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S U M M A R Y
Considering fractures with heterogeneous aperture distributions, we explore the reliability
of constant-aperture estimates derived from ground penetrating radar (GPR) reflection data.
We generate geostatistical fracture aperture realizations that are characterized by the same
mean-aperture and variance, but different Hurst exponents and cut-off lengths. For each of
the 16 classes of heterogeneity considered, we generate 1000 fracture realizations from which
we compute GPR reflection data using our recent effective-dipole forward model. We then use
each (noise-contaminated) data set individually to invert for a single ‘apparent’ aperture, that
is, we assume that the fracture aperture is homogeneous. We find that the inferred ‘apparent’
apertures are only reliable when fracture heterogeneity is non-fractal (the Hurst exponent is
close to 1) and the scale of the dominant aperture heterogeneities is larger than the first Fresnel
zone. These results are a direct consequence of the nonlinear character of the thin-bed reflection
coefficients. As fracture heterogeneity is ubiquitous and often fractal, our results suggest that
robust field-based inference of fracture aperture can only be achieved by accounting for the
nonlinear response of fracture heterogeneity on GPR data.

Key words: Fracture and flow; Electromagnetic theory; Ground penetrating radar; Fractals
and multifractals; Numerical modelling.

1 I N T RO D U C T I O N

Rock fractures play an important role in many hydrogeological and
geotechnical processes (e.g. National Research Council, Committee
on Fracture Characterization and Fluid Flow 1996). For instance,
fractures can act as conduits (or barriers) for fluid flow in petroleum
and groundwater reservoirs. Hydraulically significant fractures play
a determinant role in the transport of chemicals and their proper-
ties need to be known in order to determine suitable safety mea-
sures, such as in the design of a nuclear waste repository (Tsang
et al. 2015). Moreover, fracture detection is important for rock-fall
hazard assessment (e.g. Jeannin et al. 2006), safety inspection of
buildings (e.g. Patriarca et al. 2011) and can even aid as a precur-
sor for volcanic eruptions (Kilburn & Voight 1998). Therefore, the
identification and characterization of rock fractures is arguably a
fundamental problem in groundwater hydrology and applied geo-
physics. Nonetheless, this remains very challenging in practice as
fracture properties often need to be deduced from indirect geophys-
ical data or through hydrogeological experiments, such as tracer
tests.

Rock fractures often have a material filling with highly con-
trasting electrical properties to the host rock, such as water-filled
fractures in granite. Such a setting is ideal for ground penetrating
radar (GPR) imaging since the strong property contrast—often both
in terms of electrical permittivity and conductivity—makes it pos-
sible to detect, at high resolution, fractures with apertures that are

several orders of magnitude smaller than the dominant wavelength
of the source wavelet (e.g. Grasmueck 1996). In the latter case, the
interference of the source wavelet with the fracture walls results in
a superposition of reflections (transmissions), such that no distinc-
tion can be made between the individual reflections (transmissions)
arising from the two interfaces of the fracture. Below this limit,
derived by Bradford & Deeds (2006) as 3

4 of the dominant GPR
signal-wavelength, fracture aperture has been classically estimated
by invoking the thin-bed approximation.

The ability of GPR to image fractures has been studied both theo-
retically (Bradford & Deeds 2006; Deparis & Garambois 2008) and
in controlled experiments (Grégoire & Hollender 2004; Tsoflias &
Hoch 2006). Field studies have successfully imaged fractures in
reflection (Dorn et al. 2012) and transmission (Tsoflias et al. 2004;
Sassen & Everett 2009) mode. Furthermore, time-lapse imaging
experiments have demonstrated the potential of GPR to dynam-
ically image transport of electrically conductive tracers (Tsoflias
et al. 2001; Day-Lewis et al. 2003; Talley et al. 2005; Tsoflias
& Becker 2008; Dorn et al. 2011; Shakas et al. 2016). A recent
study by Tsoflias et al. (2015) suggests that multipolarization GPR
data can better constrain flow channelling, however, it is not al-
ways possible to obtain all components of the GPR signal (e.g. for
conventional borehole GPR systems). Nevertheless, the challenge
remains on how to effectively interpret the information content in
the GPR signal to make reliable aperture estimates in the presence
of fractures with heterogeneous properties (i.e. any fracture found
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in a natural system). To date, virtually all GPR studies have relied on
the implicit assumption of constant aperture and material properties
over the first Fresnel zone.

The impracticability of fully numerical models, such as finite-
difference time-domain (FDTD), to adequately simulate very thin
and heterogeneous fractures is mainly related to discretization. Us-
ing the traditional FDTD approach, one would need to discretize
a fracture with at least 10 nodes (e.g. 0.1 mm node spacing for a
1 mm aperture) to accurately capture the GPR source-wavelet in-
teraction with the fracture filling. Assuming a 100 MHz dominant
source-wavelength and a granitic host rock in a typical modelling
domain (e.g. a cube that spans at least 10 m in each dimension) the
FDTD model would require Maxwell’s equations to be solved on
1014 nodes. Such a problem is extremely challenging (often impos-
sible) to model numerically. Additionally, inadequate discretization,
the introduction of slanted surfaces in the often-used Cartesian grid
and the artificial imposition of boundaries in the modelling domain
lead to unwanted numerical artefacts. These disadvantages can be
overcome with alternative modelling tools, such as the Finite Ele-
ment method (e.g. Mukherjee & Everett 2011), that can efficiently
model fractures with the use of thin elements and mesh refinement,
but has not been widely used in the GPR community.

An alternative approach to simulate GPR reflection and trans-
mission in fractured rock is to use analytic solutions for thin-layer
interference. Widess (1973) was the first to relate the effect of thin-
bed (or thin-layer, as it was originally introduced) properties on
geophysical data. In his classic article, Widess examined the reflec-
tive properties of a geological layer whose thickness is small com-
pared to the incoming seismic wavelength. In the electromagnetic
(EM) counterpart, the same response arises from solving Maxwell’s
equations on the boundaries of a thin-bed. This leads to the
well-known optics phenomenon called ‘thin-film interference’ (e.g.
Orfanidis 2002, Ch. 5). The resulting equations can be separated
into transverse-electric (TE) and transverse-magnetic (TM) modes.

Several studies use the EM thin-bed reflection coefficients to
model the GPR response. For example, Grégoire & Hollender
(2004) invert for the electrical properties of a filling between two
granitic blocks using GPR reflection data from a laboratory ex-
periment, Deparis & Garambois (2008) use common offset GPR
reflection data to invert for electrical properties and aperture of a
single fracture, Tsoflias & Becker (2008) use multifrequency GPR
to investigate the relationship between fracture aperture and fluid
electrical conductivity, Sambuelli & Calzoni (2010) successfully
model GPR reflections from a mm-thin fracture in a marble block
and compare them with a controlled experiment and Sassen &
Everett (2009) use polarimetric GPR transmission data to deter-
mine electrical properties and aperture of a single fracture. More
recently, Babcock & Bradford (2015) use GPR reflection data to
quantify electrical properties and thickness of thin and ultrathin
non-aqueous-phase liquid layers and Grobbe & Slob (2016) couple
the thin-bed reflection coefficients to simulate the seismo-electric
effect. In all these studies, the analogy between a fracture and a
thin-bed is made.

The validity of the EM thin-bed solution depends on two condi-
tions: (1) that the incoming field arrives as a plane wave over the
whole thin-bed interface and (2) that the thin-bed extends infinitely
along the plane of incidence. Both assumptions are violated to vary-
ing extent in practice. Another basic disadvantage of the thin-bed
approach is that the aperture (thickness) and electrical properties of
the bed are constant. In reality, fracture aperture variations within a
fracture span several orders of magnitude (e.g. Bonnet et al. 2001).
Moreover, studies that utilize GPR to detect the presence of an elec-

trically conductive tracer in a fractured system are confronted with
highly heterogeneous tracer distributions, and consequently electri-
cal conductivity, in the involved fractures, that can lead to signal
depolarization (Tsoflias et al. 2015).

Another way to solve the thin-bed interference problem relies on
an analogy to the microscopic treatment of electromagnetic wave
propagation in dielectric media. The analysis begins with the real-
ization that optical phenomena, such as thin-bed interference, are in
fact based on macroscopic (bulk) representations of the dielectric
properties of a material that can be derived as space-time averages
of a more fundamental microscopic treatment (Russakoff 1970).
Microscopically, a dielectric is treated as a collection of discrete
elements (electrons at the smallest scale) that can be polarized by
the incoming field. For the typical frequencies used in GPR applica-
tions (MHz to GHz range), the dominant mechanism is molecular
polarization in which polar molecules (such as water) rotate in
response to the incoming field and then release energy during relax-
ation (e.g. Jol 2008, section 2.3). The collective sum of responses
from all the polarizable elements exactly reproduces the (retarded)
electromagnetic wave that one observes in dielectric media, which
precisely reduces to the Fresnel equations on dielectric boundaries
(Fearn et al. 1996) and accurately explains thin-bed interference
(Lai et al. 2002).

We have recently presented how this analogy to the microscopic
viewpoint can be used to efficiently simulate the electromagnetic
response of a fracture of arbitrary properties, embedded within a
homogeneous dielectric medium (Shakas & Linde 2015). Our ap-
proach, that we refer to as the effective-dipole method, consists of
discretizing the fracture into a large collection of dipole elements.
Each element radiates as an electric dipole that is modulated by the
thin-bed reflection coefficients. Discretizing the fracture into ele-
ments provides two advantages: (1) we can account for the variation
of the incoming field (intensity and orientation) along the fracture
for a given antenna radiation pattern and (2) we can account for vari-
ations in electric and geometric properties of a finite-sized fracture
(i.e. allow for heterogeneity in the fracture filling and aperture).
Moreover, the effective-dipole method offers computation times
that are several orders of magnitude smaller than FDTD simula-
tions. A similar approach has been used by Michalski & Zheng
(1990) to model radiation and scattering from perfectly conducting
objects and later extended to magnetic dipoles in order to model
underground unexploded ordnance by Shubitidze et al. (2002).

It is presently unclear if aperture estimation based on fully ana-
lytic forward models that rely on the thin-bed reflection coefficients
is reliable in the presence of heterogeneous fracture properties. This
question is addressed here by using our effective-dipole method, that
offers the first opportunity to simulate realistic GPR responses from
heterogeneous fractures. Initially, we confirm that the thin-bed for-
ward model is reliable when considering a large enough and homo-
geneous fracture. Considering fractures with constant apertures, we
demonstrate that aperture can be reliably estimated using a simple
over-determined inversion scheme. We proceed by assigning het-
erogeneous fracture properties using the power spectrum method (a
Fourier transform technique). We then demonstrate the ability of our
effective-dipole method to reproduce 3-D FDTD simulations for a
fracture with a heterogeneous conductivity distribution. After this,
we use the effective-dipole method to simulate noise-contaminated
GPR reflection data from fractures with highly heterogeneous aper-
ture distributions. To accomplish this, we create 16 classes of geo-
statistical models that all share the same mean aperture and variance,
but exhibit different Hurst exponents and cut-off lengths. The Hurst
exponent and cut-off length define the trade-off between the fractal
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nature (equal aperture heterogeneity present at all scales) and size of
the largest aperture heterogeneity, respectively. Within each class,
we evaluate 1000 fracture realizations. From the resulting data set,
we infer the apparent constant-aperture of a homogeneous fracture
whose GPR response, using the thin-bed forward model, best repro-
duces the data. These apertures are compared with spatial averaging
weights derived from the sensitivity of the effective-dipole forward
model for the given geometrical setup and a constant aperture frac-
ture. Using these weights we obtain a weighted (mean) aperture,
for each fracture realization, that we compare to the corresponding
inferred (apparent) aperture. Based on this comparison, we present
the conditions under which aperture heterogeneity leads to aper-
ture estimates that are widely different from a linear average of the
fracture aperture field.

2 M E T H O D O L O G Y A N D T H E O R E T I C A L
B A C KG RO U N D

In this section, we first introduce the thin-bed forward model. We
proceed by defining the modelling domain considered, with a single
fracture present in a homogeneous rock matrix. We then describe
the technique used to simulate heterogeneous fracture properties and
use both FDTD and our effective-dipole method to simulate the GPR
response for a fracture with a highly heterogeneous conductivity
distribution. For all simulations, we use the same relative electric
permittivity (εr = 9) and electric conductivity (σ = 0.001 S m−1)
for the background matrix.

2.1 The thin-bed forward model

The thin-bed reflection coefficients can be derived from the macro-
scopic Maxwell’s equations by considering an electromagnetic field
impinging a layer with contrasting electrical properties to a back-
ground material (e.g. Orfanidis 2002, section 4.4). The same solu-
tions are obtained by modelling the contrasting layers as a collec-
tion of dipoles and summing up their contribution (Lai et al. 2002).
Both derivations rely on two basic assumptions: (1) that the incom-
ing field strikes the layer with a constant (or periodic) angle, phase
and amplitude everywhere and (2) that the layer has homogeneous
properties and extends infinitely.

When these assumptions hold, the thin-bed reflection coefficients
can be used to simulate GPR reflections resulting from a fracture
with aperture a, through the following forward model:

Er (xs, xr , kb, ka, θ ) = Es(xs, kb)Re(kb, ka, θ )F(∗)
e−ikbxr

xr
, (1)

where kb (ka) is the complex wavenumber k = ω

c

√
εr + iσ

ω
in the

background matrix (thin-bed) that depends on the angular frequency
ω, relative electric permittivity εr and electric conductivity σ . Both
materials are assumed to be non-magnetic and the speed of light in
vacuum is c ≡ 299792458 m s−1, Er is the electric field measured at
the receiver location and Es is the electric field from an infinitesimal
electric dipole source p,

Es(xs, kb) = c2

4πε0

(
k2

b(x̂s × p) × x̂s + (3x̂s(x̂s · p) − p)

×
(

1

x2
s

− i
kb

xs

))
eikbxs

xs
, (2)

where x̂s is the unit vector and xs = ||xs||2 is the Euclidean distance.
The dipole source p is described by a gamma distribution (Shakas

& Linde 2015) to allow for variations in the radiated electric field,
Es. The 3-D Cartesian vectors xs and xr point from the source to
the thin-bed centre and from the thin-bed centre to the receiver,
respectively (see Fig. 1). The thin-bed reflection coefficients, Re,
are given by (Orfanidis 2002, section 7.2):

Re(kb, ka, θ ) = R(1 − e−2iaka cos θ )

1 − R2e−2iaka cos θ
, (3)

where R may represent the TE or TM Fresnel reflection coefficient
and the incidence angle θ is determined by the orientation of the
vectors xs and xr. Eq. (3) is not restricted to modelling a thin-layer
but also reduces to the Fresnel reflection coefficients as the aperture
increases (Lai et al. 2002), making the exponential term negligible.

Uncertainties in the forward modelling process, such as the cou-
pling of the source and/or receiver, are often treated separately (e.g.
Grégoire & Hollender 2004; Deparis & Garambois 2008). Here, we
use F(∗) to indicate source and receiver related modelling uncer-
tainties, making our forward model analogous to the ones used by
other authors. For the modelling exercises to follow, we set F(∗) = 1,
since we use the same (known) source for both the effective-dipole
and thin-bed forward models. Finally, the last term on the right hand
side of eq. (1) accounts for the dispersion, attenuation and spher-
ical spreading of the reflected electric field propagating from the
thin-bed to the receiver.

2.2 GPR response from a homogeneous fracture

In order to make a valid comparison between the thin-bed and
effective-dipole forward responses, we must define an appropriate
modelling domain such that the fracture is large enough to avoid
that its edges contribute significantly to the reflected response. To
accomplish this, we consider a square fracture with side length L
and centre C that is separated from both source and receiver by
S. The source-receiver offset is given by D and the normal to the
fracture plane at C runs through the source-receiver midpoint. A
schematic of this model is shown in Fig. 1.

The fracture side length L must be large compared to the max-
imum source-receiver offset so that the boundaries do not affect
the actual GPR response. The minimum side length necessary is
expected to be inversely related to the maximum source-receiver
offset (Dmax). To compute this length, we set Dmax = 2 m and cre-
ate fractures with side length L = {5, 8, 10, 20, 30, 40, 50, 60}
m. We then simulate the GPR reflection data from these fractures,
using the effective-dipole method, for different fracture apertures
and conductivities a = {0.1, 1, 10} mm and σ = {0.01, 0.1, 1}
S m−1, respectively, and a constant relative electric permittivity,
εr = 81. In Fig. 2, we present the simulated reflected traces for
L = {5, 8, 10} m, a = 1 mm and σ = 0.1 S m−1. The effect of the
fracture boundaries (also verified with FDTD simulations that are
not shown here) manifests as a secondary reflection that diminishes
and arrives later with increasing L (e.g. Pearce & Mittleman 2002).
For L ≥ 20 m, we find that the difference in simulated amplitudes
to the L = 60 m response is less than 0.01 per cent. This is very
small compared with typical error levels and we set L = 20 m in the
following simulations.

2.3 Fractures with heterogeneous properties

Natural fractures barely resemble thin-beds. Rock fractures are often
the result of normal and shear stresses that create void space be-
tween two rough surfaces (National Research Council, Committee
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Figure 1. Schematic of the fracture model and the acquisition geometry. The source (S) and receiver (R), offset by a distance D, are separated by the fracture
by a distance S. The fracture midpoint is C and has a side length L. For the thin-bed forward model, the source propagates to the fracture midpoint and back to
the receiver, shown by the vectors xs and xr respectively.

Figure 2. Simulated reflected traces for fractures with a = 5 mm and L equal to (a) 5 m, (b) 8 m and (c) 10 m. Acquisition parameters are S = 5 m and D =
2 m (see Fig. 1). Results are presented for the thin-bed (solid) and effective-dipole (dashed) forward models. For each model type, the response is normalized
such that the maximum amplitude is 1.
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on Fracture Characterization and Fluid Flow 1996). The point-wise
separation between the two surfaces is termed local aperture (Oron
& Berkowitz 1998).

For the effective-dipole method, we assume that a fracture is
composed of a collection of parallel plates. Each parallel plate has
a unique aperture a and represents one dipole element on which
the thin-bed reflection coefficients, eq. (3), apply locally. Since
eq. (3) is also valid for apertures above the thin-bed criterion, it
can be used to model reflections from a fracture with apertures both
above and below 3λ

4 . Furthermore, changes in the polarity of the
incoming electric field (e.g. due to the varying separation from the
source or due to the antenna radiation pattern) imply that reflections
from apertures above and below 3λ

4 may interfere both construc-
tively and destructively. In practice, however, the fracture aperture
is almost always well below the thin-bed criterion (typically by one
or two orders of magnitude).

2.3.1 Self-affine aperture distributions

Local aperture variations are typically strong (e.g. Adler & Thovert
1999, Ch. 4) and often exhibit statistically similar patterns over
several scales (Bonnet et al. 2001). Such patterns can be repro-
duced mathematically by self-affine functions (Mandelbrot 1982).
Here, we represent heterogeneity in local aperture using the power
spectrum approach by Adler & Thovert (1999) to create self-affine
surfaces (see their section 2.3.2 for details). The technique is based
on taking the Fourier transform of a 2-D Gaussian random field and
generating a correlated random field using the following autocorre-
lation function:

Ch(u) = σ 2
h exp

[
−

(
u

lc

)2H ]
, (4)

with input parameters being the variance σ h, the cut-off length lc

and the Hurst exponent H. The cut-off length is the characteristic
length over which correlations disappear and the Hurst exponent,
that varies over the range 0 ≤ H ≤ 1, is related to the fractal
dimension (FD) through FD = 3 − H (Shepard et al. 1995).

2.3.2 Dipole coupling

Our effective-dipole forward model (Shakas & Linde 2015) is based
on an analogy to the microscopic analysis of Maxwell’s equations
(e.g. Purcell 2011, Ch. 10). From a microscopic viewpoint, the po-
larization of dielectrics is a result of the cumulative contribution of
many discrete polarizable elements. These elements are primarily
polarized by the incoming electromagnetic field from an external
source. In Shakas & Linde (2015), we upscaled the microscopic
treatment to model propagation and scattering of GPR from frac-
tures. We accomplished this by discretizing a fracture into dipole
elements, where each element acts as a secondary source that is
polarized by the GPR source (see Fig. 3).

Apart from energy from the source, each dipole element also re-
ceives energy from all the other elements (dipole coupling). When
a fracture is planar (no topography), all dipole elements have the
same orientation. This implies that the electric field always prop-
agates perpendicularly between elements of the same fracture. A
close look at eq. (3) reveals that when θ = π

2 (i.e. perpendicular
propagation), the exponential term reduces to unity and the thin-
bed reflection coefficient reduces to zero. Therefore, for a planar
fracture there is no contribution from dipole coupling. When frac-
ture topography and/or multiple fractures are present, dipole cou-

pling must be taken into account and this increases the computation
time of our effective-dipole method. In this study, we consider only
individual and planar fractures.

2.3.3 GPR response of a fracture with a heterogeneous
conductivity distribution

In hydrogeophysical applications, GPR has been used to moni-
tor electrically conductive tracer tests in fractured rock (e.g. Lane
et al. 2000; Tsoflias et al. 2001; Talley et al. 2005; Tsoflias &
Becker 2008; Dorn et al. 2011; Shakas et al. 2016). Due to the non-
linear nature of flow and transport in fractures, the resulting tracer
distribution will be highly heterogeneous. On this basis, we create a
test-case to ensure that the simulations based on our effective-dipole
method are in agreement with FDTD simulations (gprMax3D,
Warren et al. 2015).

In a realistic fracture, the aperture variation would directly (by
an increase in the overall conductance) and indirectly (by governing
the transport of the electrically conductive tracer) affect the GPR
response. However, in order to adequately capture the effect of
aperture variations, the discretization in FDTD simulations must be
several times smaller than the smallest fracture aperture. This makes
it difficult to accurately model aperture variations with FDTD and
instead, we choose to keep the aperture constant and only vary the
electrical conductivity.

We define a 10 m × 10 m × 10 m modelling domain with
a discretization step of 1 cm. Within this domain, we define an
8 m × 8 m square fracture with an aperture of 10 cm, to allow for
FDTD simulations with at least 10 nodes within the fracture. Along
the fracture plane we assign the electrical conductivity distribution
using the autocorrelation function in eq. (4) with σ h = 0.025, lc

= 1 and H = 0.5. The mean conductivity is σ = 0.05 S m−1

(schematic in Fig. 4a and the relative electric permittivity εr = 21,
which results in a dominant wavelength of 65 cm within the fracture,
thus making the fracture a thin-bed. As a source, we use a Ricker
wavelet centred at 100 MHz that is emitted by a vertically oriented
infinitesimal dipole. To obtain a comparable source wavelet to the
one in gprMax3D, we model the propagation to the first receiver
(from S to R1) and run a local optimization search to find the best
fitting source parameters.

We present the effective-dipole and gprMax3D simulation results
in Fig. 4(b). Note that gprMax3D works in the time-domain and the
effective-dipole method in the frequency domain. Therefore, Inverse
Fourier-transformed traces are shown in the latter case. The excel-
lent agreement between the two different approaches confirms that
the heterogeneous fracture is modelled well with the effective-dipole
method and it confirms that dipole coupling does not contribute to
the response for planar and individual fractures.

3 E S T I M AT I O N O F F R A C T U R E
A P E RT U R E

Except for an unknown fracture aperture, we consider an idealized
case for which all other fracture parameters are known, namely, the
exact form of the source wavelet, the electric properties of both the
rock matrix and the fracture filling as well as the orientation and
position of the fracture. In this case it is straightforward to estimate
an effective apparent aperture using GPR measurements for at least
two source-receiver offsets.
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Figure 3. Schematic of the effective-dipole forward modelling framework. A fracture is discretized into elements, and each element receives energy (green)
directly from the source (S) and radiates (red) back to the receiver (R).

3.1 Synthetic data creation

In both the homogeneous and heterogeneous fracture simulations
that follow, the synthetic GPR data are created using the effective-
dipole method. Since both the effective-dipole and thin-bed forward
models are formulated in the frequency domain, we choose to treat
the data, for inversion purposes, also in the frequency domain. For
each fracture realization, the data consists of two traces that cor-
respond to source-receiver offsets of D = 0 m and D = 2 m and
with a constant separation between the fracture and antennas set to
S = 5 m. The same vertically oriented source is used in all sim-
ulations. The source spectrum consists of a Ricker wavelet that is
peaked at 100 MHz and we compute the reflected response in the
range of 0 < fn ≤ 300 MHz at a sampling rate of 1 MHz. Each re-
sulting trace consists of 300 complex-valued numbers representing
the returning electric field.

3.2 Amplitude scaling and noise-contamination

The thin-bed forward model computes the source-fracture-receiver
interaction for a single path of the electromagnetic field, while the
effective-dipole forward model computes it as an integral of many
interactions on the finite fracture plane (compare Figs 1 and 3).

This leads to an amplitude discrepancy between the returning elec-
tric fields that are computed from the two methods. In practice,
this limitation of the thin-bed approach can be avoided by taking
GPR measurements with varying source-receiver offsets and con-
sidering the amplitude and phase variations as a function of offset.
Therefore, with a minimum of two offsets we can compute rela-
tive amplitude-phase variations. In all the computations that follow,
we compute the largest (absolute value) amplitude of the D = 0
reflection, max(|Ez(ω)|), and use it to scale the response for each
offset and each frequency component individually. This gives, for
both the thin-bed and effective-dipole forward models, responses
for which the D = 2 m response is scaled relative to the D = 0 m
response. We then contaminate each frequency component using
Gaussian noise with standard deviation of 0.035 (3.5 per cent) that
we add separately to the real and imaginary parts. This amounts to
5 per cent noise in the time-domain data and is representative of
the noise level in high-quality field data (e.g. Shakas et al. 2016,
fixed antenna experiment).

3.3 Data inversion

In deterministic geophysical inversion of GPR data, the aim is
often to minimize a data misfit function in order to derive the
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1424 A. Shakas and N. Linde

Figure 4. (a) The model used to compare the effective-dipole modelling
results with those obtained from 3-D FDTD modelling for the case of a
heterogeneous conductivity distribution. The source (S) is placed 5 m away
from an 8 m × 8 m fracture with strong conductivity variations. The six
receiver locations are also shown. (b) The simulation results from the model
in (a) based on 3-D FDTD (gprMax) and the effective-dipole method agree
very well.

best-fitting fracture parameters that reproduce the observed data us-
ing the forward model (e.g. Grégoire & Hollender 2004; Bradford &
Deeds 2006; Deparis & Garambois 2008; Sassen & Everett 2009).
The test case we are considering (i.e. all parameters known except
the aperture) is idealized and serves as a best-case scenario. This
implies that any problems that appear in this setting will certainly
be present in actual field situations.

The misfit function space can be complex, especially when
the forward model is nonlinear. In order to invert the noise-
contaminated data for the best-fitting aperture, we use the golden
search algorithm (Kiefer 1953) with the weighted root mean square
error (WRMSE) as misfit function:

WRMSE
(
dsim

i , dobs
i , sd

)

=
√√√√ 1

2N

N∑
i

�{dsim
i − dobs

i }2 + �{dsim
i − dobs

i }2

sd2
(5)

where dsim
i is the simulated data and dobs

i is the observed data with
added independent and identically distributed (iid) Gaussian noise
of standard deviation sd. The WRMSE is 1 when the average misfit
between simulated and observed data corresponds to the predefined
noise level. Our convergence criteria for the inversion are that (1) the
WRMSE ≤ 1 or (2) the forward model is run more than 1500 times.

3.4 Fractures with a constant aperture

We use the golden search algorithm to find the best-fitting aperture
given noise-contaminated data generated from the GPR response

of a homogeneous fracture. Using the effective-dipole code, we
create 40 data sets for fractures with constant aperture that varies
logarithmically in the range 0.1 mm ≤ a ≤ 10 mm. Then, using
both the thin-bed and effective-dipole forward models we run the
inversion algorithm until one of the two criteria is met. In Fig. 5,
we show the best-fit aperture along with the WRMSE for both
forward models. Considering three different fracture conductivities,
we find that inversion results based on the thin-bed or effective-
dipole forward models produce excellent aperture estimates, down
to apertures of 0.3 mm.

3.5 Fractures with heterogeneous aperture variations

In nature, fractures exhibit variations in local aperture that will cause
GPR reflections to differ from the theoretical thin-bed reflection of a
homogeneous fracture. These apertures are often assumed to follow
specific spatial patterns along the fracture plane. Here, we assess
the impact of local aperture heterogeneity on the inferred thin-bed
aperture.

Using the geostatistical algorithm by Adler & Thovert (1999),
presented in Section 2.3.1, we consider 16 classes of heterogeneity
models describing local aperture. Each class is defined by a unique
pair of the cut-off length and Hurst exponent, namely H = {0.25,
0.5, 0.75, 1} and lc = {0.5, 1, 2, 4}m, and for each class we generate
1000 fracture realizations. We discretize the heterogeneous fractures
using 10 elements per dominant wavelength, resulting in a spatial
element discretization of 10 cm × 10 cm. All fractures share the
same (arithmetic) mean aperture of 5 mm, variance of 1 mm and
electrical conductivity σ = 0.1 S m−1. One representative realization
for each geostatistical class is shown in Fig. 6.

For each fracture realization we use the effective-dipole forward
model to create noise-contaminated GPR (observed) data. Using the
thin-bed forward model and the golden search inversion algorithm,
we infer the best-fitting constant-aperture fracture that can repro-
duce the observed data. The histograms of the inferred apertures
for each {H, lc} pair are plotted in Fig. 7 together with the marginal
probability density function (pdf) of aperture for the geostatistical
models considered. The corresponding mean and variance of the
WRMSE, for each geostatistical class, are shown in Table 1. For
comparison purposes, we also tabulate the mean and variance of
the WRMSE between the observed data and simulated data from
a fracture with constant aperture of 5 mm (equivalent to the mean
aperture of the 16 classes of geostatistical models).

3.6 GPR resolution and weighted apertures

Considering the same source-receiver and fracture geometry as in
Fig. 3, we can define (1) the radial resolution as the smallest aperture
and (2) the lateral resolution as the smallest feature along the fracture
plane that can be reliably inferred by the GPR data (e.g. Jol 2008,
section 1.3.4).

In a water-saturated fractured rock system it is possible to obtain
very high radial resolution because of the strong contrast between
electrical parameters in the rock matrix and fracture filling. For
example, our inversion results for the homogeneous fracture (Fig. 5)
suggest that we can reliably infer apertures down to roughly 0.3 mm
with a signal whose dominant wavelength is 1 m.

Lateral resolution of GPR data is often discussed in terms of
the Fresnel zone (Pearce & Mittleman 2002) and it is used to ap-
proximate the smallest detectable target for a given acquisition
geometry and signal bandwidth. The Fresnel zone is derived by
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Figure 5. Inversion results, along with corresponding WRMSE, for the best-fit aperture describing a homogeneous fracture. The inversions use noise-
contaminated (observed) data generated using the effective-dipole model, and (simulated) forward responses from either the thin-bed (◦) or the effective-dipole
(×) models. Three fracture conductivities (σ ) are considered for 40 fracture apertures in the logarithmically spaced interval 0.1 ≤ a ≤ 10 mm.

Figure 6. Representative aperture (α) realizations for each of the 16 considered geostatistical heterogeneity classes. Each class is characterized by a different
pair of Hurst exponent (H) and cut-off length (lc). The mean aperture is 5 mm, the variance is 1 mm and the fracture size is 20 m × 20 m. Below each
realization, the aperture profile along the horizontal line dissecting the middle of each fracture is shown.
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1426 A. Shakas and N. Linde

Figure 7. Probability density histograms of the best-fitting homogeneous fracture apertures (1000 realizations for each class). For each class of heterogeneity
model, the marginal probability density function of aperture is the same (solid red line). The corresponding mean and standard deviation of the WRMSE, for
each class, is shown in Table 1.

Table 1. {Mean, variance} of the WRMSE between simulated data, com-
puted using the thin-bed forward model and assuming a homogeneous frac-
ture with either (A) the best-fitting inferred aperture (see Fig. 7) or (B) a
5 mm aperture, and observed data computed using the effective-dipole for-
ward model and considering a fracture with a heterogeneous aperture field
(with arithmetic mean of 5 mm). In total, 16 classes of heterogeneity are
generated by varying the Hurst exponent H and cut-off length lc.

lc = 0.5 m lc = 1 m lc = 2 m lc = 4 m

(A) Homogeneous fracture with best-fitting aperture

H = 0.25 {1.103, 0.005} {1.093, 0.004} {1.080, 0.003} {1.067, 0.003}
H = 0.5 {1.157, 0.010} {1.109, 0.006} {1.069, 0.003} {1.045, 0.002}
H = 0.75 {1.189, 0.016} {1.090, 0.005} {1.043, 0.002} {1.025, 0.001}
H = 1 {1.210, 0.024} {1.064, 0.004} {1.025, 0.001} {1.016, 0.001}

(B) Homogeneous fracture with 5 mm aperture

H = 0.25 {1.923, 0.123} {1.917, 0.120} {1.905, 0.108} {1.893, 0.095}
H = 0.5 {1.981, 0.227} {1.949, 0.210} {1.912, 0.139} {1.883, 0.084}
H = 0.75 {2.013, 0.285} {1.958, 0.296} {1.899, 0.120} {1.865, 0.047}
H = 1 {2.033, 0.313} {1.957, 0.370} {1.889, 0.076} {1.856, 0.018}

considering a wave with normal incidence to a reflecting surface.
Moving away from this point of incidence, the first Fresnel zone
radius is constructed by computing the separation at which another
incident wave (from the same source) is reflected with a phase shift
	φ ≤ π . For the acquisition geometry we consider here, and a

signal with dominant wavelength of 1 m in the background matrix,
the resulting Fresnel zone radius is 1.6 m. However, this does not
provide information about the relative contribution to the measured
signal within this radius.

Instead of using the Fresnel zone, we describe here the lateral res-
olution by considering the individual response of each discretized
element for a homogeneous fracture. Using the same source and
acquisition geometry as above, we generate a fracture discretized
by 10 cm × 10 cm elements with σ = 0.1 S m−1 and a = 5 mm.
We then compute, for each of the two source-receiver pairs, the
returning (vertical) electric field from each element. This amounts
to a complex-valued contribution, for each sampled frequency, that
represents the amplitude and phase of the electric field from each
element. Next, we sum the complex-valued response over all fre-
quencies. We do this for each element and source-receiver offset
separately. This provides two complex-valued numbers for each
element (one for each source-receiver offset). We then take the ab-
solute value of the pair above and sum the two values. The result
is a real-valued number per element that provides us a distribution
of weights along the fracture plane. Finally, we scale the weight
distribution such that it integrates to 1. The final weights are shown
in Fig. 8 along with the first Fresnel zone.

These weights allow us to compute a mean aperture for each frac-
ture realization over a spatial scale that corresponds well to the first
Fresnel zone. As an example, in Fig. 9 we show the application of
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Figure 8. Weights derived from the sensitivity of the effective-dipole for-
ward model, for a homogeneous fracture. Fracture aperture is a = 5 mm
and conductivity is σ = 0.1 S m−1, respectively. Acquisition parameters are
S = 5 m, D = 0 m and D = 2 m and L = 20 m (see Fig. 1). The first Fresnel
zone is indicated by a red solid line.

the weights to the fracture realization presented in Fig. 6. However,
this averaging is built on the assumption that the apertures influ-
ence the GPR data linearly and does not always correspond to the
best-fitting inferred aperture. In Fig. 10, we show, for each {H, lc}
combination, a scatter plot of the inferred versus weighted aperture
pairs. In most cases, the agreement is very poor.

4 D I S C U S S I O N

The thin-bed forward model can serve as a reliable simulator of the
GPR response from a homogeneous fracture that is large enough to
be considered ‘infinite’. The inversion results (Fig. 5) suggest that
the thin-bed and effective-dipole forward models work equally well
in retrieving the (constant) aperture. Reliable estimates are obtained
over a wide aperture range, down to apertures that are more than
three orders of magnitude smaller than the dominant wavelength of
the GPR source.

Natural fractures result from complex processes and are (most
probably) never homogeneous. The primary objective of this study
was to understand the influence of small-scale aperture heterogene-
ity on the inferred thin-bed aperture. We accomplish this by defin-
ing 16 classes of geostatistical models, and creating 1000 fracture

Figure 9. The averaging process implied by the linear weights in Fig. 8 is illustrated for the same fracture realizations as in Fig. 6. The opacity is complete for
elements with negligible weight and the opacity is decreased linearly to zero for the elements with the highest sensitivity. The first Fresnel zone is shown by a
red solid line. For better visualization, only the central 8 m × 8 m section of the full 20 m × 20 m fractures is shown.
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Figure 10. For each of the 16 classes of geostatistical models, scatter plots of the inferred (apparent) versus the weighted (mean) aperture for 1000 fracture
realizations. The linear trend is plotted with a diagonal line and the Hurst exponent H, cut-off length lc and correlation coefficient ρ is given for each plot.

realizations within each class. We then use our effective-dipole
forward model to create noise-contaminated data sets, and use the
thin-bed forward model to infer a corresponding homogeneous frac-
ture that best fits each data set. If the GPR response would only
be a linear average of the actual apertures over the Fresnel zone,
then the inferred apertures should show significantly less variabil-
ity than the marginal pdf of the geostatistical models. Our results
suggest that this is not the case (see Fig. 7) and only when the cut-
off length lc is large (i.e. as aperture patterns become larger) does
the histogram of inferred apertures approach the marginal pdf of
the actual local apertures. This convergence is intuitive because as
the size of patterns increase, the realizations approach the case of
a homogeneous-aperture fracture. Furthermore, the Hurst exponent
H also plays an important role. Small H suggests more fractal be-
haviour, resulting in similar aperture patterns appearing at all spatial
scales. The inferred aperture distributions for small H (first row in
Fig. 7) show a very similar pattern, regardless of changes in lc.

The fact that the inferred apertures are much wider than the
marginal pdf of the actual (geometric) apertures for cases when lc

and/or H are small, suggests that the inferred GPR aperture is not
a good proxy of the geometric aperture. In fact, the inferred GPR
aperture should be considered as an apparent aperture. The situation
is similar in other branches of geophysics. For example, in electrical
resistivity tomography it is possible to obtain negative apparent re-

sistivities, even if electrical resistivity can never be negative. These
effects are manifestations of nonlinearity and imply that appar-
ent properties might be difficult to translate into actual properties.
Table 1 also highlights that the derived apparent apertures explain
the data well (WRMSE slightly higher than 1) while simulations
based on the constant aperture of 5 mm fit the data poorly (WRMSE
around 2).

To better understand to what extent the data can be seen as a
linear spatial averaging process, we derive weights based on the
complex-valued returning electric field from each fracture element
(local aperture). This is done for a fracture with a constant aperture
that equals the mean aperture of the geostatistical models. The re-
sulting weights (see Fig. 8) are significant within the first Fresnel
zone. We use these weights to compute a weighted aperture for each
fracture realization (Fig. 9). In contrast, the apparent aperture is ob-
tained from the homogeneous fracture that can best reproduce the
data through the thin-bed forward model. The comparison between
the derived weighted aperture and the apparent aperture (Fig. 10)
suggests that when the cut-off length is small, the apparent aperture
does not correspond well to the weighted aperture (first column).
While the apparent aperture prediction approaches the linear esti-
mate as the cut-off length is increased, good correspondence of the
two apertures is only obtained when both lc and H are large, as in
the pair {H, lc} = {1, 4 m} .
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5 C O N C LU S I O N S

For an idealized experimental set-up, we have used the GPR thin-
bed forward model to infer an apparent fracture aperture. When
data are generated from a homogeneous (constant-aperture) frac-
ture model, the apparent aperture corresponds well with the ac-
tual fracture aperture, However, when aperture heterogeneities are
present, the apparent aperture that is derived under the assumption
of a homogeneous fracture does not always provide satisfying re-
sults. Namely, when a small cut-off length (aperture heterogeneity
patterns are small) and Hurst exponent (heterogeneity present at all
scales) is used to generate aperture fields, the apparent aperture can
be very different from the mean aperture averaged over the first
Fresnel zone. When aperture variations are non-fractal (H = 1) and
the aperture patterns are large (lc = 4 m) compared to the signal
dominant wavelength (1 m), the apparent aperture can be a good
estimate of the Fresnel-based linear average of fracture aperture.

Our results suggest that GPR-derived estimates of fracture aper-
ture, that are based on the common assumption of constant aperture,
should be treated with caution, especially when strong aperture het-
erogeneity is present. Under the homogeneous assumption, inferred
apertures serve as an apparent estimate that has a complex and non-
linear relation to the actual geometrical fracture aperture. To reliably
interpret GPR data generated by a heterogeneous fracture, a more
encompassing modelling framework must be considered, that ex-
plicitly accounts for aperture heterogeneity. In future work, we plan
to use model selection tools to determine the geostatistical model
that best corresponds to GPR reflection data from heterogeneous
fractures.
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