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S U M M A R Y
We present and make publicly available a dynamic programming algorithm to simultaneously
align the inclination and declination vector directions of sedimentary palaeomagnetic secular
variation data. This algorithm generates a library of possible alignments through the systematic
variation of assumptions about the relative accumulation rate and shared temporal overlap of
two or more time-series. The palaeomagnetist can then evaluate this library of reproducible
and objective alignments using available geological constraints, statistical methods and expert
knowledge. We apply the algorithm to align previously (visually) correlated medium to high
accumulation rate northern North Atlantic Holocene deposits (101–102 cm ka–1) with strong
radiocarbon control. The algorithm generates plausible alignments that largely conform with
radiocarbon and magnetic acquisition process uncertainty. These alignments illustrate the
strengths and limitations of this numerical approach.

Key words: Atlantic Ocean; Magnetostratigraphy; Palaeomagnetic secular variation; Palaeo-
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1 I N T RO D U C T I O N

Palaeomagnetic secular variation (PSV) describes the spatio-
temporal variation of Earth’s magnetic field at decadal to millen-
nial timescales arising from convection in Earth’s liquid outer core
(Johnson & McFadden 2007; Lund 2007). Palaeomagnetic archives
record the history of changes in geomagnetic field morphology
(inclination and declination) and intensity (both relative and abso-
lute). Utilization of PSV for the purpose of stratigraphic correlation
has a long and rich history (e.g. Thompson 1973). While rela-
tive palaeointensity (RPI) reconstructions can be complicated by
lithologic variability (e.g. Schwartz et al. 1996; Mazaud 2006) that
requires strict quality assessment (Tauxe 1993; Stoner & St-Onge
2007), PSV direction reconstructions are more robust to this vari-
ability (e.g. Reilly et al. 2018). However, certain criteria should still
be met for PSV direction stratigraphic correlation, including:

(i) The vector time-series should faithfully record the geomag-
netic field at or soon after the time of deposition, hold well-defined
characteristic remanent magnetizations (ChRM) by magnetic min-
eralogies indicative of a primary magnetization, and display no signs
of physical sediment deformation. Ideally, a PSV vector time-series
should also be replicated in multiple cores within the basin or on a
regional level.

(ii) Accumulation rates and sampling resolution should be high
enough to resolve centennial to millennial trends in PSV. These rates
and resolution may be higher than that required for palaeoclimate
reconstructions, as the magnetic acquisition process can act as a
low-pass filter (e.g. Lund & Keigwin 1994; Roberts & Winklhofer
2004; Balbas et al. 2018).

(iii) The records should be geographically limited such that they
share a common geomagnetic history (see Korte et al. 2018 for
recent analysis). However, records could be compared over greater
distances if systematic relationships within regional PSV data are
understood, as has been suggested for centennial to millennial
timescale variations (e.g. Valet et al. 2008; Nilsson et al. 2010,
2011; Stoner et al. 2013; Walczak et al. 2017).

In most PSV stratigraphic correlation studies, PSV signals are
aligned through supervised or ‘wiggle-matched’ correlations, using
a range of approaches from a single parameter (e.g. inclination,
declination or RPI) to the whole vector. As any correlation is non-
unique and possibly biased by the palaeomagnetist, we present a
new tool based on dynamic programing to help evaluate possi-
ble PSV correlations. Application of dynamic programing to align
Quaternary palaeoclimate and RPI palaeomagnetic records has suc-
cessfully contributed iconic records in each field (e.g. Clark 1985;
Lisiecki & Lisiecki 2002; Lisiecki & Raymo 2005; Channell et al.
2009; Haam & Huybers ; Xuan et al. 2016). Here we introduce an
algorithm that utilizes a dynamic programing technique (dynamic
time warping; DTW) to simultaneously align PSV inclination and
declination direction vector time-series. This algorithm generates a
library of potential alignments through the systematic variation of
assumptions about relative accumulation rate and shared temporal
overlap between multiple vector time-series. The palaeomagnetist
can then evaluate this alignment library using available geological
constraints and expert knowledge, both of which can be difficult or
impossible to quantify and fully incorporate in a purely mathemat-
ical approach. Because this study focuses on sedimentary palaeo-
magnetic archives, we refer to assumptions of accumulation rate.
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However, the method can theoretically be applied to volcanic or
archeologic palaeomagnetic archives with stratigraphy and, accord-
ingly, can reflect different assumptions, such as eruption rate.

To illustrate the strengths and limitations of this method, we apply
a DTW algorithm to align three well studied PSV directional vector
time-series from medium to high accumulation rate deposits (101–
102 cm ka–1) in the northern North Atlantic (Stoner et al. 2007,
2013; Fig. 1). These vector time-series fulfill the criteria for PSV
stratigraphic correlation outlined above and have previously been
used as templates to assess or constrain the chronology of regional
records (e.g. Ólafsdóttir et al. 2013, 2019; Strunk et al. 2018; Caron
et al. 2019; Reilly et al. 2019). We report that this algorithm can
successfully generate plausible PSV alignments generally within
radiocarbon and magnetic acquisition process uncertainties.

2 M AT E R I A L S A N D M E T H O D S

2.1 Data sets used

We focus our discussion on two numerical experiments, where a can-
didate PSV vector time-series is aligned, or warped, to a target PSV
vector time-series. We use three cores from the northern North At-
lantic that have been previously studied, documented to record PSV,
and have strong independent radiocarbon chronologies. All data sets
used are unsmoothed and as reported in their original publications.
For our first experiment, we choose PSV directions from the Mar-
ion Dufresne II Core MD99-2269 (66.63◦N, 20.85◦W; 365 m water
depth; 2533 cm core length), recovered during the 1999 IMAGES
(International Marine Global Changes Study) expedition, as the tar-
get magnetic vector time-series (‘data set’ herein); we choose PSV
directions from Core MD99-2322 (67.14◦N, 30.83◦W; 714 m water
depth; 2617 cm core length), recovered during the same expedition
(Stoner et al. 2007; Fig. 1), as the candidate data set. Core 2269 was
raised from Húnaflói, North Iceland Shelf, while Core 2322 was
raised from the deepest part of the Kangerlussuaq Trough, South-
east Greenland Shelf. A supervised correlation between the two
PSV vector time-series has been shown to be consistent with each
core’s independent radiocarbon chronology (Stoner et al. 2007),
and supervised PSV correlations of Core 2269 to Icelandic lake
sediments are consistent with tephra stratigraphy (Ólafsdóttir et al.
2013). Cores 2269 and 2322 chronologies are constrained by 27
and 20 radiocarbon dates, respectively, from mollusks and mixed
benthic foraminifera (Dunhill et al. 2004; Stoner et al. 2007) and
have been subject to detailed tephra analysis (Kristjánsdóttir et al.
2007; Jennings et al. 2014). Long-term accumulation rates for both
cores are high. Core 2269 accumulation rates vary between ∼300
and 400 cm ka–1 from 9.5 to 12 ka and ∼100–300 cm ka–1 from 9.5
ka to present (Stoner et al. 2007). Core 2322 accumulation rates are
∼300–600 cm ka–1 from 9 to 12 ka and ∼100 to 200 from 9 ka to
present (Stoner et al. 2007). This experiment tests what we consider
ideal PSV data that are high resolution and less likely to contain
large offsets between the sediment and magnetic age (e.g. deMeno-
cal et al. 1990; Suganuma et al. 2010; Stoner et al. 2013; Simon et al.
2018) or signal attenuation (e.g. Lund & Keigwin 1994; Roberts &
Winklhofer 2004; Valet & Fournier 2016; Balbas et al. 2018) that
can result from depth-dependent magnetic acquisition processes
(i.e. post-depositional remanent magnetization (pDRM); Irving &
Major 1964; Verosub 1977; Egli & Zhao 2015) or sampling method
(e.g. Weeks et al. 1993). These data are also considered ideal for
alignment as they span almost exactly the same duration and have
similar accumulation rates (as discussed later).

In a second numerical experiment, we again use Core 2269 as
the target data set but use PSV from the Holocene interval of Inte-
grated Ocean Drilling Program (IODP) Expedition 303 Site U1305
(57.48◦N, 48.53◦W; 3459 m water depth; focusing on the upper
555 cm) as the candidate data set (Channell et al. 2006; Stoner et al.
2013, Fig. 1). Site U1305 was drilled on the lee side of the Eirik
Ridge, a deep sea contourite deposit, and is noted for containing
expanded Pleistocene interglacial sediments compared with glacial
sediments (Mazaud et al. 2012). The Holocene PSV vector time-
series has been studied in detail and displays broadly consistent
signals, although offset in time, with other regional records (Stoner
et al. 2013). Site U1305 chronology is constrained by 17 radio-
carbon dates on mixed planktonic foraminifera, with accumulation
rates ranging from about 40–80 cm ka–1 (Stoner et al. 2013, and this
study; Table 1). As Site U1305 is of lower temporal resolution than
Core 2269 and was demonstrated to have uncertainties associated
with pDRM acquisition processes (Stoner et al. 2013), this exper-
iment tests the algorithm performance on good data with realistic
uncertainties inherent to sedimentary records of palaeomagnetism.
Site U1305 also presents challenges for numerical alignment as it
has lower accumulation rates relative to the target data set and spans
a subset of the time covered by the target data set (as discussed later).
For this exercise, Site U1305 is relocated by calculating its virtual
geomagnetic pole (VGP) path and then calculating inclination and
declination of that VGP path at the location of Core 2269. This
assumes a common geomagnetic field over the 1750 km distance
between the two sites, but accounts for the ∼9◦ latitude and ∼28◦

longitude difference (cf. Korte et al. 2018; Reilly et al. 2018).
All radiocarbon dates from Stoner et al. (2007, 2013) and re-

ported here (Table 1) were calibrated using the MARINE13 cali-
bration curve (Reimer et al. 2013), the MATCAL calibration soft-
ware (Lougheed & Obrochta 2016), and modeled for age–depth
relationships using the Undatable software package with a conser-
vative xfactor of 1 and no bootstrapping (Lougheed & Obrochta
2019). Although marine radiocarbon reservoir effects likely varied
at these locations over this time interval (e.g. Eirı́ksson et al. 2011;
Wanamaker et al. 2012) and have been partially corrected using the
known terrestrial ages of tephra layers (Stoner et al. 2013), for this
exercise we simply use �R values of 0 yr to focus on testing whether
the stratigraphic correlations derived from PSV are consistent with
the relative radiocarbon stratigraphy.

2.2 PSV dynamic time warping

2.2.1 Dynamic time warping

In computer programming, dynamic programming is a technique
for optimizing complex problem solving by minimizing the num-
ber of calculations. This is accomplished by dividing a complex
problem into smaller subproblems and storing the answers for later
use to ensure maximum efficiency. DTW is an alignment technique
for time-series data sets that uses generalized dynamic programing,
which was first applied to spoken word recognition (Sakoe & Chiba
1978). Dynamic programming has been shown to have geological
applications (e.g. Clark 1985; Thompson & Clark 1989; Lisiecki &
Lisiecki 2002; Lisiecki & Raymo 2005; Channell et al. 2009; Haam
& Huybers ; Hay et al. 2019). Dynamic programming had been ap-
plied to palaeointensity records using the Match algorithm (Lisiecki
& Lisiecki 2002; Channell et al. 2009). Furthermore, Thompson
& Clark (1989) used a slotting technique to align palaeointensity,
palaeomagnetic reversal and PSV time-series with the aid of manual
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Figure 1. Regional Map with Core Locations. Cores MD99 2269 and 2322, and Integrated Ocean Drilling Program (IODP) Expedition 303 Site U1305
indicated with yellow dots.

Table 1. Additional site U1305 radiocarbon dates.

Depth (mcd) Reported Age 14C years BP Min 2σ Cal. years BP Med. Prob. Max 2σ Cal. years BP

4.805 7815 ± 25 8196 8298 8352
6.940 9250 ± 25 9942 10120 10171

Notes: Radiocarbon dates to supplement those reported by Stoner et al. (2013). All dates are on mixed planktonic foraminifera. Calibration for this study uses
�R = 0 and the Marine13 curve (Reimer et al. 2013).

tuning. At present dynamic programming is not widely utilized in
PSV stratigraphic correlation.

Of the aforementioned dynamic programming algorithms that ad-
dress geological time-series data, we chose to adapt that of Hay et al.
(2019) to align PSV for the following two reasons. First, this algo-
rithm calculates every possible pairing of strata in the target and can-
didate data sets, as opposed to aligning stratigraphic intervals (two
or more strata, e.g. Thompson & Clark 1989; Lisiecki & Lisiecki
2002). Secondly, the easily modifiable penalty functions allow the
algorithm to catalog libraries of possible alignments (see discussion
of g and edge parameters below). Together, these features facilitate
the alignment of data sets characterized by limited age control, as
multiple solutions may fit within the available geochronologic con-
straints. Next, we detail how we adapted the algorithm presented
by Hay et al. (2019) to minimize the angular (cosine) difference
between palaeomagnetic inclination and declination vectors, as op-
posed to minimizing the global squared difference in the values of
isotopic data.

The cost matrix The application of DTW to PSV time-series cen-
ters on the assembly of a cost matrix that quantifies the angular
difference between every possible alignment between the target and
candidate data sets. While traditional formulations of dynamic pro-
graming would calculate the squared difference between the inclina-
tion or declination of target and candidate data sets individually, the
PSV-specific algorithm presented here calculates the cosine distance
(CD) between the two angles to align inclination and declination
simultaneously.

Each cell of the n by m cost matrix (C)—where n and m reflect
the length of the target and candidate data set, respectively—is

populated as follows:

C (n, m) = 1 − cos θn,m, (1)

where (θn,m) represents the angular distance between a specific pair
of PSV data from the target and candidate data sets. θ is calculated as
follows. First, declination and inclination angles are deconstructed
to compute the x, y and z directional components of each PSV vector
time-series (target and candidate). Next, the code computes the cross
product of the target and candidate directional components:

t1 = [ xt yt zt ] × [ xc yc zc ], (2)

where subscripts t and c refer to the target and candidate compo-
nents, respectively. Each resulting column is added in quadrature to
calculate t2:

t2 =
√

t1(:, 1)2 + t1(:, 2)2 + t1(:, 3)2. (3)

The code then computes the dot product of the transposed target
and candidate directional components:

t3 =
xt

yt

zt

·
xc

yc

zc.

(4)

Finally, the code computes the arctangent of t2 and t3 to determine
the resulting angular distance:

θ = atan2
(
t2, t ′

3

)
. (5)

The cosine distance (CD) for a given θ (stratal pairing) is calculated
as:

CD = 1 − cos(θ ) (6)
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and the CD value of every possible target-candidate stratal pair pop-
ulates the cost matrix (see eq. 1). Linear programming minimizes
the sum of these CDs, effectively charting an optimal alignment path
through the cost matrix (the ‘best fit’). To catalogue a library of pos-
sible alignment solutions, two variables (edge and g, which augment
the cost matrix) are varied to explore the range of possibilities.

The g parameter Values of g can reward (g < 1) or penalize (g > 1)
the stretching or squeezing of the candidate data set by weighting
the off-diagonal elements of the cost matrix, effectively rewarding
or penalizing diagonal travel through the cost matrix. For data sets
with equal sampling resolution (e.g. 1 cm resolution in both vec-
tor time-series), the g parameter effectively rewards or penalizes
alignments where the vector time-series have similar accumulation
rates. However, for data sets with different sampling resolution, the
g parameter will reward or penalize alignments where the vector
time-series have similar ratios of accumulation rate and input sam-
pling resolution. For illustrative purposes, in these examples of the
algorithm application, g varies between 0.97 and 1.02, although the
extremes of this range are typically greater than what is necessary to
achieve stratigraphically plausible alignments (e.g. Hay et al. 2019).

The edge parameter The edge parameter penalizes solutions that
exceed the time bounds of the target data set, with larger values
rewarding alignments that have greater overlap between the two
data sets. In these examples of the algorithm application, edge varies
between 0.01 and 0.2 for illustrative purposes, although when edge
> 0.15 the algorithm tends to converge upon the same alignment
solutions (e.g. Hay et al. 2019).

Demonstration of dynamic time warping To more concretely illus-
trate the dynamic time warping alignment process, we consecutively
step through the code output for the alignment of two short, syn-
thetic PSV vector time-series (see the light purple columns of the
Fig. 2a matrices and light purple rows of the Fig. 2b matrices). First,
the code creates two target matrices whose number of rows, N, and
columns, M, equal the number of PSV data in the target and candi-
date sequences, respectively (Fig. 2a). The one-column target PSV
vectors (declination and inclination) are then replicated M times
to fill all the columns of the two target matrices (Fig. 2a). A simi-
lar process generates two candidate matrices, though the candidate
PSV vectors are transposed to row vectors and replicated to fill all
N rows of the candidate matrices (Fig. 2b).

The algorithm then determines θ (eqs 2–5) between all possible
candidate-target pairings, populating the theta matrix (Fig. 2c), and
from θ calculates the resulting CD (eq. 6) to fill the cost matrix
(Fig. 2d). For example, the angular distance between the PSV data
(declination and inclination) determined from the third row (equiv-
alent to the 3rd stratum) of the target vector time-series (–85◦ and
82◦, respectively; Fig. 2a) and the last column (youngest stratum)
of the candidate vector time-series (–110◦ and 77◦, respectively;
Fig. 2b) yields a θ of 6.6553◦ [theta matrix (3,4), Fig. 2c] and a CD
of 0.0067 [cost matrix (3,4), Fig. 2d].

The cost matrix is multiplied by the edge parameter (Fig. 2e),
which serves to discourage (increased value) or encourage (de-
creased value) the corresponding stratal pairing. The four cost ma-
trix edges are modified in clockwise order, beginning with the first
row, and ending with the first column (Fig. 2e; purple ellipsoids).
For cost matrix element (3,4) = 0.0067, an (arbitrary) edge value of
0.1 results in a lower value of 0.00067 [edge-modified matrix (3,4),
Fig. 2e]. This clockwise implementation modifies the matrix corners
twice [once per edge; see edge-modified matrix (1,1), Fig. 2e].

The edge-modified cost matrix is variably augmented by g as the
algorithm computes the cumulative cosine distance matrix (Fig. 2f).
The purpose of the g parameter is to allow for different sediment
accumulation rates between the two vector time-series and to allow
for the insertion of hiatal surfaces in either the candidate or target
vector time-series. The algorithm begins in the upper left-hand cell
of the cumulative cosine distance matrix (1,1), which is not altered
from the edge-modified matrix. Moving horizontally right along the
first row of the matrix, each cell is recalculated as the sum of the
corresponding edge-modified matrix cell value and the values of all
preceding edge-modified matrix cells in the column, representing
an accumulation of cost (horizontal purple arrow, Fig. 2f). For ex-
ample, cumulative cosine distance matrix (1,3) is calculated as the
sum of edge-modified matrix (1,3), edge-modified matrix (1,2) and
edge-modified matrix (1,1), equal to the sum of the values 0.0004,
0.00018 and 0.000038, respectively. This calculation yields 0.00062
(Fig. 2f). The same is done vertically for column 1 of the cumulative
cosine distance matrix (vertical purple arrow, Fig. 2f).

The algorithm then moves down to element (2,2) and calculates
the accumulation of cost for every cell in column 2 and row 2. In
contrast to the calculation of the accumulation of cost above, the
value of each of these cells (gold arrows, Fig. 2f) is computed as the
sum of a cell’s corresponding edge-modified matrix value and the
minimum value of the 3 preceding cumulative cosine distance ma-
trix cells [(n, m–1),(n–1, m),(n–1, m–1)]. For example, cumulative
cosine distance matrix (6,2) is computed as edge-modified matrix
(6,2), or 0.0014, plus the minimum of the three preceding cumula-
tive cosine distance matrix cells, which in this case is cumulative
cosine distance matrix (5,2), or 0.00202, yielding 0.00342 (Fig. 2f).
In this example, we adopted an (arbitrary) g value of 1.00; however,
for values of g greater or lesser than 1 the horizontal and vertical
preceding cells are augmented by g [g x (n–1, m) and g x (n, m–1)]
such that the minimum value of the preceding cell can change.

At this point, the algorithm has computed values for all cells in
rows 1 and 2, and columns 1 and 2, in the cumulative cosine dis-
tance matrix. Values for the remaining 10 empty cells (rows 3–7 and
columns 3–4, grey arrows in Fig. 2f) are calculated as the sum of the
corresponding edge-modified matrix and the minimum of the pre-
ceding two rows and columns [(n–1, m), (n, m–1), (n–1, m–1), (n–2,
m–1), (n–1, m–2), (n–2, m), (n, m–2), (n–2, m–2)] of the cumulative
cosine distance matrix. These 8 preceding cells are augmented by g
and a cell-position–dependent coefficient as follows: elements (n–1,
m) and (n, m–1) are computed as gx; elements (n–2, m–1) and (n–1,
m–2) are computed as 1.05gx; elements (n–2, m) and (n, m–2) are
computed as 1.1gx. Note that diagonal preceding cells [(n–1, m–1)
and (n–2, m–2)] are not augmented by g. For example, cumulative
cosine distance matrix (3,4) is computed as edge-modified matrix
(3,4), or 0.00067, plus the minimum preceding cell value, in this
case cumulative cosine distance matrix (1,2), equal to 0.00022. Due
to its position (n–2, m–2), this cell’s value is not augmented, yield-
ing a value of 0.00089 for cumulative cosine distance matrix (3,4)
(Fig. 2f). Once all of the remaining empty cells have been filled, the
cumulative cosine distance matrix is complete (Fig. 2f).

An alignment between the candidate and target time-series is
derived by determining the path through the cumulative cosine dis-
tance matrix that accumulates the least cost. The algorithm begins
in the lower right-hand corner of the cumulative cosine distance
matrix (lighter purple box in Fig. 2g, replicated from Fig. 2f) and
selects each forward step from the lowest value of the adjacent eight
cells ahead to ensure an optimal path (Fig. 2g). The alignment path
begins when it enters the matrix (diverges from a starting edge;
purple arrows in Fig. 2g) and ends when it exits the matrix (meets

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/221/1/706/5698809 by guest on 10 April 2024



710 C.J. Hagen et al.

0.00002

0.00026

0.00105

0.00056

0.0005

0.000256

0.0004

0.008

0.0014

0

0.0014

0.0015

0.00152

0.00018

0.0022

0.0024

0.0018

0.0001

0.0014

0.00219

0.00003

0.00098

0.0004

0.00064

0.000341

e. edge-modified matrix

0.000038

0.00007

0.00094

0.00192

0.00232

0.00296

0.0033

0.00224

0.00247

0.00274

0.00202

0.00309

0.00822

0.00144

0.00007

0.00147

0.00088

0.00112

0.00057

0.00083

f. cumulative cosine 
distance matrix

g. alignment path

-100

-95

-85

-70

-82

-88

-125

-100

-95

-85

-70

-82

-88

-125

-100

-95

-85

-70

-82

-88

-125

-100

-95

-85

-70

-82

-88

-125 a. target matrices

Candidate length

b. candidate 
matrices

ht gnel t egr aT

Candidate time series

0.0038

0.0003

0.0087

0.0098

0.0064

0.0341

0.0018

0.0022

0.0024

0.0018

0.0001

0.0014

0.0219

0.004

0.008

0.0014

0

0.0014

0.0015

0.0152

0.002

0.0026

0.0105

0.0056

0.005

0.0256

d. cost matrix c. theta matrix

h. resulting alignment

0.00063

0.00515

80

75

82

80

78

81

90

80

75

82

80

78

81

90

80

75

82

80

78

81

90

80

75

82

80

78

81

90

-110

-110

-110

-110

-110

-110

-110

-100

-100

-100

-100

-100

-100

-100

-70

-70

-70

-70

-70

-70

-70

-85

-85

-85

-85

-85

-85

-85

75

75

75

75

75

75

75

78

78

78

78

78

78

78

80

80

80

80

80

80

80

77

77

77

77

77

77

77

declination

inclination inclination

declination

0.000038

0.00007

0.00094

0.00192

0.00232

0.00296

0.0033

0.00022

0.00224

0.00247

0.00274

0.00202

0.00342

0.00062

0.00822

0.00144

0.00007

0.00147

0.00157

0.00309

0.00088

0.00089

0.00112

0.00057

0.00083

0.00064

0.00063

0.00515

0.004

0.00087

0.000640.00022

0.00157

c1 c2 c3 c4

t7

t6

t5

t4

t3

t2

t1

t7

seir es e mit t egr aT

t1

c1 c4

7

6

5

4

3

2
1
0

-130 -110 -90 -70 75 80 85 90
declination (°) inclination (°)

Target

Aligned candidate

Original candidate

)ryk( e
miT

105

0.0067

1 - cos(θ), where θ is theta(3,4) 
1 - cos(6.6553) = 0.0067

5

1.2937

8.0389

5.1291

6.4669

15

7.5551

3.4757

3.7909

4

3.4757

0.6237

3.0484

12

5.1519

7.2596

3.0673

0

3.0301

3.1195

10

1.2937

7.5551

3.7909

4 3.0673

3.5914

4.1270

8.3139

6.0810

5.7310

13

6.6553

Angular distance between vectors
Ang. dist.[(-85),(82),(-110),(77)] 

= 6.6553 (θ)

0.000180.000038

cost(1,1) x edge x edge
(0.0038) x (0.1) x (0.1) = 0.000038

6

0.00067

cost(3,4) x edge
(0.0067) x (0.1) = 0.00067

2

Sum of edge-modified row
(0.000038) + (0.00018) +  

0.0004 = 0.00062

0.00062

00144

0.00224 0.00822

0.000038

0.00007

0.00022

Edge(3,4) + min(aug. 8 preceding)
(0.00067) + (0.00022) = 0.00089

0.00089

0.00232

0.00296

Edge(6,2) + min(aug. 3 preceding)
(0.0014) + (0.00202) = 0.00342

0.00342

Figure 2. Demonstration of PSV dynamic time warping. We use synthetic data to walk through each calculation involved in this dynamic time warping
algorithm to align PSV data. (a) Target data set matrices, with declination on the left and inclination on the right. The synthetic target data sets themselves are
shown in the light purple first columns of the matrices. (b) Candidate data set matrices, with declination on the left and inclination on the right. The synthetic
candidate data sets themselves are transposed and shown in the light purple first row of the matrices. Note that the matrices in a and b are of equal size, with
the number of rows defined by the length of the target data set and the number of columns defined by the length of the candidate data set. (c) Theta matrix, in
which each cell is filled with the angular distance between the corresponding target and candidate vectors from a and b. (d) Cost matrix, in which each cell is
filled with the cosine distance as calculated with θ from c. (e) Edge-modified matrix, in which the edges of d are modified by edge in clockwise order (0.1 in
this example; see purple ellipses; note matrix corners are modified twice). (f) Cumulative cosine distance matrix, in which the cells of e are modified in one
of three ways: summed along matrix edges (purple arrows); summed with the minimum possible preceding step (gold arrows); summed with the minimum of
the two possible preceding steps (grey arrows). Calculations begin in the upper left corner of the matrix (1,1), and thus this cell is unmodified from e. (g) the
alignment path through the resulting augmented cost matrix (f), which begins in the lower right corner (7,4; light purple box) and works its way up and left (see
purple arrows), optimized by accruing the least possible cost. (h) the resulting target-candidate alignment for the declination (left-hand panel) and inclination
(right-hand panel) records. The target data set is shown in teal, the aligned candidate data set is shown in purple, and the original candidate is shown in grey.
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an ending edge; left and top edges in Fig. 2g). The resulting path
represents the alignment itself, indicating where each successive
candidate vector stratum (PSV sample) corresponds best with the
target vector stratum (Fig. 2h).

2.2.2 Goodness of fit

Linear goodness of fit parameters, such as R2 values, are not applica-
ble for comparing two vector time-series. For example, calculating
an R2 value between two declination time-series can be problematic
as the true angular distance between two depends on inclination
(e.g. large declination differences at steep inclinations can actually
be small angular differences). Accordingly, this algorithm uses a
goodness of fit cross correlation parameter (XC) that is calculated
using the same principle as an R2—normalizing the residual from a
model by a metric of variance.

The algorithm transforms target and candidate inclinations and
declinations into their x, y and z vector components to calculate a
linear model, akin to the linear models used in typical calculations
of R2, for each variable (Fig. S1). The residual cosine distances
(RCD) are calculated as the sum of the CDs, where θ is measured
between the modelled and original candidate vectors. The total
cosine distance (TCD) is calculated as the sum of the CDs, where
θ is measured between the candidate vectors and the mean of the
candidate vectors. Using RCD and TCD, XC can be calculated as
follows:

XC = 1 − RC D

T C D
. (7)

2.2.3 Statistical tests

While the example PSV vector time-series we use in this discussion
have radiocarbon chronologies that can be used to assess the accu-
racy of the resulting alignments, the vector time-series for which
this algorithm may be the most useful will likely not have inde-
pendent chronostratigraphic constraints. This algorithm employs a
Monte Carlo method (the Markov Chain Monte Carlo statistical
test of Haam & Huybers 2010), adapted for PSV data, to assess
the statistical significance of resulting alignments. To do this, this
algorithm warps 10 000 synthetic candidate vector time-series to
best match the target vector time-series across a range of g values
(0.98–1.01) with a fixed edge value (edge = 0.2 to force overlap). To
assess statistical significance, the algorithm compares the average
XC for the original candidate alignment across all edge values for
a given g value to the XC distribution from the 10 000 synthetic
candidate vector time-series. The statistical significance test inves-
tigates if the resulting alignment between the candidate data set and
the target data set produces a better XC than could be achieved
through random chance (p < 0.05; rejection of null hypothesis).

The synthetic PSV sequences are constructed to approximate the
vector mean, variance, and frequency characteristics of the candi-
date data set. The x, y and z vector components of the candidate
data set are calculated from the input inclination and declination.
These vector components are then centered to a zero mean and nor-
malized by their standard deviation. Synthetic vector components
are generated using Cholesky’s decomposition technique (Haam
& Huybers 2010; Hay et al. 2019) and transformed to match the
mean and variance of the input vector components. Inclination and
declination are recalculated from these synthetic x, y and z vector
components.

The alignment library can be narrowed by eliminating solutions
deemed statistically insignificant. However, a failure to reject the
null hypothesis (alignment no better than random chance) does not
necessarily indicate that the particular alignment is incorrect. Lo-
calized basin-scale fluctuations in sedimentation, magnetic lock-in
depth, or diagenesis could allow for sequences that would otherwise
match well to produce high p-values. Therefore, we only advocate
for the elimination of an alignment based on statistical significance
if there is another alignment in the library that is found to be signif-
icant (p < 0.05).

3 R E S U LT S A N D D I S C U S S I O N

3.1 Ideal data: aligning MD99-2322 to MD99-2269

In our first example, we discuss the resulting alignment of MD99–
2322 (candidate) and MD99–2269 (target), which we emphasize
required no manual tuning. We consider these ideal data for the
following reasons:

(i) Geographically, MD99–2322 and MD99–2269 are very close
to one another (<500 km), making a strong case for the assumption
of a common geomagnetic field history.

(ii) MD99–2269 and MD99–2322 have already been shown to
record high fidelity PSV via supervised correlations consistent with
the cores’ radiocarbon constraints (Stoner et al. 2007) and com-
parison to other records on regional and hemispheric spatial scales
(Ólafsdóttir et al. 2013, 2019; Stoner et al. 2013; Walczak et al.
2017; Reilly et al. 2019).

(iii) Both vector time-series are high resolution and have simi-
larly high accumulation rates, meaning the alignment may be as-
sisted by the g parameter reward.

(iv) Both MD99–2322 and MD99–2269 span roughly the same
period of time (∼11.5 ka), meaning the alignment may be assisted
by the edge parameter reward.

3.1.1 A library of alignments

Rather than find a single, mathematically optimal alignment path,
this algorithm generates a library of possible alignments arising
from pairings of g and edge values. The impact of various g values
on alignment of MD99–2322 to MD99–2269 PSV data can be illus-
trated by plotting the accumulated cost matrices (Fig. 3). Visually,
areas of the cost matrix with low CDs (blues in Fig. 3) reflect good
alignment between the cores such that warp paths through these
zones in the resulting accumulated cost matrices yield low accu-
mulated cost. Travel in various directions through the cost matrix
is weighted by g, with higher g values penalizing travel to lateral
positions and, accordingly, rewarding travel in a diagonal direction.
This is illustrated in Fig. 3, particularly for high g values (g = 1.01)
where regions of low accumulated cost form parallel to the accumu-
lated cost matrix diagonal. In this example, an intermediate g value
(1.00) provides the best visual fit between the vector time-series,
finding balance between the g penalty/reward and the distribution
of CDs across the cost matrix.

Comparing the warp paths (3978 solutions ) from a wide range
of g (0.97–1.02) and edge (0.01–0.2) values illustrates the tradeoff
between g and the cost matrix (Fig. 4). For very low g values (<∼1),
lateral travel through the accumulated cost matrix is rewarded and
warp paths invoke large hiatuses and/or very rapid accumulation,
hence the stair-step character of these paths (purples in Fig. 4).
Vertical travel through the accumulated cost matrix instead invokes
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Figure 3. Example cost matrix, accumulated cost matrices, and warp paths. The CD [1-cos(θ )] is calculated for each paired data point between the target curve
(MD99–2269; black) and candidate curve (MD99–2322; red) to generate the cost matrix. Accumulated cost matrices are calculated from the cost matrix and
vary based on the user’s choice of g and edge. In all cases, blues/whites indicate lower values and reds/blacks indicate higher values. Higher g values reward
warp paths (red lines) parallel to the cost matrix diagonal (black dashed line). Higher edge values reward warp paths that begin/end at the edges of the cost
matrix. Example warp paths for g ranging from 0.98 to 1.01 and edge = 0.10 are included above the resulting alignment of the candidate vector time-series
(red) to the target vector time-series (black).

a hiatus in the candidate data set. The low g value warp paths are
also very sensitive to the choice of edge values, with low edge values
resulting in reduced overlap between the two vector time-series (reds
in Fig. 4). At very high g values (>∼1), the warp paths follow the
cost matrix diagonal and the warp paths become less sensitive to
the choice of edge parameter (greens and blues in Fig. 4). Overlap
between the two vector time-series is generally lowest when g and
edge are small, and highest when g and edge are large ( Fig. 5b).

3.1.2 Assessing the goodness of fit of the alignment

In situations where the target and candidate sequences include no
independent stratigraphic constraints, the user will need to evaluate
the library of alignment paths to choose the preferred, or groups of
preferred, solution(s) using statistical likelihood, geological context,
and expert knowledge. For the alignment of Core 2322 to Core 2269,
however, radiocarbon constraints facilitate the development of a
depth–depth relationship and associated confidence interval through
comparison of their Undatable (Lougheed & Obrochta 2019) age–
depth models (Figs 4 and 5g).

The highest XCs between the target and warped candidate PSV
vector time-series occurs at low g and edge values (Fig. 5a) where
overlap between the alignments is low (Fig. 5b), suggesting the
high XCs are an artifact of using a small subset of the available
data. Considering only alignment paths with an overlap of at least
500 data points, the highest XCs fall around g = 1 in a band
that extends the entire range of edge values, suggesting the best

mathematical solutions are on first-order insensitive to the choice
of edge parameter (Fig. 5a). This is likely in part because Cores
2269 and 2322 span the same time interval and thus have a good
solution that does not require the reward provided by edge.

We evaluate the library of alignment paths against the cores’
independent radiocarbon stratigraphies by comparing the absolute
difference between the cores’ median age–depth model, assessing
the standard deviation of the difference between the cores’ median
age–depth model, and determining the per cent of data that fall
within the ±1 and the ±2σ ranges. In each case, alignments with g
∼ 1 across a wide range of edge values provide the best alignment
(Figs 5c–f). For alignments with g = 1 and edge ≥ 0.02, on average
88 per cent of data fall within the ±1σ range and 99 per cent of
data fall with the ±2σ range. This suggests that if the PSV align-
ment were the ‘true’ depth–depth alignment between these cores,
we are overestimating the uncertainty structure of the radiocarbon
alignment by using a conservative xfactor of 1 in the Undatable
age-model (Lougheed & Obrochta 2019). The highest XC (0.863)
was found at g = 0.999 and edge = 0.08 (Figs 5g and h); however,
there are a number of other alignments that give essentially the same
result (Fig. 5g).

3.1.3 Statistical test of significance

Each of the 10 000 synthetic time-series generated using the char-
acteristics of the input Core 2322 (candidate) vector time-series
(four examples in Fig. 6b) are warped to the target (Core 2269)
vector time-series with an edge = 0.2 to ensure overlap. The Fisher
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Figure 4. Library of warp paths given a wide range of g and edge values. 3978 alignments of the candidate curve (MD99–2322; red) to the target curve
(MD99–2269; black) for a wide range of g and edge values (various color lines correspond to color matrix at right). Some g and edge pairs yield identical results
and depth–depth relationships plot on top of each other. A depth–depth alignment using the independent radiocarbon chronologies for the candidate and target
vector time-series is included (black dashed line) with its 95 per cent confidence interval (yellow shading). Paths parallel to the diagonal of the cost matrix are
indicated (light grey dashed lines). Note, higher g values typically follow paths parallel to the diagonal of the cost matrix while lower g values tend to avoid
paths parallel to the diagonal of the cost matrix. Intermediate g values (∼1) perform best when compared to the radiocarbon-based depth–depth alignment.

mean of these synthetic vector time-series generally are within a
few degrees of the Fisher mean of the input vector time-series and
have similar circular standard deviations (Fisher 1953). The warped
synthetic XC distributions (blue probability distribution functions,
Fig. 6c) are compared to the XCs of the Core 2322 warped paths
(red histograms, Fig. 6c). Typically, when warping the synthetic data
sets, g ≤ 1 yield reasonable XCs, presumably because the synthetic
data sets can be stretched and squeezed to match the target data set.
Conversely, when g > 1, the amount of stretching and squeezing
is limited and XCs are generally low. Using p ≤ 0.05 as a cut-off
for significance, we find values of g between 0.993 and 1 result in
statistically significant alignments (not considering solutions with
overlap less than 500 data points; Fig. 6d). Alignments within this
g range were also the alignments found to be largely within the 2σ

age uncertainty envelope derived from the independent radiocarbon
age model (red horizontal band in Fig. 5f).

3.2 Non-ideal data: warping IODP Site U1305 to align
with MD99-2269

We perform a similar experiment to align PSV data from Site U1305
to MD99–2269, with no input from the palaeomagnetist. While
Site U1305 has been demonstrated to have well-resolved PSV, it is

characterized by a few factors that may challenge this algorithm and
PSV stratigraphic correlation, including:

(i) Geographically, Site U1305 is more distal to MD99-2269
(∼1800 km) than MD99–2322. This distance can partially be ac-
counted for through the relocation of the record via its VGP path
to a common location as has been done in other PSV stratigra-
phy studies (e.g. Korte et al. 2018, Reilly et al. 2018, Ólafsdóttir
et al. 2019). The difference between the relocated (to the location
of Core MD99–2269) and original data is shown in Fig. 7 (dark red
is relocated; light red is original).

(ii) Accumulation rates in MD99-2269 are a factor of 2–6 greater
than those in Site U1305, which means that the g value reward for
travel along the cost matrix diagonal may not be helpful in finding
the correct solution with 1:1 sampling resolution.

(iii) Differences in accumulation rates likely result in different
magnetic age offsets as a result of depth dependent pDRM pro-
cesses, with the high-resolution MD99–2269 core having little age
offset and moderate resolution Site U1305 having offsets on the
order of a few hundred years (see Stoner et al., 2013).

(iv) The interval of Site U1305 we use here, as studied by Stoner
et al. (2013), is shorter than the interval covered by MD99–2269
(∼8.5 ka versus ∼11.5 ka), meaning that increasing the edge pa-
rameter may not be helpful in finding the correct solution.
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Figure 5. Evaluating the performance of the library of alignment paths given a wide range of g and edge values. In panels a–f we investigate g = 0.97–1.02 and
edge = 0.01–0.2 (a) XC of the candidate (MD99–2322) and target (MD99–2269) vector time-series. (b) Number of overlapping data points in each alignment
path. Note, that regions with little overlap (low edge) may have anomalously high XC in a. (c) Mean difference between the two cores’ independent radiocarbon
age models at correlated points using the median modeled age. (d) Standard deviation of the difference between the two cores’ independent radiocarbon age
models at correlated points using the median modeled age. (e) Percent of correlated points that are within the ±1σ age uncertainty of the two cores’ independent
radiocarbon age models. (f) As in e, but for the ±2σ age uncertainty. (g) Plot of the highest performing alignment paths (XCs > 0.85 and overlaps > 500 data
points) in orange with best performing (highest XC) alignment path in red. The radiocarbon-based depth–depth alignment (black dashed line) and 95 per cent
confidence interval (yellow shading) are also indicated. (h) PSV comparison of the best performing alignment path (target vector time-series in black; warped
candidate vector time-series in red).

3.2.1 Sensitivity of g to sampling resolution

Unlike the previous example, the thickness of Holocene aged sed-
iments are considerably different between Site U1305 and Core
2269. Accordingly, the length of the data sets, at their original 1 cm

sampling resolution are different, result in cost matrix dimensions
that are more elongate than the previous example. High values of g
reward accumulation rates at Site U1305 on par with those observed
at Core 2269, which are much greater than would be expected if our
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Figure 6. Example synthetic PSV vector time-series and statistical significance tests. (a) MD99–2269 PSV vector time-series, with vector mean decli-
nation/inclination and the circular standard deviation (CSD) indicated. (b) Four random example synthetic PSV vector time-series that have frequency
characteristics, mean, and variance in their x, y and z vector components based on the MD99–2322 PSV vector time-series. (c) Summary of Markov Chain
Monte Carlo significance tests, plotting the XC distributions (blue shading) from the alignment of 10 000 candidate synthetic PSV vector time-series (based
on MD99–2322) to the target MD99–2269 PSV vector time-series for four g values with the 95 per cent level indicated (vertical black dashed line). Actual
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Figure 7. Site U1305 warp paths and sensitivity to cost matrix diagonal. Alignment of the relocated candidate curve (Site U1305; relocated data in red
solid line—primary data in light red stippled line) to the target curve (MD99–2269; black) for a wide range of g and edge values. A depth–depth alignment
using the independent radiocarbon chronologies for the candidate and target vector time-series is included (black dashed line) with its 95 per cent confidence
interval (yellow shading). Alignment was done using Site U1305 at its original data measurement resolution (∼1 cm; plots on left under yellow box) and after
interpolation to match the length of the much higher resolution MD99–2269 input (∼0.2 cm; plots on right under blue box). In both scenarios, the resolution
of the MD99–2269 input is ∼1 cm. Paths parallel to the diagonal of the respective cost matrix are indicated (light grey dashed lines). Note, higher g values in
first scenario reward alignment paths that equate to similar accumulation rates, while higher g values in the second scenario reward alignment paths that equate
to the two vector time-series spanning similar duration.

assumption was that each core spans the majority of the Holocene
epoch. Thus, we can change our assumption of the two cores having
roughly similar accumulation rates to having the proportional sed-
imentation rates implied by the records spanning roughly the same
interval of time by rescaling the lower accumulation rate candidate
vector time-series (Site U1305) to the length of the higher accu-
mulation rate vector time-series (MD99–2269), or vice versa (cost
matrix diagonal lines are grey dashed lines in Fig. 7). The result of
this change is clear in the alignment paths (at high g values) when
the input resolution of the Site U1305 data set is adjusted (Fig. 7).
While this has a limited impact on the alignment paths for the best
performing solutions in the upper 3 m of Site U1305, the assumption
of different sedimentation rates (versus equal accumulation rates)

performs better below when compared to the independent radiocar-
bon depth–depth relationship (Fig. 7). This likely indicates that the
correlation is more robust in the upper part of the stratigraphy (less
sensitive to cost matrix size) and less robust below 3 m, requiring
proper assumptions to arrive at a plausible solution. As in the previ-
ous example, lower g values typically result in alignments that imply
intervals with longer hiatuses and/or rapid accumulation (Fig. 7).

3.2.2 Assessing the performance of the time warping

Like the last example, high XCs for both the original and interpo-
lated (resized) lengths are found at low g and edge values, where
there is less overlap between the two data sets (see Figs 8a, b, g
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Figure 8. Evaluating the performance of the library of Site U1305 warp paths given a wide range of g and edge values and length of input data. (a–f) Results
using the Site U1305 original measurement resolution (∼1 cm). (g–l) Results after resizing Site U1305 to match the length of the much higher resolution
MD99–2269 vector time-series (∼0.2 cm resolution). (a, g) XC of the candidate (Site U1305) and target (MD99–2269) vector time-series. (b, h) Number of
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and h). The highest XC values with >500 aligned data points gen-
erally arise from g ∼ 1. In this case study, the highest XCs with
sufficient overlap (>500 data points) arise from edge values <∼0.1
as is expected considering the contrasting duration of these vector
time-series. The structure of XCs at various g and edge values varies
between the two scenarios for original versus resized input length;
however, regions of higher XCs and sufficient overlap generally co-
incide with better performance against the independent radiocarbon
stratigraphy (Figs 8c–f, i–l).

Of the warp paths arising from taking the highest XC values
with sufficient overlap (>500 data points), we find little difference
between the warped paths in the upper 300 cm, but a range of
warped paths below (Fig. 9). For the scenario where we use equiv-
alent sampling resolution (i.e. ∼1 cm for both the target and the
candidate), most of the paths follow the diagonal of the cost matrix.
This could be because the higher amplitude PSV variability in the
upper 300 cm creates a unique cost matrix structure such that accu-
mulated cost is less sensitive to g. In comparison, lower amplitude
PSV variability below 300 cm creates a less-defined cost matrix

structure that is more sensitive to g (Fig. 9a). When the input candi-
date data are rescaled proportionally to the approximate difference
in accumulation rate, more warped paths converge on the indepen-
dent radiocarbon stratigraphy (Fig. 9b).

3.2.3 Evaluating the offset between PSV and radiocarbon
stratigraphies

While the preferred Site U1305 and MD99–2269 alignments do a
good job agreeing with the independent radiocarbon depth–depth
alignment, the magnetic correlation is often biased towards slightly
deeper depths in Site U1305 or shallower depths in MD99–2269
(Fig. 9b). This relationship was previously observed when the PSV
vector time-series were correlated by Stoner et al. (2013), who found
that their PSV tie points had depth offsets ranging from 13 to 25 cm.
The age offsets associated with these depth offsets were calculated to
range from 170 to 401 yr. We find, when comparing the highest XC
alignment solution (red line in Fig. 9b) to depth–depth relationships
created from random pairs of iteration of the radiocarbon-based
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age–depth Undatable results, constant depth offsets of ∼12 cm,
with ±1σ range of –2 to 18 cm (or 3–19 cm, if the upper 50 cm are
excluded, Fig. 9c).

This offset is consistent with previous depth offsets for sedi-
ment magnetizations in deep sea sediments (Channell & Guyodo
2004, Suganuma et al. 2010, Simon et al. 2018), which have been
attributed to magnetic acquisition in a lock-in zone, following de-
position, as a pDRM. It is possible that some of this offset could
also be attributed to older reservoir ages of the mixed planktonic
foraminifera that were dated in Site U1305 than the mollusk, gas-
tropod and benthic foraminifera material dated in MD99–2269;
however, we consider this unlikely as it would require consistent
reservoir ages on the order of a few hundred years older at Site
U1305 for the Holocene than what would be typically considered
(Bard 1988, Reimer et al. 2002).

4 P E R S P E C T I V E A N D C O N C LU S I O N

This algorithm can successfully align Holocene PSV data sets and
elucidate multiple possible alignments within their radiocarbon un-
certainty envelopes without any manual tweaking. We selected the
case studies of the alignment of MD99–2269 (target) with candidate
sections MD99–2232 and IODP Site U1305 to demonstrate the al-
gorithm’s skill against a tightly constrained independent technique
(radiocarbon chronology). These alignments are reproducible and
objective, eliminating the need for tedious visual alignments, cir-
cumventing potential researcher bias and allowing workers to more
easily compare solutions with statistical significance. In our first
experiment we demonstrate how this algorithm can be used to ob-
jectively align high resolution PSV vector time-series (MD99–2322
and MD99–2269) without utilizing the independent age data avail-
able. We then test the algorithm with less ideal PSV data (IODP Site
U1305) and find that the algorithm still finds alignments within the
independent radiocarbon stratigraphy, especially when resampled
to match the data set length of the target vector time-series (MD99–
2269). These alignments are biased to slightly deeper depths in Site
U1305 or shallower depths in MD99–2269 by ∼12 cm, which is
consistent with previously observed depth offsets for sediment mag-
netization that result from pDRM processes. Target and candidate
PSV vector time-series can carry considerable random directional
noise, and the identification of signal from noise can be difficult.
Initial filtering of PSV data may serve to minimize this noise and
therefore produce a more realistic alignment. Future applications
should consider whether filtering is appropriate for their records.

As a final perspective, we note that this algorithm in no way
replaces the palaeomagnetist. The results of this algorithm are de-
pendent on the quality of the input vector time-series, which require
the same careful evaluation needed for any palaeomagnetic study.
Proper evaluation of the library of mathematical solutions produced
through this algorithm requires expert knowledge and geological
context. However, use of the library of reproducible alignments,
tests of statistical significance, and the palaeomagnetist’s expertise
provides a means for more objective PSV stratigraphy, particularly
when independent chronostratigraphic methods, such as radiocar-
bon or δ18O, are not available.
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List X: Baffin Bay, Baffin Island, Iceland, Labrador Sea, and the Northern
North Atlantic (No. 56). Occasional Paper, 1–77, University of Colorado,
Boulder: Institute of Arctic and Alpine Research.

Egli, R. & Zhao, X., 2015. Natural remanent magnetization acquisition
in bioturbated sediment: General theory and implications for relative
paleointensity reconstructions, Geochem. Geophys. Geosyst., 16, 995–
1016.

Eirı́ksson, J. et al., 2011. Coupling of palaeoceanographic shifts and changes
in marine reservoir ages off North Iceland through the last millennium,
Palaeogeog. Palaeoclimat. Palaeoecol., 302, 95–108.

Fisher, R., 1953. Dispersion on a Sphere, Proc. Natl. Acad. Sci. U. S. A.,
217, 295–305.

Haam, K.–W.E. & Huybers, P., 2010. A test for the presence of covariance
between time-uncertain series of data with application to the Dongge Cave
speleothem and atmospheric radiocarbon records, Paleoceanography, 25,
1–14.

Hay, C.C., Creveling, J.R., Hagen, C.J., Maloof, A.C. & Huybers, P., 2019.
A library of early Cambrian chemostratigraphic correlation from a repro-
ducible algorithm, Geology, 47, 457–460.

Irving, E. & Major, A., 1964. Post-depositional detrital remanent magneti-
zation in a synthetic sediment, Sedimentology, 3, 135–143.

Jennings, A., Thordarson, T., Zalzal, K., Stoner, J., Hayward, C., Geirsdóttir,
Á. & Miller, G., 2014. Holocene tephra from Iceland and Alaska in SE
greenland shelf sediments, Geol. Soc., Lond., Spec. Publ., 398, SP398.6,
doi:10.1144/SP398.6.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/221/1/706/5698809 by guest on 10 April 2024

http://paleomag.ceoas.oregonstate.edu
http://dx.doi.org/10.1002/2017GC007404
http://dx.doi.org/10.1029/PA003i006p00635
http://dx.doi.org/10.1111/bor.12346
http://iodp.tamu.edu/publications/exp303_306/30306toc.htm
http://dx.doi.org/10.1016/j.epsl.2009.03.012
http://dx.doi.org/10.1016/0098-3004(85)90089-5
http://dx.doi.org/10.1016/0012-821X(90)90066-7
http://dx.doi.org/10.1002/2014GC005672
http://dx.doi.org/10.1016/j.palaeo.2010.06.002
http://dx.doi.org/10.1029/2008PA001713
http://dx.doi.org/10.1130/G46019.1
http://dx.doi.org/10.1111/j.1365-3091.1964.tb00638.x
http://dx.doi.org/10.1144/SP398.6


720 C.J. Hagen et al.

Johnson, C.L. & McFadden, P., 2007. Time-Averaged field and paleosecu-
lar variation, in Treatise on Geophysics, pp. 417–453, ed. Schubert, G.,
Elsevier.

Korte, M., Brown, M.C., Gunnarson, S.R., Nilsson, A., Panovska, S.,
Wardinski, I. & Constable, C.G., 2018. Refining Holocene geochronolo-
gies using palaeomagnetic records, Quat. Geochronol., 50, 47–74.
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Fig. S1. Visualizing the meaning of the RCD and TCD parameters.
(a) Inclination and (b) declination for synthetic target (black) and
candidate (red) records that have an XC of 0.50. (c) Projection of the
candidate vectors (red circles) with a model generated using linear
models of the x, y and z components of the candidate record as a
function of the x, y and z components of the target record (black).
Blue stippled lines are used to illustrate the difference between
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the data and the model. (d) Projection of the candidate vectors
(red circles) with blue stippled lines used to illustrate the difference
between the candidate vectors and the mean of the candidate vectors.
(e–h) As in a–d, but for a synthetic target and candidate record with
an XC of 0.27.
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A P P E N D I X : A RC H I V E D C O D E

The algorithm used in this work is available to download on Github
(https://github.com/CedricHagen/PSV-dynamic-time-warping).
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