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S U M M A R Y
A nodal discontinuous Galerkin (NDG) approach is developed and implemented for the com-
putation of viscoelastic wavefields in complex geological media. The NDG approach combines
unstructured tetrahedral meshes with an element-wise, high-order spatial interpolation of the
wavefield based on Lagrange polynomials. Numerical fluxes are computed from an exact
solution of the heterogeneous Riemann problem. Our implementation offers capabilities for
modelling viscoelastic wave propagation in 1-D, 2-D and 3-D settings of very different spatial
scale with little logistical overhead. It allows the import of external tetrahedral meshes pro-
vided by independent meshing software and can be run in a parallel computing environment.
Computation of adjoint wavefields and an interface for the computation of waveform sensitiv-
ity kernels are offered. The method is validated in 2-D and 3-D by comparison to analytical
solutions and results from a spectral element method. The capabilities of the NDG method
are demonstrated through a 3-D example case taken from tunnel seismics which considers
high-frequency elastic wave propagation around a curved underground tunnel cutting through
inclined and faulted sedimentary strata. The NDG method was coded into the open-source
software package NEXD and is available from GitHub.
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1 I N T RO D U C T I O N

In geophysics, numerical simulations are a key tool for understand-
ing physical phenomena taking place on and inside the earth. As
they usually make predictions about observable quantities, they also
play an essential role in inferring the current state and the physical
properties of the earth’s interior. A phenomenon of particular im-
portance in this context is seismic waves which travel through the
entire globe and allow a unique look into the deep earth. Seismic
waves are also useful on smaller scales, for example to find and
characterize oil and gas reservoirs or to identify unknown objects in
front of a newly excavated tunnel. Even on laboratory scale, elastic
waves can help to increase knowledge about material behaviour,
for example, to understand the mechanisms of crack propagation in
rocks.

In computational seismology and seismics, the need for high
performance numerical simulations is continuously growing. Gen-
erally, in order to conduct seismic simulations, several different
methods can be used. Overviews are given in the textbooks by
Moczo et al. (2014) and Igel (2016).

The probably most common method is the finite difference
(FD) method (Virieux 1986; Moczo et al. 2007; Bohlen 2002) in
which spatial derivatives in the governing differential equations
are approximated by finite differences on an equally spaced grid
(Robertsson et al. 1994). The strength of FD method is the

simplicity of its numerical representation, which is however accom-
panied by numerical dispersion, especially for surface waves, and
inaccurate representation of internal and external boundaries. Grid
adaption, taking into account varying model properties, is hardly
possible and a compromise between accuracy and computational
cost must be carefully worked out for every simulation.

Spectral and pseudospectral methods are used to simulate seis-
mic wave propagation with high order accuracy (Tessmer &
Kosloff 1994; Furumura et al. 1998). These methods rely on global
basis functions such as Chebychev- or Legendre polynomials lead-
ing to simulations with little numerical dispersion. Only few points
per wavelength are needed to achieve sufficient accuracy. However,
the choice of global basis functions restricts the spectral methods to
very smooth models, so that strong material contrasts and disconti-
nuities are not represented adequately.

Boundary Integral Methods (Sánchez-Sesma et al. 1993;
Chen 2007) have been successfully used to simulate seismic wave
propagation in domains with layers and interfaces, but are restricted
to a limited amount of layers and are not well suited for 3-D problems
as the involved matrices become very large and ill-conditioned.

The finite element method (FEM) was used by Bao et al. (1998)
and Marfurt (1984) to simulate seismic wave propagation. The FEM
is based on the idea to subdivide the computational domain into
elements, on which the equations can be solved. Albeit handling
complex geometries very well, the solution of the wave equation is
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represented by low order polynomials resulting in numerical disper-
sion. For an accurate simulation, very large matrix systems have to
be solved iteratively leading to high numerical costs with poor paral-
lelization properties. Most commercial simulation software is based
on FEM and is thus not well suited for seismic wave propagation
problems.

The idea of combining the spectral approximation properties
with the flexibility of the FEM led to the development of the spec-
tral element method (SEM; Patera 1984; Seriani & Priolo 1994)
which was adapted to seismic wave propagation by Komatitsch &
Vilotte (1998). The SEM uses a high order approximation of the
wavefield inside the elements based on Lagrange polynomials. For
the SEM, a variational formulation of the governing equations is
used and a diagonal mass matrix can be constructed when tak-
ing Gauss–Lobatto–Legendre quadrature points within Cartesian
elements (quadrilateral and hexahedral elements) for numerical in-
tegration. This leads to a fully explicit scheme making the SEM
computationally very efficient and allowing for a simple paralleliza-
tion via domain decomposition. The SEM is now widely used in the
seismic community, especially for global and regional earthquake
simulations (Komatitsch et al. 1999, 2003; Peter et al. 2011). Sev-
eral free software implementations of the SEM exist for this purpose
such as SPECFEM, SES3D and RegSEM (Geodynamics.org 2009;
Fichtner et al. 2009; Cupillard et al. 2012). Unfortunately, the gener-
ation of well-structured hexahedral meshes can be very cumbersome
for complex geological environments (Tautges 2001).

The demand for a high order approximation of the seismic wave-
field paired with the geometrical flexibility of an unstructured tetra-
hedral mesh led to the adaption of the discontinuous Galerkin (DG)
method to seismic problems. The DG method was first proposed by
Reed & Hill (1973) for solving the linear neutron transport equa-
tion. An extension to several research fields such as fluid dynamics
(Bassi & Rebay 1997) and electrodynamic simulations (Cockburn
et al. 2004) shows the capability of the DG method for simulat-
ing physical problems. An extensive mathematical research on the
method was done by Cockburn et al. (2000) and Hesthaven & War-
burton (2008). The DG method can be seen as a combination of
the finite volume method (FVM; LeVeque 2002) and the SEM to
solve partial differential equations with high accuracy. In contrast
to the SEM and FEM, the variational formulation of the govern-
ing equations is done locally for every element and not globally.
The solution obtained with the DG is allowed to be discontinuous
across element boundaries. As in finite volume methods, this lo-
cal formulation of the DG leads to the concept of numerical fluxes
for exchanging information between adjacent elements. This results
in an explicit semi-discrete numerical scheme which is very well
suited for parallelization with domain decomposition techniques as
only fluxes have to be communicated at element boundaries.

In the DG method, one can choose a modal approach where the
solution is represented by the expansion coefficients of polynomial
basis functions, or a nodal approach where the solution is repre-
sented by its values at the anchor points of Lagrange polynomials
used to approximate the solution within each element. For seismic
wave propagation, the modal DG method was first introduced by
Käser & Dumbser (2006) together with the concept of Riemann
fluxes and arbitrary high order derivatives (ADER-DG). Here, time
integration is coupled with the spatial resolution resulting in the
same high order approximation of the solution in space and time.
This approach results in a rather complicated numerical scheme
due to the use of the Cauchy–Kovalewski procedure for the time
integration. Intensive research on extending the ADER-DG to
wave propagation problems in viscoelastic (Käser et al. 2007) and

anisotropic media (de la Puente 2008) was conducted. It was also
adapted to the study of rupture processes (Pelties et al. 2012). From
this research sprang the community code SeisSol which became
open-source in 2015 (https://github.com/SeisSol/SeisSol). The fol-
lowing work on SeisSol focused on increasing the numerical effi-
ciency and adapting it to extremely large-scale seismic simulations
and dynamic earthquake rupturing problems (Heinecke et al. 2014).

Nodal high-order DG methods for seismic wave propagation were
first developed by Delcourte et al. (2009) and Etienne et al. (2010)
for the isotropic, elastic case. They use a pseudo-conservative for-
mulation of the velocity–stress equations where the elastic material
properties are assembled in a single diagonal matrix. Numerical
fluxes are calculated by averaging velocity–stress values of adjacent
elements. The solution is advanced in time using a leap-frog time
integration. Delcourte et al. (2009) treated the 2-D case whereas
Etienne et al. (2010) extended the approach to a low-order nodal
DG (NDG) method for 3-D elastic wave propagation that exploits
the hp-adaptivity of the DG method. The latter approach was bench-
marked against other codes implementing FD, spectral element and
pseudo-spectral methods in an earthquake ground motion appli-
cation (Maufroy et al. 2015). Besides that, Wilcox et al. (2010)
studied wave propagation for elastic-acoustic media within the DG
framework based on hexahedral elements in the context of global
earthquake simulation and Li (2011) used the NDG method to con-
duct 2-D simulations for non-linear elastic wave phenomena.

One peculiarity of most DG methods (including SeisSol) is that
material properties have to be constant within the elements. In case
of continuously varying material properties, this assumption may
lead to inaccuracies if the dominating wavelength approaches the
element size because then the continuous structure is no longer
properly approximated by a piecewise-constant representation. Fur-
thermore, in extremely complicated media where discontinuities of
material properties may cross an element, larger errors of the clas-
sical DG approach are to be expected. This problem was solved
by Mercerat & Glinsky (2015) who extended the NDG approaches
of Delcourte et al. (2009) and Etienne et al. (2010) to the case of
heterogeneous elements for the 2-D, purely elastic case and demon-
strated that, given equal element size, their approach yields more
accurate results than the constant-element approaches. Unfortu-
nately, it is unclear whether the pseudo-conservative form of the
velocity–stress equations of Etienne et al. (2010) can be extended
to the viscoelastic and anisotropic case.

In this paper, we present a high-order nodal approach to the DG
method based on a general mathematical treatment by Hesthaven
& Warburton (2008) to model seismic wave propagation in 2-D
and 3-D viscoelastic media with complex geological structures.
Discretization is done using triangular (2-D) or tetrahedral (3-D)
meshes. Instead of the pseudo-conservative form of Etienne et al.
(2010), we use a classical, first-order in time velocity–stress formu-
lation which allows the treatment of viscoelastic and also anisotropic
media. We provide a justification for the necessity of introducing
numerical fluxes into the computational scheme. We give explicit
expressions for these fluxes, derived from an exact solution of the
Riemann problem for the viscoelastic wave equation and expressed
in terms of waves propagating away from the discontinuity. In con-
trast to the approach by Käser & Dumbser (2006) implemented in
SeisSol, our fluxes honour differing material properties in adjacent
elements. This way of treating the numerical fluxes allows for an
easy extension of the method to cases where certain, potentially
time-dependent discontinuities of particle velocities or stresses are
prescribed at element boundaries, for example in the presence of
fractures or during dynamic rupturing. The NDG approach leads to a
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simple, efficient and extendable numerical code with little logistical
overhead. It is very intuitive and convenient as the solution vector
directly represents the values of particle velocities and stresses at
the nodal points. Concerning the evaluation of surface integrals on
element faces required for calculating numerical fluxes, NDG is
more efficient than modal DG as only information of nodes on the
element faces is required. Our NDG code is capable of solving a
wide range of seismic problems, from small-scale field experiments
to large-scale earth models. Extensions of the code to unsaturated
poroelastic (Boxberg et al. 2017) and fractured media are being
worked on. Our implementation of the method has an interface to
the full waveform inversion code ASKI (Schumacher et al. 2016)
and offers the opportunity to compute adjoint wavefields.

The paper is structured as follows: We briefly introduce the theo-
retical background of our approach and derive a numerical scheme
suited for efficient parallel implementation. Some detail is dedicated
to the derivation of the heterogeneous numerical fluxes for elastic
and viscoelastic media. The general structure of the implemented
algorithm is lined out and our newly developed program package
NEXD is presented. The code is validated in 2-D by comparing its
solution to Lamb’s problem with a semi-analytical one and by car-
rying out a p-convergence test. In addition, we benchmark the 2-D
code against an analytical solution for a viscoelastic full space. In
3-D, we compare to results of SPECFEM (Geodynamics.org 2009)
for a two-layer half-space. The potential and functionality of our
NDG approach is demonstrated by means of a complex example
taken from tunnel seismics where we consider 3-D propagation
of elastic waves around a curved tunnel that cuts through faulted
sedimentary strata.

2 A N O DA L D I S C O N T I N U O U S
G A L E R K I N S C H E M E F O R E L A S T I C
WAV E P RO PA G AT I O N

The following section describes the theoretical basis of the nu-
merical formulations developed and implemented in this paper. The
main part deals with the adaption of the NDG method (Hesthaven &
Warburton 2008) to the simulation of 3-D elastic wave propagation
on unstructured tetrahedral meshes.

2.1 Velocity–stress formulation of the elastic wave
equation in 3-D

Following Virieux (1986) and Dumbser & Käser (2006) the elastic
wave equation can be written as a system of first order hyperbolic
equations. For the 3-D, elastic and isotropic case the system reads:

∂
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where σ lk represent Cartesian stress components and u, v and w
denote the x-, y- and z-components of the particle velocities. We use
here Lamé’s elastic moduli λ and μ. Density is denoted by ρ. Note
that all quantities are functions of space and time. A single force
source can be defined by s = (0, 0, 0, 0, 0, 0, ax , ay, az)T , where the
components of the acceleration ax, ay and az act in the last three
components of the source vector. It is also possible to realize a
moment tensor source which acts in the six stress components of
the source vector s.

In matrix-vector notation, this system of linear hyperbolic differ-
ential equations can be written in a more compact form as

∂u

∂t
+ A

∂u

∂x
+ B

∂u

∂y
+ C

∂u

∂z
= s. (2)

The vector

u = (σxx , σyy, σzz, σxy, σyz, σxz, u, v, w)T

contains the Nu = 9 velocity–stress variables, which all depend on
time t and spatial coordinates x. The compact form contains the
Jacobi matrices A = Ai j (x), B = Bi j (x) and C = Ci j (x) describing
the elastic properties of the medium (Dumbser & Käser 2006). In
3-D, the indices i, j range from 1 to 9.

2.2 Element-based integral forms of the velocity–stress
equations

The NDG method is built on an integral formulation of the velocity–
stress equations. A computational domain, �, is defined encompass-
ing the region of interest. It is subdivided into NE non-overlapping
tetrahedral elements De, e = 1, . . . , NE

� =
NE⋃
e=1

De. (3)

Within each element De the velocity–stress vector is represented by
an interpolation formula of the form:

u(x, t) =
Np∑
j=1

u(x j , t) l j (x), x ∈ De, (4)

where l j (x) is a multidimensional Lagrange polynominal anchored
at Np interpolation points xi located within element De and on
its faces. Since these polynomials satisfy the relation li (x j ) = δi j ,
the expansion coefficients are indeed identical to the values of the
velocity–stress vector at the anchor points. Note also that no a
priori assumptions are made on the continuity of the velocity–
stress vector across adjacent elements. This fact is one of the name-
giving properties of the DG method. Anchor points on adjacent
element faces always occur as double nodes principally allowing
the definition of a discontinuous velocity–stress vector across these
faces.

The integral form is now constructed by forming the scalar prod-
uct of eq. (2) with a set of Nu × Np test vectors and integrating over
element e. A system of Nu × Np equations results that can be solved
for the nodal values of the velocity–stress vector. Here, we choose

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/212/3/1570/4631106 by guest on 18 April 2024



A nodal discontinuous Galerkin approach 1573

test vectors of the form

wni = en li (x), 1 ≤ i ≤ Np, 1 ≤ n ≤ Nu, (5)

where the nth component of en is 1 and all other components are
0. This is equivalent to multiplying the velocity–stress equations by
the matrix Ili (x) where I is the identity matrix of the Nu-dimensional
velocity–stress space. For each element e, we obtain Np vector
equations:∫

De

∂u

∂t
li dV = −

∫
De

(
A

∂u

∂x
+ B

∂u

∂y
+ C

∂u

∂z

)
li dV

+
∫

De
s li dV, 1 ≤ i ≤ Np. (6)

An integration by parts leads to:∫
De

∂u

∂t
li dV = −

∫
∂ De

(fx nx + fyny + fznz) li d�

+
∫

De

(
∂(Ali )

∂x
+ ∂(Bli )

∂y
+ ∂(Cli )

∂z

)
u dV

+
∫

De
s li dV, 1 ≤ i ≤ Np. (7)

Here, we have introduced the components of the unit normal vector
on the element faces, nx, ny, nz, the surface element d� and the
fluxes fx , fy and fz defined as

fx = Au + rx , fy = Bu + ry, fz = Cu + rz . (8)

While surface integrals over expressions such as Au are the mathe-
matically correct terms appearing after integration by parts, we have
added here additional flux terms, rx , ry and rz , whose necessity is
justified and discussed later.

A second useful integral form of the velocity–stress equations
can be obtained after another integration by parts. Expressions of
the type Au appear again under surface integrals but now cancel the
ones appearing in eq. (8):∫

De

∂u

∂t
li dV = −

∫
∂ De

(rx nx + ryny + rznz) li d�

−
∫

De

(
A

∂u

∂x
+ B

∂u

∂y
+ C

∂u

∂z

)
li dV

+
∫

De
s li dV, 1 ≤ i ≤ Np. (9)

For both integral forms of the velocity–stress equations, we re-
quire the Np vector equations (7) or (9) to be fulfilled for each
element.

2.3 Two semi-discrete schemes for the NDG method

To simplify the notation in the following, we will use the
abbreviations

u j (t) = u(x j , t) and s j (t) = s(x j , t), 1 ≤ j ≤ Np (10)

for the value of the velocity–stress vector and source vector, respec-
tively, at the jth anchor point. Moreover, we define normal fluxes
defined by

fn = fx nx + fyny + fznz and

rn = rx nx + ryny + rznz . (11)

By substituting eq. (4) into eq. (7) and by further assuming that the
Jacobi matrices are constant within each element, we obtain

Np∑
j=1

∂u j

∂t

∫
De

l j (x)li (x)dV = A
Np∑
j=1

u j

∫
De

l j (x)
∂li (x)

∂x
dV

+B
Np∑
j=1

u j

∫
De

l j (x)
∂li (x)

∂y
dV + C

Np∑
j=1

u j

∫
De

l j (x)
∂li (x)

∂z
dV

−
∫

∂ De
fnli (x)d� +

Np∑
j=1

s j

∫
De

l j (x)li (x)dV, 1 ≤ i ≤ Np. (12)

Eq. (12) motivates the introduction of the mass matrix

Me
i j =

∫
De

li (x)l j (x)dV, 1 ≤ i, j ≤ Np (13)

and the stiffness matrices

Se
i j,x =

∫
De

li (x)
∂l j (x)

∂x
dV, 1 ≤ i, j ≤ Np

Se
i j,y =

∫
De

li (x)
∂l j (x)

∂y
dV, 1 ≤ i, j ≤ Np

Se
i j,z =

∫
De

li (x)
∂l j (x)

∂z
dV, 1 ≤ i, j ≤ Np, (14)

by which we can rewrite eq. (12), using Einstein summation con-
vention, as

Me
i j

∂u j

∂t
= ASe

ji,x u j + BSe
ji,yu j + CSe

ji,zu
j + Me

i j s
j

−
∫

∂ De
fn li (x) d�, 1 ≤ i, j ≤ Np. (15)

Similarly, by inserting the nodal representation (4) into the second
integral form of the velocity–stress equations (9), we obtain

Me
i j

∂u j

∂t
= −ASe

i j,x u j − BSe
i j,yu j − CSe

i j,zu
j + Me

i j s
j

−
∫

∂ De
rn li (x) d�, 1 ≤ i, j ≤ Np. (16)

Subtle but notable differences between the two semi-discrete
schemes, eqs (15) and (16), are different signs in front of the Jacobi
matrices, the different order of indices in the stiffness matrices and
the occurrence of different fluxes. Given a source vector and initial
values for velocity–stress, we can use the above system of equations
for each element to calculate an update of the velocity–stress vector
provided we know how to compute the additional normal flux rn .

2.4 Normal Riemann fluxes

The additional normal flux needs to be introduced because, by con-
struction of the DG method, the velocity–stress vector may be dis-
continuous on the faces of adjacent elements. These discontinuities
act as sources of seismic waves that propagate away from the discon-
tinuity in both directions. If the flux was omitted or evaluated from
the values of the velocity–stress vector of one element alone, the
discontinuity would go unnotified and the additional waves would
be missing in the solution.

Consider a situation of two adjacent element faces with normal
pointing into the x-direction. The source term is for now assumed
to vanish within these two elements. Furthermore, we assume that
the velocity–stress vector varies smoothly inside the elements but is
discontinuous across the contact surface. We can always decompose
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such a velocity–stress distribution into two parts: one that is con-
tinuous at the contact surface and one that is discontinuous there
and independent of x in both elements. Interpreting eq. (9) as a
recipe for updating the velocity–stress vector with time, we recog-
nize that the volume integral on the right-hand side will generate
temporal changes of velocity–stress for the continuous part. For the
discontinuous part, however, there will be no contribution from the
term A∂u/∂x which is the only one that can produce waves prop-
agating perpendicular to the contact surface. Hence, omitting the
additional normal flux rn , implies loosing the waves generated by
the discontinuity.

To obtain specific expressions for the additional normal flux, we
consider the so-called normal Riemann problem (LeVeque 2002).
There we seek a solution of the velocity–stress equations for purely
1-D elastic wave propagation normal to an interface situated at x = 0
at both sides of which the velocity–stress vector is initially constant
but discontinuous across the interface. Material properties on each
side of the interface are allowed to be different. Source-free elastic
wave propagation on both sides is described by

∂u(1,2)

∂t
+ A(1,2) ∂u(1,2)

∂x
= 0 with

u(1)(x, t = 0) = U(1) and u(2)(x, t = 0) = U(2), (17)

where the superscripts 1 and 2 refer to the left (x < 0) and right side
(x > 0) of the interface, respectively.

The solution to this problem is derived in detail by LeVeque
(2002) in the context of the finite volume method. For positive
times, we expect that waves will be generated by the discontinuity
that propagate away from the interface. Waves with negative velocity
will propagate to the left and waves with positive velocity to the
right. In 3-D, matrix A has 9 eigenvalues, representing wave speeds
c1−9, which we order in a way that c1−3 are negative, c4−6 are zero
and c7−9 are positive. To calculate c1−3, we use matrix A(1), to
calculate c7−9, we use matrix A(2). The amplitudes of the associated
waves are obtained by decomposing the negative velocity–stress
jump in terms of the corresponding right eigenvectors of matrices
A(1,2), denoted by v(1,2)

k , taking the ones for medium 1 when the
corresponding wave speed is negative and the ones for medium 2
when the corresponding wave speed is positive:

U(1) − U(2) =
3∑

k=1

γkv(1)
k +

6∑
k=4

γkvk +
9∑

k=7

γkv(2)
k . (18)

For eigenvectors 4–6 we do not specify which side they belong
to because they are independent of the material properties. The
coefficients γ k specify the desired amplitudes of the propagating
waves. They can be calculated by multiplying the above equation
by the appropriate reciprocal vectors of v(1,2)

k . Velocity–stress for
positive times can then be written as

u(1)(x, t > 0) = U(1) −
3∑

k=1

γkv(1)
k H

(
t + x

|ck |
)

u(2)(x, t > 0) = U(2) +
9∑

k=7

γkv(2)
k H

(
t − x

ck

)
, (19)

where H(t) is a Heaviside function. With this solution, the disconti-
nuity at the interface is reduced to

u(2)(0, t) − u(1)(0, t) = −
6∑

k=4

γkvk . (20)

Due to the structure of the eigenvectors, the remaining discontinuity
occurs on the components σ yy, σ zz and σ yz of the velocity–stress

vector which do not generate waves propagating away from the
interface. The remaining stress components as well as the particle
velocities are continuous as required for a welded contact of two
materials at the interface.

Explicit expressions for the normal flux are obtained by going
back to eq. (9) but staying with the purely 1-D Riemann problem.
Instead of a tetrahedral element as integration volume, we choose
a rectangular box attached to the right side of the interface and
extending a distance L into the positive x-direction. After a small
time step 
t, the change of velocity–stress in the box is given by
the sum of right-propagating waves in eq. (19). As discussed above,
this change must be produced by the additional normal flux rn . To
avoid contributions from the right face of the box, we choose its
width L greater than the distance the fastest wave can travel within
time 
t. Then, instead of eq. (9), we get:∫

�

d�

∫ L

0

u li (x)dx = −
t

∫
�

rn li (0)d�, (21)

where � denotes the interface with outward normal pointing into
the negative x-direction and li(x) is considered as a 1-D Lagrange
polynomial of order N. Inserting the right-propagating waves for

u, we find∫

�

d�

∫ L

0

9∑
k=7

γkv(2)
k H

(

t − x

ck

)
li (x)dx

=
∫

�

d�

9∑
k=7

γkv(2)
k

∫ ck
t

0
li (x)dx

≈
∫

�

d�

9∑
k=7

γkv(2)
k ck
t li (0) = −
t

∫
�

rnli (0)d�, (22)

from which we conclude for the normal flux on the right-hand side
of the interface with outward normal pointing to the left:

r2
n = −

9∑
k=7

ckγkv(2)
k . (23)

The normal flux on the left-hand side of the interface with outward
normal pointing to the right is obtained by analogously considering
a box on the left-hand side and inserting the left-propagating waves
for the change of the velocity–stress vector. Then, we find

r1
n = +

3∑
k=1

|ck |γkv(1)
k . (24)

Note that the evaluation of the normal flux is easily extended to situ-
ations where a certain, eventually time-dependent, discontinuity of
the velocity–stress vector is prescribed at the interface, for example
during dynamic rupturing or in the presence of fractures.

To compute the normal flux in practice for a given element face,
the velocity stress vector is rotated into a coordinate frame whose
x-axis points into the direction of the outward normal of the face. The
flux rx is computed in this frame from the velocity–stress jump and
then rotated back into the original coordinate frame. This procedure
is greatly alleviated by the fact that for isotropic elastic media the
Jacobi matrices are invariant under rotation. It is also noted here
that the expressions for the fluxes in eqs (23) and (24) account
for differing material properties in adjacent elements. The normal
Riemann flux given by Dumbser & Käser (2006) is calculated using
only material properties of the element under consideration.

The concept of fluxes in the DG method may also be exploited to
realize particular boundary conditions. For example, an absorbing
boundary condition can be achieved by simply cancelling the in-
coming fluxes at the boundaries. Similarly, by mirroring the stresses

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/212/3/1570/4631106 by guest on 18 April 2024



A nodal discontinuous Galerkin approach 1575

Figure 1. Standard reference element for a tetrahedral element. Coordinates
in this reference frame vary between −1 and +1. Small grey squares show
position of anchor points for an interpolation order of N = 4.

via the fluxes at the boundaries, a free boundary condition can be
constructed.

2.5 NDG on tetrahedral elements

One key feature of the NDG is its local character. It is not neces-
sary to invert global matrices thus gaining flexibility for numerical
implementation, especially for the parallelization of the method.
For the high order approximation of the method, it is necessary
to find a set of anchor points xi , i = 1, . . . , Np for the multidi-
mensional Lagrange polynomials. For this purpose, the elements
are mapped to a standard reference element, shown in Fig. 1 for
tetrahedra, by a coordinate transformation of the form x(ξ ) where
ξ = (ξ, η, ζ ) denotes the position vector in the reference frame. The
anchor points within a tetrahedral element can be constructed by
a technique called ‘warp and blending’ introduced by Warburton
(2006) (Fig. 1). The number of points is dependent on the order N
of the interpolation and is, for the 3-D case on a tetrahedral element
(Hesthaven & Warburton 2008),

Np = (N + 1)(N + 2)(N + 3)

6
. (25)

Using the standard reference element, the mass matrix may be cal-
culated once in advance according to

Mi j =
∫

I
li (ξ )l j (ξ )dVref = 1

J e

∫
Dk

li (x)l j (x)dV (26)

for the physical element De and reference element I, where Je is
the constant Jacobian of the element De describing the volume
change during the transformation from the physical to the reference
element. The stiffness matrices Sij,ξ , Sij,η and Sij,ζ in the reference
frame are given by

Si j,ξl =
∫

I
li (ξ )

∂l j (ξ )

∂ξl
dVref, (27)

and are related to the ones defined in physical space by (using
Einstein summation convention)

Se
i j,xm

= J e ∂ξl

∂xm
Si j,ξl . (28)

Evaluation of the stiffness matrices in the reference frame is conve-
niently done by expanding the derivatives of the Lagrange polyno-
mials in terms of Lagrange polynomials:

∂l j (ξ )

∂ξl
=

Np∑
r=1

∂l j

∂ξl
(ξ r )lr (ξ ), (29)

leading to

Si j,ξl =
Np∑

r=1

∂l j

∂ξl
(ξ r )

∫
I
li (ξ )lr (ξ )dVref . (30)

Defining the derivative matrix

Dr j,ξl = ∂l j

∂ξl
(ξ r ) (31)

the stiffness matrices can be expressed as (using summation
convention)

Si j,ξl = Mir Dr j,ξl and Se
i j,xm

= J e ∂ξl

∂xm
Mir Dr j,ξl . (32)

The mass matrix and the derivative matrix on the reference ele-
ment can be conveniently evaluated by expanding the Lagrange
polynomials and their derivatives in terms of orthogonal Jacobi
polynomials (Hesthaven & Warburton 2008).

For quantities defined on an element face f such as the fluxes,
we perform an expansion in terms of 2-D Lagrange polynomials
l2D
s (x) anchored at the face nodes. These are identical to those 3-D

Lagrange polynomials whose anchor points reside on the element
face, whereas all other 3-D Lagrange polynomials identically vanish
on the element face. The number of 2-D polynomials is given by
Ns = (N + 1)(N + 2)/2. We write for the normal flux:

fn, f (x, t) =
Ns∑

s=1

fs
n, f (t) l2D

s (x), x ∈ ∂ De, (33)

leading to the appearance of a face mass matrix M f
is defined as

M f
is =

∫
IF

li (ξ )l2D
s (ξ )d�ref = 1

J f

∫
∂ De

li (x)l2D
s (x)d� (34)

for every face f of the element De with associated reference face IF

and J f denoting the Jacobian for the face.
To obtain the final semi-discrete numerical scheme for the in-

tegral form of eq. (15), we multiply it by the inverse mass ma-
trix of the reference element (eq. 26) leading to (using summation
convention)

∂um(t)

∂t
=

(
A

∂ξl

∂x
+ B

∂ξl

∂y
+ C

∂ξl

∂z

)
(M−1 DT

ξl
MT )mj u

j (t)

− J f

J e

4∑
f =1

(M−1 M f )msfs
n, f (t) + sm(t). (35)

For the integral form eq. (16) we obtain the following semi-discrete
numerical scheme (using summation convention):

∂um(t)

∂t
= −

(
A

∂ξl

∂x
+ B

∂ξl

∂y
+ C

∂ξl

∂z

)
(Dξl )mj u

j (t)

− J f

J e

4∑
f =1

(M−1 M f )msrs
n, f (t) + sm(t), (36)
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where the rs
n, f are now nodal coefficients of the normal Riemann flux

with respect to 2-D Lagrange polynomials defined on the element
faces. The two equations above represent the numerical schemes
of the NDG method. They can be efficiently embedded into a nu-
merical implementation and solved for the velocity–stress vector
u. A similar equation can be derived for the 2-D case, where the
system reduces to a system of five equations, to be solved for a
velocity–stress vector with components u = (σxx , σyy, σxy, u, v)T .

2.6 Rules for spatial discretization

The choice of element size, that is, the edge length of an element,
is governed by the polynomial order of the Lagrange expansion,
N, and the smallest significant wavelength, λmin, to be propagated
stably across the model or parts of the model. According to our
experience, we need 5 anchor points per minimum wavelength.
Since the edge length of an element, �, is about N times the spacing
between anchor points, we get

� ≤ N
λmin

5
. (37)

The smallest wavelength is calculated from the highest significant
frequency fmax and the smallest propagation velocity, vmin as

λmin = vmin

fmax
, (38)

leading finally to

� ≤ N

5

vmin

fmax
. (39)

The general procedure is to select one or several (for model parts)
guiding values for element size following eq. (39) according to
which the meshing software constructs a mesh. This mesh is then
checked for stability again using eq. (39) but now solved for the
highest frequency for which a stable simulation is possible:

fstable = N

5

vmin

�
. (40)

The mesh passes the check if fstable ≤ fmax for all elements. If some
elements do not satisfy this condition, a new mesh with a smaller
guiding value for element size is constructed and the check is
repeated.

2.7 Extension to anelasticity

To incorporate anelasticity into our scheme, we follow the approach
of Käser et al. (2007) with an adaptation to our way of flux com-
putation. Based on original work by Emmerich & Korn (1987), it
is assumed that the viscoelastic rheology can be described by a
generalized Maxwell body mechanically represented by a spring in
parallel to a series of Maxwell bodies each of which is made up of
a spring and a dashpot. The stress–strain relation then generalizes
to the form

σi (t) = Mu
i j

(
ε j (t) −

Nr∑
r=1

Yrωr

∫ t

−∞
ε j (τ )e−ωr (t−τ )dτ

)
, (41)

where the σ i stand for the six stresses, the εj for the corresponding
strains, and the Mu

i j for unrelaxed elastic moduli. Each of the Nr

Maxwell bodies is characterized by a relaxation frequency ωr and
an anelasticity coefficient Yr. For an isotropic medium, all moduli
can be expressed through the Lamé constants λ and μ. Integration of
this relation into the velocity–stress formulation is done by defining

new material independent memory variables related to the anelastic
stresses (Moczo et al. 2007):

φr
i (t) = ωr

∂

∂t

∫ t

−∞
εi (τ )e−ωr (t−τ )dτ, 1 ≤ r ≤ Nr . (42)

According to eq. (41), all equations of the elastic velocity–stress
formulation (eq. 1) containing time derivatives of stress will be
extended by terms containing these new variables.

The memory variables satisfy the differential equations

∂φr
i (t)

∂t
+ ωrφ

r
i (t) = ωr

∂εi

∂t
, 1 ≤ r ≤ Nr , (43)

which can be appended to the original velocity–stress eq. (1) because
the strain-derivative on the right-hand side can be expressed by
spatial derivatives of particle velocities. For each Maxwell body,
six equations of this type are added to the system. Owing to the
occurrence of spatial derivatives of particle velocities via the strain
rates, the Jacobi matrices need to be extended to a dimension of
9 + 6Nr by adding 6Nr zero columns and 6Nr rows with nine entries
each which are only non-zero if associated with particle velocity
components.

A modification of the Jacobi matrices affects the computation
of the Riemann normal fluxes which were based (after rotation)
on eigenvectors of the Jacobi matrix A. Here, we show that the
coefficients of eqs. (23) and (24) describing amplitudes of waves
propagating away from an element face remain unchanged and can
be computed in exactly the same way as before. However, the eigen-
vectors change because these waves now also carry contributions in
the new anelastic stress variables. The extended Jacobi matrix takes
the following block structure:

A′ =
(

A Z1

P Z2

)
, (44)

where P is a 6Nr × 9 matrix, Z1 is a 9 × 6Nr zero matrix and Z2

is a 6Nr × 6Nr square zero matrix. Owing to the zero matrices, the
extended Jacobi matrix has the same rank as the original one. Hence,
all additional 6Nr eigenvalues must vanish. Now consider the case
where the vector vk is an eigenvector of A with non-zero eigenvalue.
This happens according to our numbering for index ranges 1−3 and
7−9. Then, there is an eigenvector of the extended Jacobi matrix,
v′

k , satisfying A′v′
k = ckv′

k , given by

v′
k = (vk, qk)T with qk = 1

ck
Pvk . (45)

If vk is an eigenvector of A but with a zero eigenvalue, then we can
choose an eigenvector of A′ of the form v′

k = (vk, 0)T . This requires
Pvk = 0, which is satisfied because the eigenvectors 4–6 of A vanish
on the particle velocity components where P is non-zero. Finally,
the remaining 6Nr eigenvectors with zero eigenvalue can be chosen
as v′

k = (0, ek)T where ek is non-zero on the kth component only.
An extended velocity–stress discontinuity is now decomposed

as

U′(1) − U′(2) =
3∑

k=1

γk

(
v(1)

k

q(1)
k

)
+

6∑
k=4

γk

(
vk

0

)

+
9∑

k=7

γk

(
v(2)

k

q(2)
k

)
+

9+6Nr∑
k=10

γk

(
0

ek

)
. (46)

However, considering only the first nine components, we arrive
at exactly the same equation as eq. (18) from which the desired
coefficients γ k, 1 ≤ k ≤ 9 can be computed. Still, the associated
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eigenvectors changed. Hence, the extended normal flux on the right
side of an interface now reads

r2′
n = −

9∑
k=7

ckγk

(
v(2)

k

q(2)
k

)
. (47)

2.8 Time discretization

The time discretization is, in general, independent of the treatment
of the spatial derivatives. Hence, established and well-proven meth-
ods for the time integrations can be used. For example, Komatitsch
& Tromp (1999) use the classical second-order Newmark scheme
to advance the SEM in time. For higher orders, the Runge–Kutta
methods (Jameson et al. 1981) are available. Käser & Dumbser
(2006) introduced the ADER-approach to the DG method for seis-
mic problems by using the Cauchy–Kovalevsky theorem to solve
the problem in the same order of approximation with respect to
spatial and temporal variations.

To advance the numerical schemes eqs (35) and (36) in time we
apply a Total Variation Diminishing (TVD) Runge–Kutta method
(Gottlieb & Shu 1998) which is third order accurate. It has three
stages but needs only one additional array to store the velocity–
stress–field for one physical integration step. The scheme has the
form:

yn+1 = 1

3
yn + 2

3
(z(2) + 
t f (z(2))) with

z(2) = 3

4
yn + 1

4
(z(1) + 
t f (z(1))), and

z(1) = yn + 
t f (yn). (48)

It computes the solution for the time step n + 1 going through two
intermediate steps with the help of the auxiliary fields z(1) and z(2). 
t
is the time step which has to satisfy the Courant–Friedrichs–Lewy
criterion (Courant et al. 1928) according to which the velocity of
the propagating waves must be smaller than the ratio of minimum
point distance 
x divided by the time step 
t. The maximum time
step is thus given by


t ≤ CCFL

x

cmax
. (49)

Stability is ensured for CCFL ≤ 1. Typically CCFL is chosen smaller
than 0.4 to run stable simulations on deformed meshes. The constant
highly depends on the quality of the mesh and can be different for
2-D and 3-D simulations. Also, boundary conditions influence the
value of the Courant constant.

3 N U M E R I C A L I M P L E M E N TAT I O N

The NDG method described above was implemented into a
software package called NEXD (Nodal Discontinuous Galerkin
Finite Element in X Dimensions). As programming language, we
use modern FORTRAN (FORTRAN95 and later) with object-
oriented features. Parallelization is done by means of Open MPI
(www.open-mpi.org). The code is organized in a way to allow a
consistent work flow (Fig. 2). The model and the mesh can be
generated with external meshing software. It is only required to
provide plain text files containing the basic information about the
mesh such as node numbering and connectivity, coordinates of ver-
tices, boundary conditions and material parameters in the elements.
A Python interface is available to use the Trelis/CUBIT software
(www.csimsoft.com) for model and mesh generation. Three differ-
ent program versions were developed, a 1-D, a 2-D and a 3-D one.

Figure 2. The general procedure of a numerical simulation with NEXD.
First, a mesh is created via a Python script and a meshing program such as
Trelis/CUBIT. The ‘mesher’ reads in the mesh and prepares the forward cal-
culation. If the simulation runs in parallel, the mesh is partitioned using the
external library ‘Metis’. Database files with all required information about
the mesh are created. These are read by the ‘solver’ which calculates the
seismic wavefield. Parallelization of the solver is done with the help of MPI.
Seismograms for displacement, velocity and acceleration are stored in plain
ASCII files and databases are generated containing wavefield information.
These files can be processed with the ‘movie’ program to create ‘VTK’
files to display videos of the propagating wavefield, for example, using the
program ‘Paraview’.

Each program consists of three different main programs, the mesher,
the solver and a post-processor to generate movie files. The mesher
reads the mesh files and calculates all necessary information for
the solver. It calculates the anchor points of the Lagrange polyno-
mials and all necessary transformations, finds source and receiver
positions and prepares the domain decomposition of the mesh with
the help of the partitionizer ‘METIS’ (Karypis & Kumar 1999) for
parallel simulations. All information is stored in a database avail-
able for each processor. Additional information for debugging and
visualization purposes can be output on demand.

The solver reads the database provided by the mesher and exe-
cutes the forward simulation, generally in parallel mode using MPI.
It controls the main time loop to advance the solution to the velocity–
stress equations. For each time step, it iterates over all elements,
deals with boundary conditions and calculates fluxes on element
faces. Then, the velocity–stress vector is updated in time. At the
end of the time loop, seismograms for displacement, velocity and
acceleration are stored for every receiver position and component.
On demand, snapshots of the wavefield are saved into databases
which can be converted into VTK-files (Schroeder et al. 2006)
for visualization with, for example ‘Paraview’ (Ayachit 2015). The
code can handle different source time functions such as a Ricker or
a Gaussian wavelet as well as externally provided source wavelets
defined as time series. Both single force and moment tensor excita-
tion are implemented. External velocity models defined on a regular
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Figure 3. Model setup for computing the response of a homogeneous elastic
half-space to a single normal force at the free surface, also known as Lamb’s
problem. The free surface is inclined to avoid surface wave propagation
parallel to a coordinate axis. Values of elastic wave speeds as well as position
of source and receivers are shown together with the geometry of the model
area.

grid can be mapped to an existing mesh by interpolation allowing a
separation of meshing and assignment of material properties.

Absorbing boundary conditions can be either realized by can-
cellation of incoming fluxes at the boundaries, or, much more ef-
ficiently, by using perfectly matching layers (PML). We have im-
plemented a special variant of the PMLs in 2-D and 3-D, termed
nearly perfectly matching layers (NPML) as described by Cummer
(2003).

Both 2-D and 3-D version of the code support the calculation of
adjoint wavefields that may be used in the context of full waveform
inversion. In addition, there is an interface to the full-waveform
inversion code ASKI (Schumacher et al. 2016) for the computation
of waveform sensitivity kernels. The code will be made available
for download under GitHub (https://github.com/seismology-RUB,
last accessed 1 December 2017).

4 N U M E R I C A L VA L I DAT I O N

We validate our NDG approach for some test cases by comparing
with analytical solutions, if available, and results from high-order
SPECFEM simulations.

4.1 Lamb’s problem – 2-D elastic case

The first test case is Lamb’s problem, the elastic response of a 2-D
homogeneous half space to a single normal force at the free sur-
face. The solution contains three main phases: a direct P-wave, a
direct S-wave and a non-dispersive Rayleigh wave at the free sur-
face. Lamb’s problem is a simple but challenging test to validate
numerical codes especially for their accuracy with regard to dis-
persion. We compare solutions obtained with the NDG method to
a semi-analytical reference solution, calculated with the program
EX2DDIR (Berg et al. 1994). This program uses the Carniard-de
Hoop (De Hoop 1960; Aki & Richards 1980) method to calculate
the 2-D seismic response of a homogeneous half space.

The model configuration and values for P-wave speed, S-wave
speed and density of the homogeneous half-space are depicted in
Fig. 3. Geometrical setting and material parameters exactly fol-
low the configuration chosen by Käser & Dumbser (2006) and
Komatitsch & Vilotte (1998). The free surface is inclined by an

angle of α = 10◦ to avoid the Rayleigh wave propagating parallel
to a coordinate axis. Due to the inclination, the solution is expected
to be more sensitive to the numerical scheme and the implementa-
tion. The single force acting normal to the free surface resides at
s = (1720 m, 2303 m) and two receivers are placed at the free sur-
face at a distance of 990 m and 1706 m from the source. Receiver
components are oriented normally and tangentially to the tilted free
surface. As a source time function, a Ricker wavelet with a central
frequency of fc = 14.5 Hz is used beginning at t0 = − 1.2

f c s to ensure
that the main peak of the wavelet is located at zero time.

For the NDG method, the volume is discretized by triangular
elements with maximum edge length of 45 m leading to a total
of 17 700 elements for the mesh. A polynomial degree of five is
used for the spatial resolution combined with a TVD Runge–Kutta
scheme of third-order accuracy for time integration. The time step
is 
t = 1.5 × 10−4 s and Nt = 10 000 time steps are calculated.
On the left, right and bottom boundaries of the model, absorbing
boundary conditions are used to mimic an infinitely wide half-
space. A snapshot of the displacement field at t = 0.575 s is shown
in Fig. 4. P- and S-waves propagate away from the source position
followed by a Rayleigh wave with high amplitudes near the surface.
A comparison of the resulting synthetic seismograms at the two
receiver positions with the semi-analytical solution computed with
EX2DDIR is depicted in Figs 5(a) and (b) for the normal component
and Figs 5(c) and (d) for the tangential component. The seismograms
fit very well. Maximum amplitude differences of less than 2 percent
are visible in the high-amplitude Rayleigh wave train. This test
validates the NDG method for accurate simulation of body waves
and, in particular, surface waves.

4.2 P-convergence Test

A different 2-D simulation in a homogeneous, elastic half-space was
carried out to test the convergence of the numerical solution with
increasing polynomial order of interpolation. Model setup, material
properties and positions of a single force and a receiver are depicted
in Fig. 6. At the top of the model, a free surface is assumed whereas
on the other sides absorbing boundary conditions are applied. The
force acts in horizontal (x)-direction and the source time function is
a Ricker wavelet with centre frequency of fc = 600 Hz. The setup
allows to observe the direct P- and S-waves on both receiver compo-
nents and additionally converted and reflected waves coming from
the free surface (Fig. 7). Given the seismic wave speeds and fre-
quency spectrum of the source, the wave length of the S-wave at
the centre frequency is λc 	 2.5 m while the minimum wavelength
at the upper end of the frequency spectrum is λmin 	 1 m. Thus,
the S-wave, in this setting, propagates a distance of about 20 wave-
lengths between source and receiver. The mesh consists of 21 606
elements leading to 648 180 degrees of freedom for the second-
order test case (N = 2) and up to 7 129 980 degrees of freedom
for the 10th-order calculation (N = 10) (Table 1) For comparison,
reference seismograms are computed with a 12th-order SPECFEM
simulation. Synthetic seismograms for both components displayed
in Fig. 8 show small differences between the low-order (N = 3)
NDG and the SPECFEM reference simulation which disappear for
the 10th-order NDG solution.

To quantify the accuracy of NDG simulation with different poly-
nomial orders, a misfit between the NDG and SPECFEM seis-
mograms, expressed as L2 norm is calculated (Fig. 9). The misfit
quickly decreases with polynomial order and converges to a min-
imum residual. Differences become very small from 5th order
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Figure 4. Snapshot of the absolute amplitude of the displacement field for Lamb’s problem after t = 0.575 s. The single force source is indicated as red dot,
the two receivers as green dots. Three main phases are visible: a direct P-wave followed by an S-wave of smaller wave length due to the lower wave speed and
a high amplitude surface wave near the free surface.

Figure 5. Displacement seismograms for Lamb’s problem for the normal and tangential component at receiver r1 (a, c) and receiver r2 (b, d). The analytical
solution obtained with EX2DDIR is plotted in black. Results of the NDG simulation are plotted in grey. The difference is plotted as dashed line. A spatial
order of N = 5 is used to obtain the NDG solution. The seismograms agree very well, validating the NDG for the 2-D case. The maximum relative difference
occurring on the tangential component of receiver 1 is 2 per cent. No phase shift is notable for the two distant receivers, indicating that the NDG scheme
calculates surface waves accurately.
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Figure 6. Model setup, material properties and positions of horizontal single
force and receiver used for the p-convergence test.

onwards. With regard to the numerical effort, it is sufficient to
use fourth- or fifth-order polynomial interpolation for acceptably
accurate simulations.

4.3 A 3-D simulation in a two-layer half-space

This test simulation is performed with our 3-D implementation of
the NDG method. The reference solution is, as before, computed
with SPECFEM. The test shows the capability of the 3-D imple-
mentation and validates the NDG method with respect to 3-D sim-
ulations in discontinuous elastic media. Besides that, the potential
of NDG to employ velocity adapted meshes is demonstrated. The
considered model is a 3-D box of dimensions 100 m × 100 m×
50 m. Absorbing boundary conditions are used to simulate an in-
finitely wide model at all boundaries except at the top boundary,
where a free surface boundary condition is assumed. The model is
composed of a layer over a faster half-space. The top layer has a
thickness of z = 12.5 m (Fig. 10). The material properties for this
model are listed in Table 2.

A vertical single force source is located in the half-space, at co-
ordinates s = (30 m, 30 m, 25 m)T , 12.5 m below the bottom of the
top layer. Note that in this example, the vertical coordinate z points
bottom up. As source time function, a Ricker wavelet with dominant
frequency of fc = 160 Hz is used. We perform two simulations with

Table 1. Number of degrees of freedom for different polynomial orders of
interpolation for a mesh with 21 606 triangular elements

Order Points per element Degrees of freedom

2 6 648 180
3 10 1 080 300
4 15 1 620 450
5 21 2 268 630
6 28 3 024 840
8 45 4 861 350
10 66 7 129 980

the NDG code: one on a mesh with approximately uniformly sized
tetrahedral elements of an edge length of around h = 2.5 m leading
to 299 425 elements and 94.3 × 106 degrees of freedom in total, and
one on a mesh that is coarsened in the bottom layer to an edge length
of around 5 m leading to 104 414 elements and 32.9 × 106 degrees
of freedom in total. In the first simulation, we perform 16 000 time
steps of length 
t = 6.415 × 10−6 s whereas in the second one,
we run through 12 600 time steps of length 
t = 8.38 × 10−6 s.
Polynomial order of interpolation is N = 4 in both simulations.
Computation time of the first simulation is by a factor of 3.5 greater
than that of the second one. For comparison, we run the same model
with SPECFEM using hexahedral elements and polynomial order
of 4. Here, 4500 time steps of length 
t = 2.34 × 10−5 s are per-
formed. Element edge length is 2 m leading to 148 137 elements
with 30 × 106 degrees of freedom in total. To record the wavefield,
nine receivers are placed at the surface along a line parallel to the
x-axis from r1 = (10 m, 50 m, 50 m)T to r9 = (90 m, 50 m, 50 m)T .

Synthetic seismograms obtained by all three simulations at the
receivers are depicted in Fig. 11. No differences are visible on the
scale of the figure. A quantitative calculation yields normalized rms-
misfits for all seismograms of 0.2 per cent between SPECFEM and
NDG with the uniform mesh, of 0.2 per cent between SPECFEM
and NDG with the coarsened mesh and of 0.04 per cent between
NDG with the uniform and NDG with the coarsened mesh. This
test validates the 3-D-version of our DG method. Adapting the
mesh to velocity changes in the model can significantly help to
reduce computation times without loosing accuracy, and is easily
realized with the DG method and tetrahedral elements.

Figure 7. Snapshot of the absolute amplitude of the displacement field for the p-convergence test model. Time is T = 0.037 s and a polynomial order of N = 5
was used. Source position is marked by a red dot, receiver position by a green one. The mesh consists of 21 606 triangular elements. The direct P- and S-phases
as well as the PP, PS and SP conversions from the free surface have already passed the receiver while the SS and PPS-phases are about to reach the receiver.
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Figure 8. Seismograms of the displacement field for the (a) x- and (b) z-component for the p-convergence test. In both figures, the SPECFEM 12th-order
reference solution is shown in black. The NDG solutions are green for the 3rd–order calculation and red for the 10th-order result. Whereas the third-order
solution still has visible misfit, compared to the SPECFEM reference seismograms, no visible misfit can be detected with the N = 10 order NDG seismograms.

Figure 9. L2 misfit between a 12-order SPECFEM simulation and NDG
simulations of polynomial orders ranging from 2 to 10 for the p-convergence
test case. As expected, the misfit decreases with increasing order and the
numerical solution converges to the reference solution.

4.4 Homogeneous full space—2-D anelastic case

To validate our anelastic simulations we compare them to an an-
alytical solution given by Carcione et al. (1988). They derived
Green functions for a homogeneous 2-D full space in the fre-
quency domain. Anelasticity is introduced by using complex-
valued, frequency-dependent P- and S-wave velocities calculated
from complex elastic moduli. A back transformation to the time
domain results in the displacement field at the receiver position.
For comparison with our DG method, we choose a homogeneous,
quadratic model domain of 2000 m × 2000 m with a density of
ρ = 2000 kg m−3. At a reference frequency of f = 50 Hz, the real
part of P wave velocity is set to vp = 3000 m s−1 and that of S wave
velocity to vs = 2000 m s−1. Anelasticity coefficients and relaxation
frequencies are chosen in a way to achieve nearly constant values
of the quality factors around Qκ = 30 and Qμ = 20. A vertical
point force is located at the centre of the domain at x = y = 1000 m
and a receiver resides at x = 1500 m, y = 500 m. Anelasticity is
modelled, as described by Käser et al. (2007), using 3 Maxwell
bodies leading to frequency dependent wave velocities and quality
factors shown in Fig. 12. To evaluate the analytical expressions for
the Green functions, we use exactly the same dispersion relation.
The analytical Green function is convolved with the source time
function used by Carcione et al. (1988) who chose the product of a
Gaussian and a cosine function. Comparisons of the anelastic and
elastic DG solutions with their analytical counterparts are shown in
Fig. 13. For the elastic case, the values of P and S wave velocities
at the reference frequency were used. In both cases, the numeri-
cal and analytical solution match very well. The relative difference

between numerical and analytic solution at the extremal points is less
than 10−3.

5 A C O M P L E X N U M E R I C A L E X A M P L E

This example case is designed to demonstrate the capability of our
DG approach to model wave propagation in media exhibiting com-
plicated geological structures and, in addition, containing bodies of
non-trivial geometric forms. It is taken from related work in the
field of tunnel seismics where seismic waves are used to image
disturbing structures in front of the tunnel boring machine.

The model is composed of a curved cylindrical tunnel embedded
into three sedimentary layers which are offset relative to each other
by two thrust faults (Fig. 14). The tunnel axis lies in the xy-plane.
At the entry, the tunnel axis is parallel to the y-axis but later turns
away to the right, that is, towards increasing x-values. The vertical
coordinate, z, of the tunnel axis is constant. The interfaces between
the sedimentary layers are slightly inclined relative to the plane
of the tunnel axis and intersect the tunnel axis at some distance from
the tunnel entry implying different material properties above and
below the tunnel from there on. In addition, the thrust faults, inclined
relative to the vertical, intersect the tunnel at some distance away
from the entry. The elastic material parameters of the sedimentary
layers are rather different and are listed in Table 3. Two high-velocity
layers at the top and bottom of the model enclose a low-velocity
layer in between.

The dimensions of the entire model box are 64 m × 100 m × 64 m.
The tunnel is approximately 50 m long, ending in the fast bottom
layer. Its diameter is 12 m. The model is meshed with tetrahedral
elements for the NDG simulation with an edge size of h = 2 m for
both upper and lower layer and with a size of h = 1 m for the middle
slow layer. This choice allows stable simulations up to fc = 500 Hz.
To save computational effort, some mesh coarsening was applied in
the outer regions of the mesh. In total, Ne = 1 541 398 tetrahedral
elements are required to discretize the model. Polynomial order is
4 and number of Lagrange anchor points Np is 35. With Nu = 9
field variables we end up with NpNuNe = 4.8 × 108 degrees of
freedom for this simulation. Absorbing boundary conditions based
on flux cancellation are applied on all boundaries except for the top
boundary where a free surface is assumed.

We also attempted to mesh this model with hexahedral elements,
but failed to produce a mesh of acceptable quality. For this reason,
a computation with SPECFEM could not be performed.

Seismic waves in the model are excited by a single force re-
siding at the sidewall of the tunnel and acting normally to it. Its
precise location is xs = (34.53 m, 37.73 m, 32.00 m). The source
time function is a Ricker wavelet with centre frequency of 500 Hz.
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Figure 10. Two different meshes for a two layer simulation. Model dimensions are x = 100 m, y = 100 m and z = 50 m. The top layer has a thickness of
z = 12.5 m and velocities vp = 3000 m s−1, vs = 1700 m s−1 and density ρ = 2000 kg m−3. The bottom layer is faster with material properties vp = 5500 m s−1,
vs = 3400 m s−1 and ρ = 2000 kg m−3. The top surface is a free boundary. Absorbing boundary conditions are used for the other sides to mimic an infinite
half-space. Model (a) has an element size of h = 2.5 m leading to 299 425 elements in total. The coarsened mesh in (b) has an element size of 5 m and 104 414
elements in total.

Table 2. Elastic properties of the two-layer half-space example in Sec-
tion 4.3.

Layer vp (m s−1) vs (m s−1) ρ (kg m−3)

Yellow 3000 1700 2000
Green 5500 3400 2000

The time step is 
t = 3.414 × 10−6 s and Nt = 20 000 time steps
were calculated. A line of 46 receivers is placed on the right tunnel
sidewall (viewed from the tunnel entry). Receiver spacing is 1 m
(Fig. 14). The simulation was carried out on 192 CPU cores.

Different stages of the wavefield are displayed as snapshots in the
xy-plane in Fig. 15. The source emits P- and S-waves and a high-
amplitude surface wave attached to the tunnel sidewall. The wave
speed discontinuity due to the first thrust fault is well recognized
in Fig. 15(c). When the tunnel Rayleigh wave detaches from the
tunnel front face, it converts into an S-wave which propagates away
from the tunnel (Figs 15c–f). When hitting the second thrust fault
(Fig. 15e), the curvature of the transmitted S-wave front changes
and a reflection is produced (Fig. 15f). On arrival at the tunnel front
face, this reflection converts into a tunnel Rayleigh wave (Fig. 15g)
and runs along the entire tunnel side wall (Figs 15h–l). This scenario
of a tunnel Rayleigh wave converting into an S-wave and back into
a tunnel Rayleigh wave after being reflected has been described
earlier by Bohlen et al. (2007).

Synthetic seismograms of the y-component at the receivers are
shown in Fig. 16. The traces are ordered from bottom to top accord-
ing to their numbering which starts at 1 on the tunnel front face.
The source resides close to receiver 11 and the first thrust fault lies
between receivers 19 and 20. Close to the source (receivers 1–19),
we recognize a superposition of the S-wave and the Rayleigh wave
(R1). P-waves are very weak owing to the fact that the force acts
normally to the tunnel sidewall. When arriving at the first thrust
fault, a converted P-wave is excited (P) and the tunnel Rayleigh
wave changes speed (R2). In addition, the tunnel Rayleigh wave is
reflected from this discontinuity and propagates back to the tunnel
front face (R4 and R3). The Rayleigh wave generated by the S-wave
coming back from the second thrust fault is denoted by R5. It ar-
rives first at the tunnel front face and then propagates all along the
receiver line. Phase L is a reflection from the interface above the

Figure 11. Seismic section of the z-component of particle velocity for
the 3-D two-layer test. The line of nine receivers is located at the
top of the model and has endpoint coordinates r1 = (10 m, 50 m, 50 m)T

and r9 = (90 m, 50 m, 50 m)T . The source is in the fast layer at s =
(30 m, 30 m, 25 m)T . Black line: SEM reference simulation, dark grey line:
NDG simulation with the coarsened mesh in the bottom layer. Light grey
line: NDG simulation with about equal element size in both layers. For
each receiver, the seismograms are normalized to the maximum of the SEM
seismogram. Seismograms are shifted relative to each other.

tunnel whereas ‘surf’ is a reflection from the free surface. Phase
‘AB’ is a reflection from the boundary that contains the tunnel entry
owing to a not perfectly working absorbing boundary condition.

6 D I S C U S S I O N

The DG method is extraordinarily suitable for wave propagation
simulations in complicated geological environments due to its abil-
ity to work with tetrahedral elements. With tetrahedra, a high-quality
mesh is much easier to achieve than with the hexahedral elements
used by the SEM. Creating hexahedral meshes for complicated mod-
els may take significantly more time and experience than a com-
parable tetrahedral mesh. The curved tunnel example demonstrates
that it is extremely difficult to produce a high-quality hexahedral

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/212/3/1570/4631106 by guest on 18 April 2024



A nodal discontinuous Galerkin approach 1583

Figure 12. Velocities for P and S waves (left) and quality factors, Qκ and Qμ, (right) versus frequency of the anelastic DG model.

Figure 13. Comparison of nodal DG simulation with an analytical solution
after Carcione et al. (1988) for the anelastic and elastic cases. Traces are
shifted relative to each other for better visibility.

mesh, while for the same model a tetrahedral mesh can be con-
structed semi-automatically. Another big advantage of tetrahedral
meshes is the fact that element sizes can be easily adapted to the
physical properties of the medium without affecting the accuracy

of the simulation. In this way, adaptive mesh construction can par-
tially compensate the higher numerical costs of the DG method.
This advantage pays off particularly well in complex geological
situations, which often occur in unconsolidated sediments and are
thus relevant for near surface seismic modelling. Nevertheless, it is
worthwhile to carefully consider which method is used for a given
simulation problem. In many cases, the SEM may be the method of
choice.

The realization of absorbing or radiation boundary conditions
by just omitting incoming fluxes at boundary elements is not fully
satisfactory especially for waves with grazing incidence. For this
reason, NPML boundary conditions, a variation of PML conditions,
are implemented. Spurious reflections from the absorbing bound-
ary nearly vanish for the simulations using NPML. However, PML
conditions are only weakly stable for the seismic wave equation
(Fichtner et al. 2011) leading to cases where the solution grows
exponentially with time. Especially large material contrast close to
the absorbing boundary may favour instable behaviour. This prob-
lem is overcome by a switching mechanism. When using NPML
boundary conditions, the total energy of the medium is monitored

Figure 14. Model motivated by tunnel seismics containing a curved cylindrical tunnel drilled into three inclined sedimentary layers offset relative to each
other by thrust faults. The tunnel is l = 50 m long and ends in the fast third layer (red) with material properties vp = 4650 m s−1, vs = 2700 m s−1 and
ρ = 2600 kg m−3. This layer is covered by a slow layer (grey) with vp = 2000 m s−1, vs = 1200 m s−1 and ρ = 2350 kg m−3. The top layer (blue) is, again, a
fast layer having a P-wave velocity of vp = 4330 m s−1 a S-wave velocity of vs = 2500 m s−1 and a density of ρ = 2500 kg m−3. The overall dimensions of
the model are wx = 64 m, wy = 100 m and wz = 64 m. (a) Entire model box, (b) a horizontal section to visualize the track of the tunnel. The tetrahedral mesh
contains Ne = 1 541 398 elements resulting in a simulation with 4.856 × 108 degrees of freedom.
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Table 3. Elastic properties of the sedimentary layers in the tunnel seismics
model

Layer vp (m s−1) vs (m s−1) ρ (kg m−3)

Blue 4330 2500 2500
Grey 2000 1200 2350
Red 4650 2700 2600

and if the energy, after a certain time, begins to grow, the NPML
is switched to the classical, flux-controlled boundary conditions
thereby saving the simulation. Exponential growth of energy in the
solution is detected with an STA/LTA trigger, originally developed
for earthquake detection.

Viscoelastic attenuation is modelled using a series of parallel
Maxwell bodies. The comparison of a viscoelastic simulations in
2-D with an analytical solution exhibits very good agreement. The
numerical example also shows that three parallel Maxwell bod-
ies are sufficient to obtain nearly constant quality factors and a

log-linear dependency of wave velocities across a wide frequency
range. Introducing more mechanisms is normally not required and
increases the numerical costs significantly.

The current implementation of the NDG method successfully
passes several accuracy tests. For example, synthetic seismograms
for Lamb’s problem very well match seismograms computed from
an analytical solution. Further comparisons with SEM also show
very good agreement. The success of these tests also validates the
parallel implementation of the NDG code using MPI. A convergence
test, where simulations are done with increasing spatial order, un-
derline the successive reduction of misfit to a reference solution
with increasing order. It turns out that a spatial order of N = 4
is a viable compromise between numerical effort and accuracy for
the NDG method. Very high order simulations require a corre-
spondingly small time step making the computations inefficient.
The scaling of the parallel implementation with increasing numbers
of processors (not described in this paper) could only be tested on
a single machine with 48 CPUs owing to the heterogeneity of the

Figure 15. Snapshots of the wavefield for the curved tunnel model. The absolute value of the displacement field is shown in the xy−plane (see also Fig. 14b).
The source is marked as red dot while the receivers are highlighted by green points. The time between the individual frames is 
t = 3.41 × 10−3 s. A
single force normal to the tunnel sidewall (a) excites a high amplitude surface wave propagating along the tunnel (b) which is converted into an S-wave (c–e)
propagating ahead of the tunnel. A reflection at the second thrust fault occurs (f) and a part of the signal propagates back to the tunnel where it is converted to
a tunnel surface wave (g). This signal can be observed in the seismograms and propagates all along the free surface of the tunnel (h)–(l).
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Figure 16. Seismic section of the y-component (along axis at tunnel entry) of the displacement field. Receivers are distributed at the right-hand side of the
tunnel sidewall (see Fig. 15, green dots, and Fig. 14b, white dots). Receiver 1 (bottom of section) resides at the tunnel front face. Receiver 46 (top of section) sits
at the tunnel entry. The source is very close to receiver 11. ‘R1’ denotes the direct surface wave excited by a single force acting normal to the tunnel sidewall.
‘R2’ is its continuation after having crossed the first thrust fault which intersects the tunnel. ‘R3’ is a surface wave reflected from the thrust fault. ‘R4’ is a
surface wave reflected from the tunnel front face. R1 also excites a P wave (‘P’) when hitting the thrust fault. ‘R5’ is the so-called RSSR-wave, a surface wave
generated through conversion from an S-wave which is reflected from the second thrust fault ahead of the tunnel front face. ‘L’ denotes a reflection from the
layer interface above the tunnel while ‘surf’ is the signal from the top free surface. At the tunnel entry, a nonphysical reflection owing to imperfect absorbing
boundary conditions evolves and is marked as ‘AB’.

available computer cluster. At least for this machine, the compu-
tation time decreases quasi-linearly with CPU number. We expect
that this behaviour is also preserved for a larger number of CPUs.

7 C O N C LU S I O N S

The NDG method is adapted to 1-D, 2-D and 3-D elastic and anelas-
tic seismic wave propagation. Formulations of numerical fluxes for
the elastic and anelastic case are given which are derived from an
exact solution of the heterogeneous Riemann problem, and honour
possibly differing material properties in adjacent elements. Absorb-
ing boundary conditions relying on the Nearly Perfectly Matched
Layer approach are adapted to the NDG as an alternative to flux
based boundary conditions. All features are implemented in the
software package NEXD allowing efficiently parallelized numeri-
cal simulations. The accuracy and implementation is successfully
validated through different test cases such as Lamb’s problem by
either comparing with analytical solutions or spectral element sim-
ulations. The capabilities of the method are demonstrated by a
challenging example case derived from tunnel reconnaissance with
complicated geological structures and internal bodies of non-trivial
geometric form. The NDG method is particularly attractive for
such scenarios due to its high order approximation of the seis-
mic wavefield as well as its use of triangular and tetrahedral meshes
for the model discretization. The code may be used as forward
solver for full waveform inversion as it offers the calculation of
adjoint wavefields and provides an interface to the computation of

waveform sensitivity kernels. The code is available for download
under GitHub (https://github.com/seismology-RUB, last accessed
1 December 2017).
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zengleichungen der mathematischen Physik, Math. Ann., 100(1), 32–74.

Cummer, S.A., 2003. A simple, nearly perfectly matched layer for general
electromagnetic media, IEEE Microw. Wirel. Compon. Lett., 13(3), 128–
130.

Cupillard, P., Delavaud, E., Burgos, G., Festa, G., Vilotte, J.-P., Capdeville, Y.
& Montagner, J.-P., 2012. Regsem: a versatile code based on the spectral
element method to compute seismic wave propagation at the regional
scale, Geophys. J. Int., 188(3), 1203–1220.

De Hoop, A., 1960. A modification of Cagniard’s method for solving seismic
pulse problems, Appl. Sci. Res., Sec. B, 8(1), 349–356.

de la Puente, J., 2008. Seismic Wave Propagation for Complex Rheologies,
VDM Verlag Dr. Müller.

Delcourte, S., Fezoui, L. & Glinsky-Olivier, N., 2009. A high-order discon-
tinuous Galerkin method for the seismic wave propagation, in ESAIM:
Proceedings, vol. 27, pp. 70–89, EDP Sciences.
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