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Plane Waves in Linear Viscoelastic Media 
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Summary 

A class of plane inhomogeneous waves which propagate in linear 
viscoelastic media is considered. A theoretical description of the physical 
properties and energy associated with these waves is given. Attention 
is restricted to harmonic P- and SV-waves. 

1. Introduction 

The problem of reflection and refraction of plane harmonic waves in linear 
viscoelastic solids has been investigated previously by Lockett (1962), Cooper & 
Reiss (1966) and Cooper (1967). It transpired that a general class of inhomogeneous 
waves had to be considered. For example, even for an incident homogeneous wave 
(i.e. a wave with amplitude constant on lines of constant phase), the reflected and 
refracted waves are in general inhomogeneous (i.e. with a component of attenuation 
along the lines of constant phase). This paper gives a detailed description of the 
physical properties and energy associated with these inhomogeneous waves. 

2. Equations of linear viscoelnsticity 

At time t and position x relative to a Cartesian reference frame, let a,,(x, r) ,  
ei,(x, r )  and q(x, t )  be respectively the stress tensor, strain tensor and displacement 
vector of an isotropic, linear viscoelastic solid. ( i , j  run over the values 1, 2, 3, and 
where repeated subscripts occur the usual summation convention applies). The 
corresponding deviatoric stress and strain tensors are defined by 

and 
sij = b# j -+akk6 i j  (1) 

eij = E i j - + E k k 6 i j  (2) 
where 6, is the Kronecker delta. 

The constitutive relations can be written in the form (Gurtin & Sternberg 1961) 

sil = 2 S g(r-r)de,j(r)  = 2g * hij (3) 
-m 

b & k  = 3 f(t-T)d&&) = 3f * d & k h  (4) 
-m i 

*Received in original form 1970 May 7 

531 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/23/5/531/677676 by guest on 09 April 2024



532 Peter W. Buchen 

where g(t) andf(t) are stress relaxation functions in shear and dilatation respectively. 
For sufficiently small strains, we have 

&i;= +(Ui,  j + u j : i )  ( 5 )  

where ui, is the usual notation for aui/axj. Thus with (1) to ( 5 )  we obtain 

where 

The equations of motion in the absence of any body forces are 

P 4  = b i j , j  (8) 

where p is the density assumed independent of x and t .  In the usual manner we 
introduce the scalar and vector potentials @(x, t )  and T(x, f) such that 

U = v@+vAV (9) 

v . V = o .  (10) 

(1 1) 

with the subsidiary condition 

Equations (6) and (8) then lead to 

p& = (h +2g) * d(VZ 0) 

and 
pfP = g * d(V2 V). 

We refer to solutions of (11) and (12) as P- and S-waves respectively. 

modulus as 
Introducing the real, positive radial frequency w, we define the complex shear 

C(iw) = G,-iG2 = -iw g(t) eiw'dt (13) 
0 7 

with similar definitions for F(iw) and H(iw). 
We further introduce the complex quantities defined by 

P O Z  O(iw) = R, +in, = - 
H + 2 G  

and 

POZ 
G .  T(iw) = I' ,+iTz = - 

(14) 

Finally we remark that the limiting case H ,  = G, = 0 is that of perfect elasticity 
when H, = 1, G, = p are the Lam6 parameters. 

3. The inhomogeneous P-wave 

form 
We seek harmonic plane wave solutions of (1 1) and thus consider the general 

@ = We{A exp i (k .x-wt)}  (16) 
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Plane waves in linear viscoelastic media 533 

where we{ } denotes the real part, A is a complex constant and k is the ' complex 
vector ' 

k = K + i a  (17) 

which expresses the directions of the normals to both lines of constant phase and 
lines of constant amplitude. as well as the wave number IC and attenuation coefficient u. 

It is shown in Section 6, that the angle 9 between these two directions must be less 
than n/2. When 9 = 0 we call the wave homogeneous, otherwise (16) represents an 
inhomogeneous P-wave propagating with phase velocity 

WK V = -  
IC2 

normal to the lines of constant phase. 
From (14), the equation of motion (1 1) is satisfied when 

k2 = k - k  = 

or in real form, when 

I K 2 - U 2  = R, 
2K.a = 2 K U  cos 9 = R, 

212 = ~ , + , / ( i 2 , 2 + i 2 2 2  sec'9) 

2u2 = -R,+J(R,2+S122secZ~) 

We can solve (20) for IC and u in terms of 9, giving 

It follows at once that provided R, # 0, 9 cannot be equal to 42 .  When R2 = 0 

(i) u = 0; the undamped homogeneous wave or; 

(ii) u # 0, 9 = n/2; the inhomogeneous wave damped normal to the direction of 

Thus there is a distinct difference between the inhomogeneous wave of elastic media 
and the inhomogeneous wave of viscoelastic media. This difference is further in- 
vestigated in the following sections. 

(perfectly elastic case), then from (20) either, 

propagation. 

4. The displacement and particle motion 

For the plane P-wave given by (16) the displacement vector is 

u = VQ, = Re {iAk exp i ( l c . x - ~ t ) } ,  (22) 
which lies in the plane of K and a. To determine the particle motion, let us define two 
new vectors 5, and t2 through 

5, + it2 = k/k (23) 
where k = C?+ = ~ ~ + i u ~  can be obtained from (21) with 9 = 0. Evidently 

(24) 
ICO K + c c , a  Icoa--Q0 K 

K 0 2 + U O 2  ' 52 = fco2+uoT' tl = 

We also note that from (19), 
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534 Peter W. Buchen 

> "I 

FIG. 1 .  The P-wave particle motion. Also shown is the relation between the 
vectors K, a, Ci, and C2. For the homogeneous wave the ellipse degenerates into a 

straight line giving pure longitudinal motion. 

so k1 and e2 are perpendicular and tl > t2 2 0. Thus writing C = lAkl exp ( -a .x)  
and 4 = K . x - or + arg(Ak) we have 

If we now set 
u = -C[f;, sin$+& cos41. (26) 

and 
-u*P2 u, = - 

t 2  c 
and eliminate 4 from (26) we obtain 

Thus the particle motion is an ellipse centred on the rest position of the particle 
(II = 0), with major and minor axes given by el and e2 respectively, and of eccentricity 
(1-t,z/t,2)* = l/tl. The sense of rotation is from K to a. (See Fig. 1). For the 
homogeneous wave, 9 = 0 implies 4, = 0 so that the ellipse degenerates into a 
straight line giving pure longitudinal motion. 

5. Energy flux 

The mean rate of working of the stresses given by 

ej = -(ai,tii) 

expresses the mean energy flux in the wave. From (22) and (6) we find for the P-wave 
that 

tii = We { o A k ,  expi(k.x-wt)} 

aij = -9e{A(2Gkik,+Hk2di , )  exp i (k.x-w?)}.  

(29) 

(30) 
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Plane wavea in linear viscoelastic media 535 

Averaging their product over one cycle, we obtain using (14) and (19) 
e, = +wlAI’ exp (-2a.x) We{po’ k,+2G(kik,-k26,,)k,} (31) 

where the bar denotes the complex conjugate. 
(k, k, - k’ 6,) k, is the j-component of the vector 2(a A K) A (a - i ~ ) ,  whence 

With (17) we can show that 

(32) 
We conclude that for the inhomogeneous P-wave energy propagates in the plane of 
K and a but in a direction different from the wave front normal. This phenomenon 
does not occur for the homogeneous wave when K A a = 0. 

e = +wlAI2 exp (-2a.X){pw2 K+d(KAa)A (G2 K-GGla)}. 

6. Rate of dissipation 

Let S be a closed surface of the medium with unit inward normal u, enclosing a 
volume V. Let 9 be the rate of dissipation by the medium per unit volume and 
suppose the existence of the function W ,  the energy density per unit volume (see 
Section 7). Then the following energy balance equation holds: 

e.udS= - f V.edV (33). 
V V 

For steady harmonic waves the mean value over one cycle of the term in W vanishes. 
Thus with (32) we obtain the mean rate of dissipation for the inhomogeneous P-wave 
as 

(9) = -V.e  = 2e.a (34) 
= ~ S 2 , I A I ’  exp (-2a.x)@02+2G2 0’ tan’ 9). (35) 

Since 9 must be non-negative for all 9, it follows that Q,(o) 3 0 whenever o > 0. 
Hence from (20), 0 < 9 < 4 2  as asserted in Section 3. 

In Appendix A we show the equivalence of our result with a formulation obtained 
from a spring-dashpot model of linear viscoelasticity. Note, however, that (34) is 
independent of any model. 

7. Energy density 
To determine the mean energy density, reference must be made to a particular 

model. For this purpose the linear spring-dashpot models are best suited. In these, 
it is assumed that energy is ‘ stored ’ in the springs and ‘ dissipated ’ in the dashpots. 
The extension of the model to three dimensions has been effected by Bland (1960). 
Thus using his results (p. 40) and including a term for the kinetic energy density, we 
have 

r r  

- m  - m  

- m  --a0 

The mean value of the integrals in this expression can be obtained as in Appendix A, 
to give for the P-wave, 

#Al’ exp (-2a.x) {pw2 S2,+2G1 n2’ tan’ 9). 
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536 Peter W. Buchen 

Since this must be a positive definite quantity for all 9, it follows that G, > 0, n, > 0. 
Averaging the kinetic energy term, we find 

(+pl i i2)  = + p o 2 1 ~ ( 2  exp ( - 2 a . ~ ) J ( n ~ ~ + + ~ ’  sec’ 8). (37) 

( W )  = w-1 e . K .  (38) 

Hence putting the two terms together and using (21) and (32) we find 

Thus the mean energy density depends on the component of energy flux normal 
to the lines of constant phase, while the mean rate of dissipation depends on the 
component of energy flux normal to the lines of constant amplitude. For the homo- 
geneous wave the two directions coincide and the corresponding results are obtained 
with 9 = 0. 

Note that only when the medium is perfectly elastic (0, = 0) are the kinetic and 
potential energy densities the same. 

8. Velocity of energy transport 

The mean velocity of energy transport is defined as the ratio of the mean energy 
flux to the mean energy density. Denoting this vector by U, we have for the in- 
homogeneous P-wave, 

u = e/(W). (39) 

In general this is a complicated function of the material parameters, the frequency 
and the angle 9. However, from (18) and (38), we obtain the relation 

u.v = v z  (40) 
where V is the phase velocity normal to the lines of constant phase. This has a simple 
geometrical interpretation. Instead of considering the lines of constant phase to 
propagate with speed V in the direction of K, we can consider them to propagate with 
speed U in the direction of e. For the homogeneous wave, 9 = 0 implies U = V. 

9. Dissipation factor Q-’ 
The attenuation of seismic body waves is often expressed in terms of a dimension- 

less parameter 2nQ-’, defined to be the fractional energy loss per cycle. Thus, for a 
cycle of period T = 2 4 w .  

For the inhomogeneous P-wave, using (34) and (38), 

For the homogeneous wave (42) reduces to Q- = 2aV/o which is the usual expression 
given to body waves. 

10. The inhomogeneous S V-Wave 

SV-wave has the form 
The harmonic plane wave solution of (12) which represents the inhomogeneous 

I = Be {En exp i(l.x-wt)} (43) 
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Plane waves in linear viscoelastic media 537 

where B is a complex constant, n is a real unit vector and 

1 = y+i$  (44) 
where y and $ can be interpreted as in Section 3. The auxiliary equation (10) leads 
to n.y = n. $ = 0 so that n is a unit vector normal to the plane of y and B. The 
equation of motion (12) is satisfied when 

z2 = 1.1 = r (45) 
and this can also be written in the real forms analogous to (20) and (21). From (9), 
the displacement vector has the form 

u = VAT = We(iB(nA1) expi(1.x-at)} (46) 
and this lies in the plane of y and fl. 

vectors q1 and q2 by 
To determine the particle motion we proceed as in Section 4, by defining two new 

‘11 +iqz  = 1/1 (47) 
where 1 = yo + iPo and 

Yo B-Por 
Yo2 + Po2 

Y ‘12 = 
Y O Y + P O  B 
Yo2 + Po2 

‘11 = 

and 

Since ql and q2 lie in the plane of y and $ we can write 

where 

‘li .q2 = 0, q 1 2 - q 2 2  = 1. 

n A l / z  = 51+i52 

51 = (“)%, ‘12 5 2  = - ($)Il. 

(49) 

Thus writing D = JBll exp (- B.x) and + = y.x-at +arg (Bl) we have for the 
inhomogeneous S V-wave, 

Writing 
u = -D(rl sin$+{, cos+). (52) 

and 

and eliminating + from (52), 

Thus the particle motion is again an ellipse with centre u = 0, major and minor 
axes given by and G2 respectively and of eccentricity (l-<2z/q12)* = l/ql. The 
sense of rotation is from y to $. (See Fig. 2). For the case of the homogeneous wave 
we get q2 = c2 = 0 and the ellipse degenerates into a straight line giving pure trans- 
verse motion. 
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538 Peter W. Buchen 

FIG. 2. The SV-wave particle motion. Also shown is the relation between the 
vectors 7, fl, ql, q2, c,. and h. For the homogeneous wave the ellipse degenerates 

into a straight line giving pure transverse motion. 

The derivation of the mean energy flux vector for the inhomogeneous SV-wave is 
relegated to Appendix B where it is shown that 

e =++I2 exP(-2B.x){Po2Y+4(YA B)A(G,Y-G, B)). (54) 
This has precisely the same form as (32) for the P-wave so that results analogous to 
(34), (38), (40) and (42) also apply to the SV-wave. 

11. Conclusions 

We have presented here a detailed description of the physical properties and 
energy associated with plane inhomogeneous waves in linear viscoelastic media. 
Several interesting features have arisen, in particular that the energy in such an in- 
homogeneous wave does not propagate normal to the wave fronts. This may have an 
important effect on seismk body waves, especially those which have been more highly 
attenuated. As can be seen from (32), the effect increases with increasing angle 9 
between K and a. Since 9 approaching 4 2  corresponds to supercritical reflection 
(or refraction) we expect the effect to be greatest in diffracted waves. 

The situation is further complicated by energy conversion and interaction at a 
discontinuity. For example, consider a plane homogeneous SY-wave incident on the 
plane stress-free boundary z = 0 of an isotropic linear viscoelastic solid z > 0. The 
situation is described by the two dimensional potentials 

= exp U(x cos f -2 sin f) Incident homogeneous S V  

a)2 = B exp iZ(x cos.f+z sin f) Reflected homogeneous S V  ] (55) 
a3 = A exp ik(x cos e+z sin e) Reflected inhomogeneous P 

where f is real and e is complex, satisfying k cos e = Z cos$ A and B are complex 
reflection coefficients whose values are not important for this discussion. 

Let us calculate the normal flux of energy across z = 0. Obviously the net result 
must be zero, but each wave produces its own displacement field and corresponding 
stress field, so that the total flux consists of nine terms: 3 ‘main ’ terms and 6 
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Plane waves in Unear viscoelastic media 539 

‘interacting’ terms. Denote these by E ,  where the subscripts correspond to those 
of (55) .  Thus EZ3,  for example, is the normal ‘ flux ’ across t = 0 due to the dis- 
placement field of the reflected SV-wave ‘ interacting ’ with the stress field of the 
reflected P-wave. 

A lengthy calculation results in: 

E l ,  = - x  sin f We{l} 
E 1 2  = x sin 3f We{lB} 

= - E 1 1 - E 1 2  

E l l  = - x sin 3f We{lB} 
E,,  = x sinflBI2 We{l} 

E 2 3  = - E 2 1 - E 2 2  

E31 = - x  sin f We{I}+x sin 3f41e{lB} 
E 3 ,  = x sinf lBI2 Be{Z} -2 sin 3f Be{lB} 

E 3 3  = - E 3 1 - E 3 2  

where x = +pw3 exp (- 2 8 , ~ ) .  We note that 

E11+E12+E13 = E ~ l + E 2 2 + E 2 3  = E , i + E j 2 + E , ,  = 0 
as expected, and in addition, 

I E i l + E 2 2 + E 3 j  E 

EiZ+E21 = E 

E l 3 + E 3 1  = - 8  

E 2 3 + E 3 2  = - E  I 
(57) 

where E = 28, B2 x sin 3f and 1 = yo +iso, B = B, +iB2. Thus the interacting terms 
E l ,  + E l l  etc. do not cancel as in the perfectly elastic case (Po = 0). We must conclude 
therefore, that energy can be transported to or from the boundary by the interacting 
waves. Again, this effect is most enhanced for supercritical reflection when B2 need 
not be small, even for small dissipation. 
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540 Peter W. Buchen 

Appendix A 
Here we show the equivalence of our result (35) for the mean rate of dissipation 

in an inhomogeneous plane P-wave and the result given by Bland (1960, p. 40) for a 
linear spring-dashpot model. The latter gives 

9 = - i 2g’(2t - t -0) dei,(t) deij(e) 
- -m - w  

- j j fy2t - t -e) dEti(t) d&,,(e) (Ail 
- w  -00 

where the dash indicates differentiation with respect to the argument. Now from (2) 
and (1 6), we find 

and 
ti, = 9e{iwA(ki kj-+k2di j )  expi(k.x-wt)] 

B i i  =We{ioAk’ expi@.x-wt)}. (A31 
Substitution into (Al) requires the evaluation of the mean value of integrals of the 
form 

I = i i g’(2t - t - 0) We {a exp ( - iot)} We {a exp ( - ioe)}dtdO (A4) 
- w  --m 

where a is a complex quantity independent of t. 
t ,  = 2t-7-0, t,  = 8-7 the integral becomes 

With the change of variables 

We (a exp [ - iw ( t  - y) ] ] dt ,  dt ,  (A5) 

where S(t , ,  t2 )  is the transformed region of the t ,  t,-plane shown in Fig. 3. 

Averaging with respect to t over one cycle, we get 

8 

FIG. 3. Transformation from the 76 -plane to the t ,  t3 -plane under tl = 2 t - ~ - B ,  
t3 = e--r. 
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Plane waves in linear viscoelastic media 54 1 

( I )  = #al’ 1s g’(t,) cosot’dt,df’ 
S 

00 t l  

= )lal’ 1 d t ,  g’(t,) 1 cos 0t’ dt ,  
0 - t 1  

1 
20 

= - - la12 G’. 

The last line was obtained using the definition (13). Thus, substitution into (Al) 
leads to, after averaging, 

where 
(9) = +wlAI’ exp ( - 2 a . x ) { 2 ~ , ~ k ~ k , - ~ k ’ 6 , , ~ ’ + ~ ,  pi4} 

Ik, k,-3k” 6,l” = (kl k, -3k’ 4,)G,5- 3E2 6 , )  

= (K’+@Z)-#RI2 

= 3(Rl2 + a’’)+ n2’ tan’ 9 

047) 

= (k . k)’ - 3k2 EZ 

and we have used (19) and (21). We now have 

(9) = +wlAI’ exp ( - ~ ~ . X ) ( ( F ~ + ~ G , ) ( R , ~ + R ~ ’ ) + ~ G ~  R, tan’ 9). (A81 

But from (14), 

whence (A8) reduces to 

(9) = + C O ~ A ) ~  exp (-2a.x) ~,(pw’+2G, R, tan’ 9) 

which is in complete agreement with out result (35). 

Appendix B 

Here we derive the expression (54) for the mean energy flux vector for the in- 
homogeneous SV-wave. From (46) and (6) we obtain 

and 

where 

Multiplying these together and averaging over a cycle, 

li, = We{oBmi expi(1.x-at)} (B1) 

trij = -We{BG(miZj+m,I,) expi0.x-cot)} (B2) 

m = nhl .  (83) 

(B4) e, = 30 IB1’exp(-2fI.x) We{G(mi, I, + mj I,) Ei }. 

Now li  Ei m, is the j-component of the vector: 
(m.l)m = [ ( n ~ l ) . l ] ( n ~ I )  

= 2(8 A71 A ( 8 - m  (B5) 
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542 Peter W. W h e n  

Also Zi ml 1, is the j-component of the vector: 
(rn. i i i )I  = [ ( n ~ I ) . ( n ~ l ) ] l  

= (1.1)l 

= (r2 + B2)(7 + i B). 
Therefore, 

But since 
g e  {Gm, E~ I,} = (r2 + B2)(Gl 7 +  G2 B). 
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