimum
or maximum. NSGA-II will stop when it reaches the maximum
specified number of generations. We also restrict the value of σ in
P3 to fall in the range [0.001, 1000]. Moreover, we define the size
of population to be 100 and the maximum number of generations
to be 50. During the optimization, we found that the size of the
population and the maximum number of generations is sufficient
to find the global optimum. The final Pareto front, consisting of 70
different cases of P3, is shown in Fig. 3(b) in which the evaluations
of the objective functions are normalized to a range of 0–1. After
normalization, the minimum and maximum evaluations of G1 and
G2 become 0 and 1, respectively.

In Fig. 3(b) it can be observed that these solutions naturally fall
into two distinguishable categories. The solutions within the pink
box show a small change in the normalized objective function G1,
but a large change in the normalized cost function G2. Two points
in this group that yield the local minimum in either G1 or G2 are
shown by solid red circles, that is A1 and A2. For G1 the scores of
these two points are G1

A1 = 0 and G1
A2 = 0.13. On the other hand,

the evaluations of G2 are G2
A1 = 1 and G2

A2 = 0.4. The slope of the
normalized vector

⇀
A1 A2 is around −0.2, which indicates that if we

chose A2 over A1, we gain 1 unit improvement in G2 while losing
0.2 unit of G1. Because of the relatively small increase in G1, we
choose the solution P3 associated with the point A2 to be the local
optimal solution in this group.

Similarly, for another group, we identify the boundary points
B1 and B2 inside the green box, with scores of G1

B1 = 0.23 and
G1

B2 = 1, G2
B1 = 0.38 and G2

B2 = 0. The slope of the normalized

vector
⇀

B1 B2 is −2.0, which means that when we move from point
B1 to point B2, in order to reduce G2 by 1 unit we will increase G1

by 2.0 units. Regarding the overall return B1 is a better than B2 in
this group. Thus, we have found two local optimal solutions for P3,

A2 and B1. If we select B1 over A2, G2 is reduced by only 0.02 while
G1 is increased by 0.2. Thus A2 is selected to be the optimal point,
and the associated solution is P3 with the diagonal elements [10.0,
0.1, 1.9] m2.

4.3 Trend differences

This section discusses the differences between the approximated
simulation and the simulation, or G1 in eq. (7). Note that we do not
consider the uncertainty in the RACMO2 and discharge data when
we use them to create the simulation model as a reasonable bench-
mark. The actual uncertainty of the simulation model is discussed
in Section 6. The errors in the simulation and approximated simu-
lation only reflect the uncertainty caused by linear interpolation for
a 95 per cent confidence interval.

In the simulation model a mass change of −249.7 ± 4.9 Gt yr−1

is found for the entire GrIS (15 regions) from January 2003 to
April 2012. The mass change trends from the approximation are
−242.2 ± 4.3 Gt yr−1, −247.5 ± 4.3 Gt yr−1 and −251.2 ± 4.3
Gt yr−1 when the least-squares inversion approach is unconstrained
and constrained using the optimal P1 and constrained using the
optimal P3, respectively. All three approximations are similar for
the whole GrIS, however the differences between regional mass
change trends are significant.

In Fig. 4, we compare the EWT rate differences between the
approximations and the simulation model. We find that the differ-
ences are spatially anticorrelated. For example, in Fig. 4(a) where
the approximation is the unconstrained solution, one can see under-
estimated mass loss rate in the west coastal regions. To compensate
the insufficient mass loss, the least-squares approach increases the
mass loss in adjacent regions, which leads to overestimated mass
loss in the neighbouring Baffin island region and overestimated
mass gain in the adjacent interior regions (both result in negative
differences). This manifestation of the anticorrelation error during
the least-squares inversion can be quantified by comparing with the
simulation model. In Table 1 we find that the annual mass change
trend in region 6a and 7a (margin of western GrIS) is −52.9 ±
1.7 and −16.6 ± 0.4 Gt yr−1 in the simulation model, whereas
the unconstrained least-squares solution gives −64.3 ± 1.9 and
−32.1 ± 0.4 Gt yr−1, respectively. Inland we can see from this table a

Figure 4. The linear trend of the approximated solutions after least-squares inversion minus the trend from the simulation (based on the RACMO2 model
output and the discharge data). Three strategies are used for the constraints. (a) Unconstrained, (b) using the optimal P1 as constraint and (c) using the optimal
P3 as the constraint. The unit is cm per year.
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Table 1. The trend in monthly mass changes for all regions in Gt yr–1. The uncertainties only refer to the uncertainty caused by linear interpolation for a
95 per cent confidence interval. For some regions, the uncertainty is 0.0 due to rounding. ‘IOM’ refers to the solutions derived from the IOM model, and
the symbol ‘P’ means that no constraint is applied. Similarly, P1 and P3 indicate the scenarios in which the optimal prior covariance matrix P1 and P3 are
applied, respectively. Note that the mass changes rates in this table refer to the time span from 2003 to 2012.

GrIS region layout (Zwally et al. 2012)
DS 1 DS 2 DS 3 DS 4 DS 5 DS 6 DS 7 DS 8

Region 1a Region 2a Region 3a Region 4a Region 5 Region 6a Region 7a Region 8a

IOM − 23.7 ± 0.5 − 10.6 ± 0.5 − 34.3 ± 0.7 − 62.4 ± 1.1 −32.1 ± 0.6 − 52.9 ± 1.7 − 16.6 ± 0.4 − 26.0 ± 1.2
P − 11.6 ± 0.3 − 12.1 ± 0.6 − 25.4 ± 0.6 − 86.4 ± 1.0 −30.1 ± 0.6 − 64.3 ± 1.9 − 32.1 ± 0.4 − 28.4 ± 0.9
P1 − 18.9 ± 0.3 − 11.4 ± 0.6 − 30.0 ± 0.6 − 72.0 ± 0.8 −33.2 ± 0.6 − 51.0 ± 1.7 − 23.9 ± 0.3 − 28.9 ± 0.9
P3 − 21.2 ± 0.4 − 11.6 ± 0.6 − 31.9 ± 0.6 − 62.0 ± 0.9 −34.8 ± 0.6 − 49.3 ± 1.9 − 18.3 ± 0.4 − 29.8 ± 1.0

Region 1b Region 2b Region 3b Region 4b Region 6b Region 7b Region 8b
IOM 0.4 ± 0.1 3.0 ± 0.1 0.7 ± 0.1 0.3 ± 0.1 1.0 ± 0.3 2.8 ± 0.2 0.8 ± 0.1

P − 7.6 ± 0.1 3.2 ± 0.3 − 4.5 ± 0.1 19.5 ± 0.4 17.1 ± 0.4 12.2 ± 0.2 7.9 ± 0.3
P1 − 3.8 ± 0.1 3.0 ± 0.2 3.5 ± 0.1 5.0 ± 0.1 2.1 ± 0.2 9.0 ± 0.2 3.1 ± 0.2
P3 − 0.1 ± 0.0 2.2 ± 0.1 0.6 ± 0.0 0.4 ± 0.0 0.5 ± 0.0 3.2 ± 0.0 0.9 ± 0.0

EBIS regions Combined areas

Svalbard island Elsmere island Baffin island Iceland ≤2000 m ≥2000 m GrIS GrIS±EBIS
IOM − 1.2 ± 0.3 − 36.0 ± 1.2 − 47.2 ± 1.4 − 6.0 ± 0.2 −258.7 ± 4.7 9.0 ± 0.6 − 249.7 ± 4.9 − 340.1 ± 5.5

P − 0.5 ± 0.3 − 29.8 ± 1.0 − 51.7 ± 1.5 − 4.4 ± 0.1 −290.2 ± 4.5 47.8 ± 0.6 − 242.4 ± 4.3 − 328 ± 5.0
P1 − 0.4 ± 0.3 − 30.5 ± 1.0 − 50.6 ± 1.4 − 3.6 ± 0.1 −269.4 ± 4.2 21.8 ± 0.5 − 247.5 ± 4.3 − 332.6 ± 9.4
P3 − 0.4 ± 0.3 − 29.4 ± 1.0 − 49.3 ± 1.4 − 3.0 ± 0.1 −258.8 ± 4.4 7.6 ± 0.1 − 251.2 ± 4.3 − 333 ± 4.9

considerable mass gain in the approximation for both region 6b and
region 7b, that is 17.1 ± 0.4 and 12.2 ± 0.2 Gt yr−1 while in the
simulation model there is only 1.0 ± 0.3 and 2.8 ± 0.2 Gt yr−1 mass
gain in regions 6b and region 7b, respectively.

When we use the optimal P1 as constraint, and compare the EWT
differences in Fig. 4(b), we find that the approximated mass change
rate for the western coastal regions and the interior regions are
closer to the simulation model, see Table 1. However, anticorrelation
errors still exist in the interior. For instance, in region 7a and 7b the
differences with respect to the simulation are −7.3 and 6.2 Gt yr−1.

Apparently, one can easily cancel the errors by combining DS
number 7a and 7b. However, this lowers the resolution of the ap-
proximation, so we apply the optimal P3 matrix as constraint in-
stead. After introducing a specific constraint for the interior regions
with the optimal P3 matrix, one can clearly see that the EWT rate
differences with respect to the simulation model, Fig. 4(c), are
reduced compared to Fig. 4(b), although the approximated mass
change rates are still higher in region 7b and lower in region 7a.
However, the error in this DS with respect to the simulation value
is reduced to 10 per cent in the margin and 14 per cent in the
interior.

The benefits of applying the constraint P3 can also be seen when
we combine all the regions above 2000 m. As shown in Table 1, in the
simulation model the mass slowly accumulates during the time span
with a rate of 9.0 ± 0.6 Gt yr−1. This rate is poorly approximated
with a value of 47.8 ± 0.2 Gt yr−1 when no constraint is used,
and 21.8 ± 0.5 Gt yr−1 when the constraint P1 is used. Our main
conclusion is that we obtain the best approximated rate of 7.6 ± 0.1
Gt yr−1 for the combined interior regions when using P3.

4.4 Inter-region correlation of the monthly mass balance

We also assess the approximations by comparing the inter-region
correlations. As in eq. (8), we compute the correlation coefficient
matrix R of the monthly regional mass change approximations using
different constraints. In Fig. 5, we plot the inter-region correlation
coefficients of matrix R, with each pixel in these plots referring to

the correlation between the monthly mass changes for region i on
the x-axis and region j on the y-axis.

As the baseline, we show the correlation coefficient matrix Rsim

from the simulation model in Fig. 5(a). One can notice from this
plot that there are three different ‘blocks’ in the matrix R: (1) the
triangular block on the top left (2) the square block on the bottom
left and (3) another triangle block on the bottom right. They contain
the correlations between margin regions (block 1), the correlations
between margin and interior regions (block 2) and the correlations
between interior regions only (block 3). In the simulation model, we
find that in block 1 all correlations are positive and have high values
(≥ 0.6). The regions above 2000 m are also positively correlated
but some regions have relatively low correlation with some other
interior regions, for instance r3b,8b = +0.2 and r1b,8b = +0.8. In
block 2, the correlations between regions below and above 2000 m
are all negative. Since the run-off is absent from the interior regions,
the mass is slowly accumulating in the interior regions in the simu-
lation model, whereas in all the regions below 2000 m the mass is
decreasing over time, cf. van den Broeke et al. (2009). In the follow-
ing, we will show that we can obtain the same (positive/negative)
correlation pattern by using separate constraints for the interior and
coastal regions.

In Fig. 5(b)–(d) we compare matrix R associated with the solu-
tions which are unconstrained, constrained by P1, constrained by
P3, respectively. Pattern errors are noticeable in the first two ap-
proximations. For instance, in plot b (unconstrained) we find that
the approximated monthly mass balances in region 3b are positively
correlated with all the margin regions and negatively correlated with
the internal regions, which is opposite to the pattern that we find in
plot a. Since we have considered the inter-region correlation as one
of the objective functions in the optimization of P1, the incorrect
correlation pattern in region 3b is solved, see Fig. 5(c). However
the problem remains in region 1b. As in plot d, we have restored the
correct sign for almost all the regional mass balance by using the
constraint P3.

Nevertheless, one may argue that in spite of the sign of the
correlation being correct in plot d, the values of the correlation
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Figure 5. The correlation coefficients of monthly mass balance between the different regions. Each plot is derived from the simulated (a) or the approximated
(b, c, d) monthly mass balances.

coefficients are different from the simulation. For instance, we find∣∣r8a,6b

∣∣ = 0.02 in the simulation model, which means that the mass
balance in region 8a and in region 6b are not correlated. However
in plot d the absolute correlation coefficient between these two re-
gions becomes

∣∣r8a,6b

∣∣ = 0.89, thus the approximated correlation
is much stronger. The correlation is also enhanced when applying
the constraint P1 as well as in the unconstrained results. Despite the
remaining inter-region correlation differences with respect to the
simulation, we minimize the correlation difference by using optimal
constraints based only on the objective function for the inter-region
correlation. From Table 2 it is clear that we reduce the errors in
the inter-region correlation using the optimal P3 as constraint. It
might be possible to further reduced the incorrect correlation by
introducing more constraints, which we leave to future work.

5 A P P ROX I M AT E T H E R E G I O NA L M A S S
C H A N G E S F RO M G R A C E DATA

In this section, we approximate the monthly mass changes in
GRACE observations using the least-squares inversion approach
with the optimal constraints P1 and P3. We use the release 5 level

Table 2. The rms differences of the inter-
region correlation between three approxi-
mations with different constraints and the
simulation model. Block (1) refers to the
correlation between regions below 2000 m.
Block (2) refers to the correlation between
regions below and above 2000 m and Block
(3) refers to the correlation between regions
above 2000 m.

Not constrained P1 P3

Block 1 0.17 0.11 0.11
Block 2 0.71 0.51 0.30
Block 3 0.78 0.63 0.33

2 GRACE monthly potential coefficients from CSR which have
a maximum spherical harmonic degree 60. The time interval is
January 2003 to December 2012, with a few months excluded be-
cause of insufficient observations (July 2003, January 2004, January
2011 and June 2011). We remove a mean over 2003 to 2012 to ob-
tain monthly mass changes. GRACE data is less accurate in C20

(Chen et al. 2005 and Chen et al. 2011), hence we replace the C20
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Table 3. Approximated annual trend from GRACE data using different
constraints on combined areas. The unit is Gt yr–1.

Not constrained P1 P3

<2000 m − 272.3 ± 17.4 − 263.4 ± 17.2 − 266.1 ± 17.2
> = 2000 m 13.1 ± 9.7 7.5 ± 8.6 8.2 ± 8.6

GrIS − 259.1 ± 19.9 − 255.9 ± 19.2 − 257.9 ± 19.2
EBIS − 90.9 ± 22.6 − 87.2 ± 22.1 − 81.4 ± 22.1

coefficients with estimates from Satellite Laser Ranging (SLR)
(Cheng et al. 2013). Since the orbit centre of GRACE satellites
is identical to the instantaneous centre of mass of the Earth, de-
gree 1 potential coefficients cannot be obtained from GRACE. We
use the degree 1 coefficients provided by CSR, which are potential
coefficients recovered using GRACE coefficients above degree 2
together with output from an ocean model (Swenson et al. 2008).

The mass changes on GrIS are also influenced by continental
hydrology and the GIA effect. We use the monthly GLDAS-Noah
model described in Rodell et al. (2004) to remove the continen-
tal hydrology leakage, and use the GIA model from Paulson et al.
(2007) to correct for GIA. To reduce high-frequency noise and inter-
coefficient correlation that manifests as so-called stripes (Swenson
& Wahr 2006) we use a Gaussian filter (Wahr et al. 1998) with a
half width of r1/2 = 300 km, the same as used in simulation model.
Potential coefficients are converted to monthly EWT changes in the
spatial domain and the constrained least-squares inversion approach
is applied with the optimal constraints P1 and P3, to obtain an ap-
proximation of the GrIS monthly mass balances observed by the
GRACE satellites.

We first assess the approximation in combined areas as shown in
Table 3. Note that the estimated errors in the annual mass changes
consist of the vector sum of (1) the standard deviations of the
GRACE data which is also provided by CSR, (2) the estimated
uncertainty of 20 per cent in the GIA model (Paulson et al. 2007)
which is a guess of the inherent uncertainty in the implemented
ice model ICE-5G (Peltier 2004) and (3) the estimated 30 per cent
average uncertainty in the GLDAS-NOAH model (Fang et al. 2009).
The uncertainty from estimating a linear trend with a 95 per cent
confidence interval is considered as well. In Table 3, for the entire
GrIS and for subregions, not using constraints or using P1 and P3

as constraint all yield consistent mass change trends. This indicates
that the anticorrelation errors disappear when regions with negative
correlation are combined.

In Fig. 6, one can observe that the anticorrelation errors are
reduced using the optimal P3. For instance, in region 1b, when us-
ing the constraint P1 the rate is 10.8 ± 5.5 Gt yr−1 while in the
neighbouring region 8b, the rate is −9.7 ± 5.3 Gt yr−1 which is
significantly different. The difference is caused by the numerical
instability of the inversion which manifests as anticorrelation be-
tween adjacent regions, because when comparing the values to the
rates found with the RACMO2 model for the same time period,
the two regions show similar mass changes rate, with 0.4 ± 0.1
Gt yr−1 in region 1b and 0.5 ± 0.1 Gt yr−1 in region 8b. Due to
the fact that the run-off and ice discharge is absent in this area,
the RACMO2 model output is more accurate there (Ettema et al.
2009). In order to improve the incorrectly distributed regional mass
change between these two regions one can use the constraint P3 in
which case the rate becomes similar to RACMO2 model output,
that is 1.7 ± 5.5 and 0.8 ± 5.3 Gt yr−1 in region 1b and region 8b,
respectively.

When using the constrained least-squares approach, the approx-
imated solution is determined by both the GRACE observation and

the simulation model. The mass balance of the interior regions is
influenced by the external information in the form of P1 or P3.
Moreover, as in Fig 6(a), when considering the uncertainties of
the rate estimation, we find that the approximations in most of
the regions below 2000 m are consistent between the cases uncon-
strained, or optimal constraints for P1 and P3. Hence during the
least-squares inversion, the mass balance of these regions is not
sensitive to changes in the constraints. Only in region 4a and region
7a, which are the GrIS margin regions located at the south east
and west, we find that the rate estimations change by a value larger
than the error bars when we alter the constraints. The sensitivity
becomes more obvious for regions above 2000 m. For instance on
region 2b, the rate difference between the solution using P1 and the
unconstrained solution is insignificant, (17.1 ± 2.6 Gt yr−1 com-
pared to 17.6 ± 2.6 Gt yr−1), whereas we obtain a much lower
rate of 5.4 ± 2.6 Gt yr−1 using P3. However, for region 7b, using
P1 and P3 results in similar estimates of −0.3 ± 4.3 and 0.6 ±
4.4 Gt yr−1 mass change, respectively, both of which are much
lower than the rate of 32.7 ± 4.4 Gt yr−1 from the unconstrained
solution.

The constrained mass change rate derived from the GRACE data
is similar to the IOM solution for the whole GrIS, that is −258 ± 19
and −249.7 ± 34 Gt yr−1, respectively. However differences can be
noticed in the southeast and northwest coastal regions. We compare
the regional mass changes trend in the IOM (see Table 1) with the
ones in the approximations from GRACE data (see Fig. 6). Note that
in Table 1, the uncertainties for the IOM mass changes only refer to
the uncertainties of the linear interpolation; the uncertainties in the
RACMO2 model and the discharges estimations are considerably
larger (∼20 per cent, cf. Rignot et al. 2008; Ettema et al. 2009;
Sasgen et al. 2012). In the southeast coastal region 4a, the IOM
present more mass loss trend than in the approximations from
GRACE data, that is −62 and −52 Gt yr−1, while the difference
can be explained by the large uncertainties (∼30 per cent) of the
surface mass balance model in this region (cf. Sasgen et al. 2012;
Vernon et al. 2013; Andersen et al. 2015). In the northwest region
8a, when applying P3 the mass change rate is −44.1 Gt yr−1 from
the GRACE data but only −26.0 Gt yr−1 mass loss rate is given by
the simulation. As it has been discussed by Sasgen et al. (2012), this
difference can be caused by the high uncertainties of the discharge
estimation in this region; the uncertainties in the simulation model
for this region can be approximately 50 per cent. These regional
differences to the IOM model are also seen in the GRACE inferred
EWH map, as in Fig. 2. If we compare the GRACE data (with-
out approximating the regional mass changes) to the IOM based
simulation model, it also shows more mass loss in the northwest
and less in the southeast. It indicates that although the optimized
constraint is based on the simulation model, the approximations are
still mainly determined by the observations.

6 D I S C U S S I O N

Least-squares inversion of mass change rates on Greenland from
GRACE data requires the use of constraints on the variance. It
was shown by BC13 that the value of the constraint should be
optimized, otherwise incorrect regional mass balance estimates can
result. We build on their results and find that even the use of a
single constraint can result in incorrect estimated mass changes for
individual regions. The main problem is that in regions of small
mass change, the inversion will place negative mass changes next
to positive mass change. In our study we propose to use different
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Figure 6. The annual mass change rates of the approximated GrIS regional solution for three different cases: unconstrained (blue), optimal P1 (green) and
optimal P3 (red). The error bars include errors in the GRACE data, GIA model, GLDAS model as well as the errors caused by the linear interpolation.

constraints for regions below and above 2000 m. We are motivated
to do this because the mass changes from the surface mass balance
models clearly show smaller variance in regions above 2000 m than
in the regions below 2000 m.

In order to determine the optimal P3 a model based simulation is
employed, following BC13. We extended the optimization approach
by adding as another objective function a measure of inter-region
correlation of the regional mass balance from the output of the IOM
model. By doing so the mass balance approximations in large ar-
eas yield a good agreement with similar regional GrIS studies. For
example Luthcke et al. (2013) obtain approximated mass changes
from December 2003 to December 2010 of −223.7 ± 19.8 Gt yr−1

(for the margin regions) and −6.6 ± 8.6 Gt yr−1 (for the interior
regions). When applying the same time span, we find that the corre-
sponding mass change trends constrained by P3 are −232.2 ± 11.7

and 8.2 ± 7.7 Gt yr−1. Meanwhile we have successfully reduced
anticorrelation errors caused by the oversensitivity of some regions,
particularly in the GrIS interior. Thus, the use of separate constraints
for higher parts of an ice sheet improves the regional mass balance
estimates from GRACE. This suggests that our approach could also
improve mass balance estimates for Antarctica where there are also
regions of high and low mass variability.

When optimizing the constraints, we used an IOM model which
comes with approximately 18 per cent uncertainty. We modify the
output of the IOM model by removing (minimum scenario) or
adding (maximum scenario) 18 per cent of the original EWT to
investigate the influence of the IOM uncertainty during the op-
timization. When repeating the optimization procedure, we find
that the optimal prior variances for the GrIS margin are 9.2 m2

or 17.3 m2, for the minimum and maximum scenario, respectively.
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However the changes of the constraints for the interior regions are
less than 0.02 m2 compared to using the un-changed scenario in
which the IOM model remains the same. The conclusion is that the
optimization is more robust in the interior than in the margin, when
considering the RACMO2 output and the discharge estimation as
reference. The mass balance estimates only differ by 0.9 Gt yr−1

in the GrIS margin, and 0.3 Gt yr−1 in the interior regions from
the original IOM. The differences are small when considering the
uncertainties in the approximations, see the error bar in Fig. 6.

There are a few issues in the approach that can be further devel-
oped in future work:

(1) Even though we use three prior variances in the least-squares
inversion, there are still differences between GRACE and the com-
bination of modelled surface mass balance in RACMO2 and the
estimated ice discharge in the west of Greenland, as can be seen
in Fig. 2. In addition to distinguishing the regional mass changes
between regions below and above 2000 m, different constraints can
be used for the southern regions in the GrIS (region 4a–region 6a).
However, this will add an extra unknown, and the method will rely
more on prior knowledge. In addition, the method becomes compu-
tationally more demanding than for example the iterative forward
modelling approach of W08.

(2) Another way to improve the regional mass changes approxi-
mation might be to introduce weights in the least-squares estimation.
In eq. (5), we assume that each region in the system has equal weight.
Thus a small area has the same weight as a larger area even though
there are less observations that are sensitive to the smaller area. If
we are able to properly weight all the regions in the system then the
oversensitivity of smaller regions can become less significant.
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