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Cholinergic muscarinic 2 receptor (CHRM2) is implicated in memory and cognition, functions impaired in
many neuropsychiatric disorders. Wang et al. [Wang, J.C., Hinrichs, A.L., Stock, H., Budde, J., Allen, R.,
Bertelsen, S., Kwon, J.M., Wu, W., Dick, D.M., Rice, J. et al. (2004) Evidence of common and specific genetic
effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and
major depressive syndrome. Hum. Mol. Genet., 13, 1903–1911] reported that variation in CHRM2 gene
predisposed to alcohol dependence (AD) and major depressive syndrome. We examined the relationships
between variation in CHRM2 and AD, drug dependence (DD) and affective disorders, using a novel extended
case–control structured association (SA) method. Six markers at CHRM2 and 38 ancestry-informative
markers (AIMs) were genotyped in a sample of 871 subjects, including 333 healthy controls [287
European-Americans (EAs) and 46 African-Americans (AAs)] and 538 AD and/or DD subjects (415 with AD
and 346 with DD and 382 EAs and 156 AAs). The same CHRM2 markers were genotyped in a sample of
137 EA subjects with affective disorders. All of the six markers were in Hardy–Weinberg equilibrium in
controls, but SNP3 (rs1824024) was in Hardy–Weinberg disequilibrium in the AD and DD groups. Using con-
ventional case–control comparisons, some markers were nominally significantly or suggestively associated
with phenotypes before or after controlling for population stratification and admixture effects, but these
associations were not significant after multiple test correction. However, regression analysis identified
specific alleles, genotypes, haplotypes and diplotypes that were significantly associated with risk for each
disorder. We conclude that variation in CHRM2 predisposes to AD, DD and affective disorders. One haplotype
block within the 50-UTR of CHRM2 may be more important for the development of these disorders than other
regions. Interaction between two specific alleles within this block and interaction between two specific
diplotypes covering this block multiplicatively increased risk for AD and DD. Although interaction between
these two diplotypes also increased risk for affective disorders, the magnitude of the increased risk was less
than the sum of the individual risks. In addition, a specific diplotype might inversely affect risk for AD and DD
and risk for affective disorders.
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INTRODUCTION

Cholinergic receptors (CHRs) are important mediators of
acetylcholine response, which gives rise to a series of intra-
cellular and intranuclear events. The CHRs include nicotinic
types (CHRN) and muscarinic types (CHRM). The muscarinic
receptors belong to a family of seven transmembrane domain
G-protein-coupled receptors and are classified into five
subtypes.

CHRM2 receptor, which is present in neurons throughout
the central and peripheral nervous systems, cardiac and smooth
muscles and a variety of exocrine glands, is predominantly a
presynaptic autoreceptor, helping to control cAMP regulation
and being responsible for acetylcholine-mediated inhibition of
adenyl cyclase activity (1). CHRM2 primarily provides nega-
tive feedback on acetylcholine release from cholinergic ter-
minals (2,3). Cholinergic pathways, in general, and CHRM2
specifically, have been widely implicated in cognition and
memory (4,5). For example, in the striatum, CHRM2 has
been demonstrated to play a role in long-term potentiation
(LTP), which is implicated in memory and cognition (6).
CHRM2 has also been reported to play a functional role in
cognition via modulation of neuroelectric oscillations (i.e. the
periodic electric waves in neurons measured by EEG) (7).
There is other direct evidence showing that alteration of
CHRM2 is involved in the development of neuropsychiatric
disorders, e.g. CHRM2 density was reduced in the frontal
cortex of Alzheimer’s disease patients (8).

CHRM2, the gene encoding the cholinergic muscarinic 2
receptor (CHRM2), is the focus of this study. CHRM2 is
located at chromosome 7q31–35. Similar to .90% of mam-
malian G-protein-coupled receptor genes, CHRM2 has an
intronless open reading frame (9). The gene consists of a
single coding sequence (CDS) (i.e. the coding part of exon
6), a large 50-untranslated region (50-UTR) including five
introns, five non-coding exons and the non-coding part of
exon 6 and a 30-UTR (Fig. 1).

Within the CDS, some experimentally modeled (but not
necessarily observed) functional variants can lead to amino
acid substitutions, which may alter the properties of the
receptor. For example, Tyr403Phe affects the ligand binding
affinities of the receptor; four other amino acid substitutions
at Val385, Thr386, Ile389 and Leu390 are essential for
G-protein coupling specificity and G-protein activation (10,11).

The 50-UTR of CHRM2, containing a large intron (i.e.
intron 5, 22.6 kb) (1,3), may be alternatively spliced in some
specific tissues. Within this 50-UTR, many functional sites
can influence the transcription or expression of the CHRM2
receptor (3). For example, a region in the 50 transcription
start site (TSS1) within the 50-UTR, 146 kb upstream from
the CDS, is responsible for the major transcriptional activity
of CHRM2 (1); a CA tandem repeat polymorphism in exon
1 may influence the transcription of CHRM2 in airway
smooth muscle (HASM) and in BEAS-2B cells (1).

In addition, the 30-UTR might contain functional sites, e.g. a
polymorphism (rs8191992) in that region has, in some studies,
been associated with IQ and with major depression in women
(12,13). This evidence suggests that variation at CHRM2 can
alter the function of the CHRM2 receptor and may thus predis-
pose to disease, especially neuropsychiatric disorders that, at

some point in their course, include impairment of cognition,
such as Alzheimer’s disease, major depression, alcohol depen-
dence (AD) or drug dependence (DD) (14). The present study
aimed to test the hypothesis that CHRM2 plays a role in the
susceptibility to AD, DD (including cocaine dependence and
opioid dependence) and affective disorders.

AD is a disorder with a high rate of comorbidity. Comorbid
illnesses may occur simultaneously or sequentially. Alcoholics
are 35 and 13 times more likely than non-alcoholics to suffer
from cocaine dependence and opioid dependence, respectively
(15). In addition, 27.6–29.2% of alcoholics suffer from a
current affective disorder (16,17). It is likely that these dis-
orders share some susceptibility genes. For example, variation
both in OPRM1, the gene encoding the mu-opioid receptor,
and in DRD4, the gene encoding the dopamine-4 receptor,
have been associated in some studies with susceptibility to
AD and/or DD (18–24). In addition, Gorwood et al. (25)
demonstrated that affective disorders and AD, interacting
with a genetic deficiency in serotonin reuptake attributable
to polymorphic variation in the serotonin transporter gene
(SLC6A4), were associated with an increased risk for aggres-
sive/impulsive behaviors such as suicide attempts. Nurnberger
et al. (26) showed that a locus on chromosome 1 might predis-
pose some individuals to alcoholism and others to depression.
Huang et al. (27) reported that both substance use disorders
and major depression were associated with the human
5-HT1B receptor gene (HTR1B) G861C polymorphism.

Recently, Wang et al. (28) reported that variants within the
50-UTR of CHRM2 influenced risk for both AD and major
depressive syndrome. On the basis of these findings, we
studied three phenotypes (i.e. AD, DD and affective disorders)
in the present study to test both the general and the specific
effects of CHRM2 variation in these disorders.

Genome-wide scan linkage studies from the Collaborative
Study on the Genetics of Alcoholism (COGA) provided
suggestive evidence for a risk locus for AD in a region on
chromosome 7q (29,30); another COGA study based on
the same data, but different diagnoses, also provided evidence
for linkage with major depressive syndrome in the same
region of chromosome 7 (26), as noted earlier. Motivated by
the linkage studies, Wang et al. (28) genotyped a denser set
of 31 short tandem repeat (STR) markers at this region and
fine-mapped a possible risk locus for AD close to marker
D7S1799 and a risk locus for major depressive syndrome
between D7S1799 and D7S1817, a narrow region harboring
CHRM2.

To identify a specific risk locus within a linked region, the
association study method is used most commonly. Wang et al.
(28) genotyped 11 single nucleotide polymorphisms (SNPs)
within or close to CHRM2, including three markers at intron
4, three markers at intron 5, two markers at the 30-UTR and
three markers close to the 30 end. These investigators found
that the markers and their haplotypes within the 50-UTR, but
not within the 30-UTR or further 30, were associated with
AD and major depressive syndrome. In the present study,
we used an association study design to further finer-map the
risk alleles for AD, DD and affective disorders by genotyping
more markers within the 50-UTR further upstream of the CDS
than that examined by Wang et al. (28). Specifically, we
included two additional markers, SNP1 and SNP2 at intron

2422 Human Molecular Genetics, 2005, Vol. 14, No. 16

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/14/16/2421/675731 by guest on 19 April 2024



3, closer to the functional 50 TSS region described earlier
(Fig. 1). We did not investigate the CDS variation in this
study because this CDS is highly conserved, and no known
variation in the populations included in this study (i.e. EAs
and AAs) has been reported for this region of the gene.

Markers within a gene are usually in different degrees of
linkage disequilibrium (LD). Different markers within the
50-UTR of a gene might interactively affect mRNA stability
or translational efficacy and contribute to the expression of
differing levels of the protein. Epistasis might occur among
these markers; i.e. association between one marker and pheno-
type might influence association between another marker and
phenotype. Therefore, interactive effects on the trait from
different markers should not be neglected and were, accord-
ingly, considered in this study.

The population-based association design, especially the
unmatched case–control design, is more powerful than the
family-based association design for detecting gene–gene
interactions, when the disease prevalence is moderate (as is
the case for AD, DD and affective disorders) (31). We
employed a population-based association design in this
study. Our sample size in this study would, further, be suffi-
cient for detecting gene–gene interaction as required by a
population-based association design (31).

However, population-based association designs are poten-
tially vulnerable to population stratification and admixture
effects that could result in spurious findings, such as spurious
associations between genotypes and phenotypes, spurious LD
between unlinked markers or Hardy–Weinberg disequilibrium
(HWD) at non-susceptibility markers. To exclude population
stratification and admixture effects, a novel and powerful
logistic regression method was employed in this study. This
extended the rationale for use of the structured association
(SA) method (32), which can control for the effect of popu-
lation stratification on population-based data. We previously
demonstrated that a set of STR markers is sufficient to the
task of identifying population structure that can confound
association studies and to the task of providing a measure to
control for such stratification (33).

RESULTS

(1) CHRM2 markers were located in several haplotype blocks
(Fig. 2). LD among CHRM2 markers was stronger in EAs

than in AAs (Fig. 2A and B). Pairwise LD analysis
showed that, among EAs, SNPs 1, 2 and 3 belonged to
one haplotype block (D0 . 0.90), but only SNP1 and
SNP2 were in a haplotype block in AAs. SNP4 and
SNP5 were in one haplotype block both in EAs and in
AAs. There were no significant differences in LD
between cases and controls, within either EAs or AAs
(data not shown).

(2) Genotype frequency distributions of all markers were in
Hardy–Weinberg Equilibrium (HWE) among both EA
and AA controls (except SNP4 in EAs). However, among
both EA and AA cases, some of the markers were in
HWD (Table 1). In EAs, nearly all CHRM2 markers
were in HWE in controls (except SNP4, P ¼ 0.019);
however, several CHRM2 markers were in nominally sig-
nificant (P , 0.05) HWD in cases (Table 1), including
SNP1 in AD, SNP3 in DD and SNP5 in affective dis-
orders. After correction for multiple testing using
SNPSpD, where a ¼ 0.0125, only SNP3 remained in sig-
nificant HWD in the DD group (P ¼ 0.010). In AAs, all
CHRM2 markers were in HWE in controls; however,
some CHRM2 markers were in nominally significant
HWD in cases (P , 0.05) (Table 1), including SNP3 in
AD and DD and SNP6 in DD. After correction using
SNPSpD, where a ¼ 0.010, SNP3 remained in significant
HWD in the AD and DD groups (P ¼ 0.010 and
P ¼ 0.008, respectively).

(3) Case–control comparisons showed that the alleles and
genotypes of some CHRM2 markers were nominally
associated with AD and DD in AAs (Table 2). In AAs,
alleles for SNPs 2, 4 and 6 and genotypes for SNP2
were nominally significantly associated with both AD
and DD (P , 0.05). In EAs, no alleles and genotypes
were significantly associated with these disorders. After
controlling for admixture effects by SA, alleles of SNPs
2, 4 and 6 were suggestively associated with AD and
SNP1 genotype was suggestively associated with AD
and DD. After correcting for multiple comparisons using
SNPSpD, where a ¼ 0.010, no associations were
significant. Case–control comparisons for haplotype fre-
quency distributions executed using the program PHASE
showed no significant associations between haplotypes
and phenotypes (P-values not shown).

(4) The risk-influencing loci for AD, DD and affective dis-
orders were closest to either SNP2 or SNP5 (Table 3).
In EAs, the highest d values for CHRM2 markers were

Figure 1. Markers at CHRM2.
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at SNP2 for AD and SNP5 for DD and affective disorders.
In AAs, the highest d value for CHRM2 markers was
observed at SNP2 for all phenotypes. Thus, the putative
risk locus for AD was closest to SNP2, both in EAs
and in AAs; the putative risk locus for DD was closest
to SNP5 in EAs and to SNP2 in AAs. The putative
risk locus for affective disorders was closest to SNP5
in EAs.

(5) Two ancestries, i.e. European and African, were detected
in our sample. One hundred percent of 667 self-reported
EAs are ‘genetic’ EAs (European ancestry proportion
greater than 0.5). Ninety-nine percent of 204 self-reported
AAs are ‘genetic’ AA (African ancestry proportion greater
than 0.5). Within the 669 ‘genetic’ EA subjects, the
admixture degree is 1.5% (this equals the total estimated

weight of African ancestry proportions divided by N:
10.3/669). Within the 202 ‘genetic’ AA subjects, the
admixture degree is 4.0% (this equals the total estimated
weight of European ancestry proportions divided by N:
8.1/202). Similarly, the admixture degree is 1.5% in
self-reported EA subjects and 4.6% in self-reported AA
subjects. (This relatively low estimated admixture rate
for AAs probably reflects the lack of a native African
group in our STRUCTURE analysis for reference.)

(6) There were correlations among different alleles, geno-
types, haplotypes and diplotypes (Fig. 3). The results
from correlation analyses in different phenotype groups
are similar, so only the correlations in the AD group are
shown. For allele data, there were significant correlations
between SNP1^T and SNP2^C and between SNP4^A
and SNP5^A (r . 0.85, P , 0.05); for genotype data,
there were significant correlations between SNP1^T/T
and SNP3^A/A, among SNP1^C/T, SNP2^C/T and
SNP3^C/A, between SNP4^A/A and SNP5^A/A and
between SNP4^A/G and SNP5^A/T (r . 0.85,
P , 0.05); for haplotype data, there was significant
correlation between TCAAAA and CTCGTT (r . 0.45,
P , 0.05); for diplotype data, there was significant
correlation between TCAAAA/CTCGTT and TCAGTT/
CTCAAA (r . 0.65, P , 0.05) (Fig. 3). The most
common haplotypes and diplotypes are shown in Table 4.

(7) Regression analysis demonstrated that alleles, genotypes,
haplotypes and diplotypes at the CHRM2 locus affec-
ted risk for AD, DD and affective disorders (Table 5).
Regression analysis showed that allele SNP1^T pro-
tected against AD and DD (bA1 , 0); but alleles

Table 1. P-values for HWE test in different phenotype groups

Marker EA AA

AD DD AFD Con AD DD Con

rs978437 0.014 0.055 1.000 0.786 0.353 0.061 0.497
rs1455858 0.061 0.099 1.000 0.793 0.064 0.077 1.000
rs1824024 0.106 0.010 0.559 0.780 0.010 0.008 0.221
rs324640 0.439 0.667 0.203 0.019 0.798 0.703 0.771
rs324650 0.152 0.764 0.046 0.153 0.626 0.851 0.558
rs6962027 0.158 0.302 0.346 0.068 0.139 0.043 0.057

Effective SNP number in EAs is 4, a ¼ 0.0125 and effective SNP number
in AAs is 5, a ¼ 0.0100. EA, European-American; AA, African-Ameri-
can; AD, alcohol dependence; DD, drug dependence; AFD, affective dis-
order; Con, Controls.

Figure 2. Pairwise LD analysis on CHRM2 markers (A) in EAs and (B) in AAs. The numbers in the squares are D0 � 100.
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SNP1^T � SNP2^C multiplicatively (jbA1�A2j. jbA1 þ

bA2j) increased risk for (bA1�A2 . 0) AD and DD.
Further, genotype SNP1^C/T protected against AD and
genotype SNP2^C/T protected against DD (bs , 0).

Regression analysis showed that haplotype TCAGTA, which
included alleles SNP1^T � SNP2^C, increased risk for AD
(b. 0); diplotype TCAGTT/CTCAAA protected against AD
and DD (bD1 , 0), increased risk for affective disorders

Table 2. P-values for comparisons of allele and genotype frequency distributions between cases and controls

Case–control comparison SA analysis

EA AA EA þ AA

Con versus AD Con versus DD Con versus AFD Con versus AD Con versus DD Con versus AD Con versus DD

Allele Genotype Allele Genotype Allele Genotype Allele Genotype Allele Genotype Allele Genotype Allele Genotype

rs978437 0.610 0.147 0.842 0.290 0.809 0.914 0.073 0.062 0.084 0.051 0.148 0.068 0.225 0.095
rs1455858 0.399 0.351 0.937 0.514 0.938 1.000 0.026 0.046 0.035 0.050 0.086 0.122 0.125 0.178
rs1824024 0.570 0.287 0.540 0.097 0.549 0.715 0.099 0.285 0.195 0.403 0.210 0.313 0.296 0.193
rs324640 0.679 0.493 0.791 0.480 1.000 0.989 0.042 0.096 0.038 0.092 0.078 0.172 0.117 0.174
rs324650 0.560 0.847 0.578 0.720 0.571 0.519 0.179 0.383 0.158 0.292 0.248 0.594 0.270 0.526
rs6962027 0.305 0.661 0.586 0.870 0.927 0.983 0.037 0.169 0.048 0.158 0.067 0.280 0.145 0.404

SA, structured association analysis. Effective SNP number in AAs is 5, a ¼ 0.0100.

Table 3. Genotype and allele frequencies in EAs and AAs

EA AA

AD (n ¼ 315) DD (n ¼ 202) AFD (n ¼ 137) Con (n ¼ 287) AD (n ¼ 100) DD (n ¼ 144) Con (n ¼ 46)

n f d n f d n f d n f n f d n f d n f

rs978437 T/T 141 0.491 89 0.461 54 0.429 123 0.438 61 0.656 87 0.644 21 0.457
T/C 108 0.376 0.042 76 0.394 0.011 57 0.452 0.016 128 0.456 27 0.290 0.346 39 0.289 0.306 22 0.478
C/C 38 0.132 28 0.145 15 0.119 30 0.107 5 0.054 9 0.067 3 0.065
T 390 0.679 254 0.658 165 0.655 374 0.665 149 0.801 213 0.789 64 0.696
C 184 0.321 132 0.342 87 0.345 188 0.335 37 0.199 57 0.211 28 0.304

rs1455858 C/C 153 0.502 93 0.474 60 0.451 125 0.448 70 0.722 99 0.712 24 0.522
T/C 116 0.380 0.070 77 0.393 0.007 59 0.444 0.013 123 0.441 22 0.227 0.393 33 0.237 0.378 19 0.413
T/T 36 0.118 26 0.133 14 0.105 31 0.111 5 0.052 7 0.050 3 0.065
C 422 0.692 263 0.671 179 0.673 373 0.668 162 0.835 231 0.831 67 0.728
T 188 0.308 129 0.329 87 0.327 185 0.332 32 0.165 47 0.169 25 0.272

rs1824024 A/A 153 0.503 92 0.474 60 0.438 126 0.455 51 0.560 68 0.519 19 0.413
A/C 117 0.385 0.053 72 0.371 0.028 60 0.438 0.032 124 0.448 27 0.297 0.256 44 0.336 0.200 18 0.391
C/C 34 0.112 30 0.155 17 0.124 27 0.097 13 0.143 19 0.145 9 0.196
A 423 0.696 256 0.660 180 0.657 376 0.679 129 0.709 180 0.687 56 0.609
C 185 0.304 132 0.340 94 0.343 178 0.321 53 0.291 82 0.313 36 0.391

rs324640 A/A 81 0.264 55 0.281 28 0.301 77 0.302 47 0.495 64 0.464 16 0.348
A/G 146 0.476 0.027 95 0.485 0.015 40 0.430 0.001 109 0.427 40 0.421 0.305 62 0.449 0.265 21 0.457
G/G 80 0.261 46 0.235 25 0.269 69 0.271 8 0.084 12 0.087 9 0.196
A 308 0.502 205 0.523 96 0.516 263 0.516 134 0.705 190 0.688 53 0.576
G 306 0.498 187 0.477 90 0.484 247 0.484 56 0.295 86 0.312 39 0.424

rs324650 A/A 94 0.308 64 0.332 40 0.333 84 0.327 47 0.495 65 0.481 18 0.391
A/T 139 0.456 0.030 92 0.477 0.039 48 0.400 0.035 116 0.451 38 0.400 0.220 57 0.422 0.214 20 0.435
T/T 72 0.236 37 0.192 32 0.267 57 0.222 10 0.105 13 0.096 8 0.174
A 327 0.536 220 0.570 128 0.533 284 0.553 132 0.695 187 0.693 56 0.609
T 283 0.464 166 0.430 112 0.467 230 0.447 58 0.305 83 0.307 36 0.391

rs6962027 A/A 101 0.337 61 0.323 21 0.304 82 0.311 66 0.710 95 0.688 26 0.578
A/T 135 0.450 0.063 86 0.455 0.039 31 0.449 0.006 117 0.443 22 0.237 0.381 35 0.254 0.335 13 0.289
T/T 64 0.213 42 0.222 17 0.246 65 0.246 5 0.054 8 0.058 6 0.133
A 337 0.562 208 0.550 73 0.529 281 0.532 154 0.828 225 0.815 65 0.722
T 263 0.438 170 0.450 65 0.471 247 0.468 32 0.172 51 0.185 25 0.278

n, individual number (for genotype) or chromosome number (for allele); f, frequency; d, the population attributable risk.
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(bD1 . 0); TCAAAA/CTCGTT protected against AD, DD and
affective disorders (all bD2 , 0); the contribution of diplotype
TCAAAA/CTCGTT to the risk for these disorders was much
less than that of diplotype TCAGTT/CTCAAA (jbD2j � jbD1j);
interaction of these two diplotypes (i.e. TCAGTT/CTCAAA �

TCAAAA/CTCGTT) multiplicatively (jbD1�D2j. jbD1 þ bD2j)
increased risk for (bD1�D2 . 0) AD and DD, but antagonisti-
cally (jbD1�D2j , jbD1 þ bD2j) increased risk for (bD1�D2 . 0)
affective disorders; diplotypes TCAGTT/CTCGTT and
TCAAAA/TCAAAA modestly (P ¼ 0.046) or suggestively
(P ¼ 0.079) protected against DD (bD3 , 0), but their
contributions to this protective effect was much less than that
of the diplotype TCAGTT/CTCAAA (jbD3j � jbD1j).
These diplotypes were constructed by a combination of TCA
or CTC from first three SNPs and GTT or AAA from last
three SNPs.

Most of the associations between phenotype and alleles, gen-
otypes, haplotypes or diplotypes were most significant for AD
(minimum P ¼ 0.003), less significant for DD (minimum
P ¼ 0.011) and only suggestively or modestly significant for
affective disorders (0.011 , P , 0.085). Decomposing these
associations by population, i.e. separating the combined
sample (EAs þ AAs) into EAs and AAs and using the same
regression methods, we found that all these associations
remained significant in both populations. However, these
associations were highly significant in AAs, but only modestly
significant in EAs (data not shown).

DISCUSSION

In this study, we found that polymorphic variation at CHRM2
predisposed to AD, DD and affective disorders. The 50-UTR of

Figure 3. Pairwise correlations between any two alleles, genotypes, haplotypes or diplotypes. In Figure B, 1 and 2 in axes denote the two genotypes of SNP1, and
3 and 4 denote the two genotypes of SNP2; as analogy. Marker numbers correspond to the order as presented in Table 1; haplotype and diplotype numbers
correspond to the order as presented in Table 4. Scale denotes correlation coefficent (r).
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CHRM2, which contains one haplotype block harboring SNPs
1, 2 and 3, was more important for susceptibility to these dis-
orders than other regions. Interaction between two specific
alleles within this haplotype block and interaction between
two specific diplotypes covering this haplotype block multipli-
catively increased risk AD and DD, but the latter antagonisti-
cally increased risk affective disorders; a specific diplotype
might inversely affect the risk for AD and DD and the risk
for affective disorders.

In our sample, the genotype frequency distributions of some
markers deviated from HWE in some phenotype groups, even
after correction for multiple testing (34). For example, SNP3
was in HWD among AAs with AD, and in HWD among
both EAs and AAs with DD, which might suggest that this
SNP is associated with AD and DD (35–42). This finding
also affected the subsequent analytic strategy; HWD violates
the assumptions of the EM algorithm that conventional
haplotype-construction programs are based upon, so a
Bayesian approach and the partition ligation algorithm were
used in this study to construct haplotypes and diplotypes and
estimate their probabilities. HWD might also imply that geno-
typewise and diplotypewise analyses would be more powerful
than allelewise and haplotypewise analyses, as demonstrated
previously (41–43) and also in the present study.

Case–control comparisons on allele and genotype fre-
quency distributions showed some nominally significant
(P � 0.05) associations between SNP2, SNP4 or SNP6 and
AD and DD, mainly in AAs. After controlling for admixture
effects via the SA analysis, most of these associations
remained, although their level of significance declined
(Table 2). After correction for multiple tests, no associations
remained significant, which suggests that this case–control
comparison lacked adequate statistical power.

Fine-mapping using the d value, an LD measure based on
the case–control data, showed that SNP2 was closest to the
putative risk locus for AD both in EAs and in AAs and for
DD in AAs and that SNP5 was closest to the putative risk
locus both for DD and for affective disorders in EAs.

Case–control comparisons, including the SA method, are
limited by their failure to take into account marker–marker
interactions. This limitation is important in the present

study, where such interactions are strong. Analysis showed
strong correlations among the alleles or genotypes of SNPs
1, 2 and 3 and among the alleles or genotypes of SNP4 and
SNP5 (r . 0.85), which was completely consistent with the
results from pairwise LD analysis (D0 . 0.9). The haplotypes
and diplotypes incorporate the LD information from different
markers, so that correlations among haplotypes or among
diplotypes are attenuated (maximum r ¼ 0.48 and r ¼ 0.75,
respectively) (Fig. 3). But given their strength, the interactions
among them should still be taken into account. For example,
the highest correlation between diplotypes TCAAAA/
CTCGTT and TCAGTT/CTCAAA (r ¼ 0.75) is nearly four
times that of the second highest correlation between other diplo-
types (r ¼ 0.2). These correlations reflect the finding that the
correlated haplotypes are more likely to occur in subjects
(individually) with a certain given trait (diagnosis), than
would be expected at random. This suggests that positively cor-
related haplotypes or diplotypes may affect risk for that trait
similarly.

We used a backward stepwise logistic regression analysis to
improve the power by using allele, genotype, haplotype and
diplotype probabilities instead of categorical values. This
approach also allows uncertainty for haplotype inference,
obviates the HWE assumption, increases sample size by
combining different populations and phenotypes in a single
model, controls for population stratification and admixture
effects and the potential confounding by sex, takes marker–
marker interactions into account and avoids multiple testing
that would accrue to the inclusion of multiple populations
and markers. This analytic approach showed that allele T
and genotype C/T of SNP1 and/or genotype C/T of SNP2 pro-
tected against AD and/or DD; but alleles SNP1^T � SNP2^C
multiplicatively increased risk for these disorders. These two
SNPs were located at intron 3, close to a functional region
at the 50 transcriptional start site (TSS1) (discussed earlier).
The findings from regression analysis were much stronger
than those yielded by the HWD test, case–control comparison
or SA, which supports the idea that the regression method is
more powerful than the other methods. These findings par-
tially overlap with those from the HWD test, case–control
comparison, SA and fine-mapping; all provide evidence that
SNPs 1, 2 and/or 3 might be in LD with the putative
disease-influencing loci for AD and/or DD. These three
SNPs were in a single haplotype block, so that the findings
obtained using different analysis methods that appear to vary
in statistical power and that differ in their handling of the
interactions could reasonably be expected to vary among
these three SNPs (while maintaining consistency in the
context of the haplotype view), especially when locus main
effects are weak but the interaction effects are strong. (We
acknowledge that our analysis on the interaction effects with
regression methods might be somewhat speculative.)

Because the HWD test, case–control comparison and SA
did not take into account the marker–marker interactions,
the conclusions drawn from regression analysis should be
more valid. Furthermore, the only positive finding for a haplo-
type by regression analysis is that the haplotype TCAGTA
(which harbored alleles SNP1^T � SNP2^C) modestly
increased risk for AD. Haplotype analysis was much less
powerful than diplotype analysis for this locus, consistent

Table 4. Frequencies of common haplotypes and diplotypes in the combined
sample

Haplotype Frequency Diplotype Frequency

TCAAAA 0.400 TCAAAA/TCAAAA 0.188
CTCGTT 0.184 TCAAAA/CTCGTT 0.127
TCAGTT 0.134 TCAAAA/TCAGTT 0.097
TCAGTA 0.062 TCAGTT/CTCGTT 0.071
CTCAAA 0.045 TCAAAA/TCAGTA 0.060
TCCAAA 0.023 CTCGTT/CTCGTT 0.042
TCAAAT 0.021 TCAAAA/CTCAAA 0.036
CTCGTA 0.020 TCAAAA/TCAAAT 0.024
CTCAAT 0.016 TCAGTT/TCAGTT 0.022
CTCGAT 0.014 CTCAAA/CTCGTT 0.013

TCAGTT/CTCAAA 0.012

Only the haplotypes and diplotypes with frequencies .0.010 are listed.

Human Molecular Genetics, 2005, Vol. 14, No. 16 2427

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/14/16/2421/675731 by guest on 19 April 2024



with our findings elsewhere and theoretical expectations that
under HWD, diplotypewise analysis is the more powerful
approach (42,43). This reflects sensitivity of diplotype
methods to HWD, which itself reflects recessively acting
risk loci. The findings from haplotypewise and diplotypewise
analyses are consistent with those from allelewise and
genotypewise analyses. The susceptibility diplotypes were con-
structed by a combination of TCA, which harbored SNP1^T�

SNP2^C, or their counterparts (i.e. CTC) from the first three
SNPs and GTT or their counterparts (i.e. AAA) from the
last three SNPs. Nearly, all of these diplotypes protected
against AD, DD and affective disorders, except that
TCAGTT/CTCAAA increased risk for affective disorders;
among these diplotypes, TCAGTT/CTCAAA contributed to
the protection against or risk for these disorders much more
than any of the other diplotypes. Diplotypes TCAGTT/
CTCAAA � TCAAAA/CTCGTT multiplicatively increased
risk for AD and DD, but antagonistically increased risk for
affective disorders. Associations were most significant for AD,
less significant for DD and only suggestively or modestly sig-
nificant for affective disorders. Decomposing these associ-
ations by population, we found that these associations were
highly significant in AAs, but only modestly significant in
EAs—a trend consistent with that by case–control compari-
sons. Diplotype trend regression (DTR) analysis is a power-
ful regression method that uses diplotype probability as
the predictor variable (42,44). In the case of affective dis-
orders, association could not be detected by any other associ-
ation methods (probably due to smaller sample size for this
phenotype).

Interestingly, our findings are consistent with those of Wang
et al. (28). First, both studies found that SNP3 (rs1824024) at
intron 4 upstream of the CDS was one of the most important
susceptibility SNPs for AD and affective disorders. Secondly,
both studies found that the large 50-UTR upstream of the CDS
was more important than the 30-UTR downstream of the CDS,
for susceptibility to the disorders studied. The haplotypes or
diplotypes covering the SNPs at the 50-UTR were risk or pro-
tective factors for AD and affective disorders. The SNPs in the
30-UTR, i.e. SNP6 (rs6962027) in our study and rs8191992 in
Wang et al. (28), which are 627 bp apart, were not associated
with any of the phenotypes examined. Thirdly, some variants
and the haplotypes or diplotypes that include these variants
exerted inverse effects on AD and affective disorders.

Regression analyses that examined AD and DD were con-
ditional on ancestry proportions for each subject, in order to
control for population stratification and admixture effects.
The ancestry proportions for individuals in the sample of
EAs with affective disorders were not examined, so that the
regression analysis for affective disorders did not control for
admixture effects. However, our study of the first part of the
sample, including the controls and the subjects with AD and
DD, showed that 100% of self-reported EAs were ‘genetic’
EAs and their admixture degree was very low (only 1.5%).
Together, these findings indicate that the self-reported EA
population can provide an excellent proxy for a ‘genetic’
EA population and its admixture effects were so weak that
they can reasonably be ignored. Thus, the findings in EAs
with affective disorders should be reliable, despite the fact
that admixture effects were not considered. Together with

Table 5. Results of backward stepwise regression analysis on allele, genotype, haplotype and diplotype probabilities in three disorders

EA þ AA EA

AD DD Affective disorder

Covariates P-value b Covariates P-value b Covariates P-value b

Model 1
Ancestry European ancestry 1.2E-08 21.285
Sex Male 2.9E-20 1.658 Male 4.8E-11 1.216
allele SNP1^T 0.026 22.096 SNP1^T 0.071 21.778

SNP1^T � SNP2^C 0.006 2.145 SNP1^T � SNP2^C 0.031 1.753
Model 2

Ancestry European ancestry 0.045 20.474 European ancestry 9.2E-09 21.290
Sex Male 5.0E-20 1.650 Male 4.2E-11 1.220
Genotype SNP1^C/T 0.003 20.548 SNP2^C/T 0.020 20.446

Model 3
Ancestry European ancestry 6.1E-04 20.755 European ancestry 2.2E-14 21.616
Sex Male 1.3E-21 1.554 Male 1.9E-11 1.136 Male 0.054 0.402
Haplotypes TCAGTA 0.029 1.170

Model 4
Ancestry European ancestry 8.3E-04 20.771 European ancestry 2.8E-12 21.566
Sex Male 9.3E-21 1.525 Male 6.0E-11 1.122 Male 0.085 0.366
Diplotypes TCAGTT/CTCAAA 0.007 2104.610 TCAGTT/CTCAAA 0.011 299.965 TCAGTT/CTCAAA 0.059 161.260

TCAAAA/CTCGTT 0.093 22.532 TCAAAA/CTCGTT 0.081 22.574 TCAAAA/CTCGTT 0.011 -18.475
(TCAAAA/CTCGTT �

TCAGTT/CTCAAA)
0.007 148.496 (TCAAAA/CTCGTT �

TCAGTT/CTCAAA)
0.014 140.126 (TCAAAA/CTCGTT �

TCAGTT/CTCAAA)
0.032 58.665

TCAGTT/CTCGTT 0.046 20.767
TCAAAA/TCAAAA 0.079 20.399

Ancestry, European ancestry proportion; P, P-value; b, regression coefficient; ‘E’, scientific format of number; regression model 1, 2, 3 and 4 involve
in alleles, genotypes, haplotypes and diplotypes, respectively.
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findings reported by Wang et al. (28), this study provides evi-
dence of a role for variation in CHRM2 in the risk for AD, DD
and affective disorders.

MATERIALS AND METHODS

Subjects

Two sets of samples were included in the present study. The
first set consists of 871 subjects which included 333 healthy
controls [287 European-Americans (EAs) and 46 African-
Americans (AAs)] and 538 affected subjects [382 EAs and
156 AAs; 415 with AD; 346 with DD, including dependence
on cocaine (n ¼ 306) or opioids (n ¼ 148)]. Five hundred
twenty-six subjects were males and 345 were females. Males
constituted 72.9% of the cases and 40.2% of the controls.
Age data were available for 97.6% of controls and 98.1%
of cases; of those for whom such data were available, the
average ages were 28.1 + 9.1 years for controls and
39.4 + 9.2 years for cases. The cases met lifetime DSM-III-
R criteria (45) for AD, DD (cocaine or opioid) or a
combination of these disorders. Diagnoses were made using
the Structured Clinical Interview for DSM-III-R (SCID)
(46), the computerized Diagnostic Interview Schedule for
DSM-III-R (C-DIS-R) (47) or a checklist composed of
DSM-III-R symptoms. The control subjects were screened
using the SCID, the C-DIS-R or the Schedule for Affective
Disorders and Schizophrenia (48), to exclude major Axis I
mental disorders, including alcohol or drug abuse or
dependence, psychotic disorders (including schizophrenia
or schizophrenia-like disorders), affective disorders and
major anxiety disorders. The populations and the population
groups (races) for individual subjects were classified by ances-
try proportions rather than self-report (see Materials and
Methods).

The second set of subjects included 137 EA patients with
affective disorders, of whom 68 were males and 69 were
females. The diagnosis in this group was made using the
Structured Clinical Interview for DSM-III-R (SCID) (46) or
the SCID version 2.0 (49). The specific affective disorders
included bipolar affective disorder (34.3%), major depression
(56.9%) and seasonal affective disorder (8.8%).

We used the SA method for the controls and substance-
dependent subjects in this study. That is, we genotyped
ancestry-informative markers (AIMs) and applied the SA
approach (described subsequently). Because the ancestry
proportions were not available for the subjects with affective
disorders, their population group (race) was identified by
self-report.

The subjects were recruited at the University of Connecticut
Health Center, the VA Connecticut Healthcare System-West
Haven Campus or the Connecticut Mental Health Center.
All subjects gave informed consent before participating in
the study, which was approved by the Institutional Review
Board at the respective institutions.

Marker inclusion

Six markers flanking the CHRM2 coding sequence were
selected, including two markers (SNP1: rs978437 and

SNP2: rs1455858) at intron 3, one marker (SNP3:
rs1824024) at intron 4, two markers (SNP4: rs324640 and
SNP5: rs324650) at intron 5 and one marker (SNP6:
rs6962027) at the 30-UTR. The allele frequencies and poly-
merase chain reaction (PCR) conditions for five of these
markers (which have an hcv no.) have been validated by
Applied Biosystem, Inc. (ABI, Foster City, CA, USA).
SNP3, SNP4 and SNP5 were also studied by Wang et al.
(28). These six markers span a total of 87 757 bp, with an
average intermarker distance of 15 kb (Fig. 1).

Thirty-eight AIMs unlinked to CHRM2, including 37 STRs
and one FY SNP marker, were genotyped to examine the
population structure of our first set of sample. These
markers were employed by several studies (42,43,50,51),
and their characteristics are described in the study by Yang
et al. (33).

Genotyping

By TaqMan technique. All CHMR2 SNPs were genotyped
with the TaqMan technique, i.e. a fluorogenic 50 nuclease
assay method (52), using the ABI PRISM 7900 Sequence
Detection System (ABI). Five markers (with hcv no.) were
genotyped using ‘assays-on-demand’ and one marker
(without hcv no.) was genotyped using ‘assay-by-design’.
Detailed PCR conditions are reported elsewhere (41). All
genotyping was performed in duplicate and compared to
ensure validity of the data. Mismatched genotypes, which con-
stituted ,0.5% of the total number of duplicate genotypes
performed, were discarded.

By PCR–restriction fragment length polymorphism
(RFLP) technique. The Duffy antigen gene (FY) marker
(rs2814778), being highly informative of the ethnic ancestry
of the subject, was genotyped by the PCR–RFLP technique
as described previously (53).

By fluorescence capillary electrophoresis (FCE) technique.
The 37 STR markers were genotyped by a fluorescence capil-
lary electrophoresis (FCE) technique using the ABI PRISM
3100 semiautomated capillary fluorescence sequencer as
described in detail elsewhere (33).

Statistical analysis

LD analysis. Pairwise LD between any two CHRM2 markers
was analyzed separately by population, i.e. EAs and AAs.
The value of the standardized disequilibrium coefficient, D0,
for each LD pair was calculated and is shown in Figure 2
[using the program Haploview (54)]. The haplotype block
was defined by Gabriel et al. (55).

HWE test. HWE of the genotype frequency distribution for
each marker was tested within different populations and separ-
ately in cases and controls. The P-values for HWE tests, which
were calculated using the program PowerMarker (56), are
shown in Table 1. The HWD in cases, i.e. the deviation
from HWE expectations, sometimes indicates a valid
disease–gene association or the possible existence of popu-
lation stratification, selection or insufficient power. This test

Human Molecular Genetics, 2005, Vol. 14, No. 16 2429

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/14/16/2421/675731 by guest on 19 April 2024



is the prerequisite for determining valid choice of haplotype-
reconstruction programs (some of which produce valid
results only in the context of HWE).

Case–control comparisons for allele and genotype frequency
distributions. The allele and genotype frequencies of the
CHRM2 markers in different phenotype groups are shown in
Table 3. Associations among the alleles, genotypes and the
phenotypes were analyzed by comparing the allele and geno-
type frequency distributions between cases and controls
(within EAs and AAs, respectively) with exact tests
implemented in the program PowerMarker and the P-values
are listed in Table 2.

Fine-mapping the risk locus. Assuming that there is a risk
locus within CHRM2, LD between this putative risk locus
(possibly not observed) and the marker loci (observed) can
be calculated. Under ideal scenarios, evolutionary forces
acting on the markers and disease-influencing variant can be
ignored. If the time from the initial generation, in which
the disease effect was first introduced (i.e. when the disease-
influencing mutation occurred), to the current generation is
not very long, then the strength of LD between disease locus
and marker locus will directly reflect the genetic distance
between them. If multiple markers are tested, the distribution
of values of LD between disease locus and marker locus will
exhibit a single peak that occurs at the disease locus; i.e. the
closer the marker is to the disease locus, the stronger the LD
between them. However, the peak of the LD distribution
might not distinguish reliably among the markers around the
putative disease locus when using different LD measures
such as the correlation coefficient D, Lewontin’s D0, the
robust formulation of the population attributable risk d,
Yule’s Q and Kaplan and Weir’s proportional difference d
(57) (based on a case–control sample) or the values of F,
F0, J and J0 (35,37) (based on a case-only sample), because
these measures fluctuate with the allele frequencies of
marker locus and disease locus. Allowing for this, the d
value, which controls for the influence of allele frequency, is
the best measure for fine-mapping the risk locus.
d ¼ (ad 2 bc )/[(a þ c )d ], where a, b, c and d are the
numbers of the risk and the protective alleles in cases and
controls, respectively (58). d is equivalent to J (37).

SA analysis. Usually, to reduce population stratification effects,
statistical analyses are preformed separately for different
populations. However, this may be not sufficient when
the populations are themselves admixed. The admixture
within a population can lead to spurious findings, especially
when the disease prevalence varies between the ancestral
populations and the ancestry proportions vary between
individuals. In the USA, many populations are admixed. A
prototypical example is the AA population, which has been
shown in many studies to be admixed primarily between
native African and EA ancestry (59,60). Recently, admixture
within EAs has also been confirmed by some studies
(61,62), although the extent of that admixture is much less
than that in AAs. Thus, the admixture effects for these two
populations should be controlled.

In general, to detect admixture and to measure the extent of
admixture in a population, the ancestry information content
from AIMs can be extracted through a Bayesian approach
(63). For example, allele 196 of marker D11S935 has a fre-
quency of 0.432 in the ancestral European population and
0.161 in the ancestral African population (as estimated by
STRUCTURE, on the basis of observed AA and EA allele
frequencies) (43). If an individual carries one copy of allele
196, the probability is 72.8% that the individual is of European
ancestry and 27.2% that the individual is of African
ancestry (calculated through the Bayesian approach, assuming
otherwise equal prior probability of being European or
African). Through the use of additional AIMs, one can
assign ancestry with high confidence. For this purpose, the
38 AIMs permit the assignment of all individuals into different
genetic populations (33) and further the classification of each
according to ancestry proportions. This is accomplished using
the program STRUCTURE, which is based on the Bayesian
approach (32,64). We have successfully applied this approach
in several studies (33,42,43,50,51).

The ancestry proportions were entered into the program
STRAT (65) to perform the SA analysis among 44 markers
(including 38 AIMs and six CHRM2 markers) and phenotypes
(AD or DD) conditional on the ancestry proportions to exclude
admixture effects. In addition, the ancestry proportions were
entered into the regression model described subsequently for
an extended analysis.

Correction for multiple tests. When the same data set is tested
multiple times from different independent perspectives, the
threshold for statistical significance (a) should be adjusted
to reduce type I error. In the present study, the HWE tests,
the case–control comparisons for allele and genotype frequen-
cies and the SA, all were performed six times marker-by-
marker. Although the Bonferroni correction is most commonly
used to adjust a, because it treats every test as an independent
test, it is overly conservative for genotype data in which
markers are in LD, thereby neglecting the LD information
that reflects correlation among markers. One approach used
to avoid multiple comparisons is a simulation method, which
tests all of the markers in one omnibus test to derive an
empiric global P-value (40,41). However, this simulation
method is computationally intensive and time-consuming.
To overcome the disadvantages of both methods, Nyholt
(34) recently developed a novel web-based program
SNPSpD (http://genepi.qimr.edu.au/general/daleN/SNPSpD),
which provides an adjusted Bonferroni correction method.
The results generated by SNPSpD agree well with those pro-
vided by simulation methods, especially when the number of
markers does not exceed seven. SNPSpD calculates the effec-
tive independent marker number from the non-independent
markers, incorporating the LD information from them.
For example, six CHRM2 markers that are in LD provide
information equivalent to four and five independent markers
in EA cases and in AA cases, respectively. On the basis of
the information, the a level is set at 0.0125 and 0.010 for
EAs and AAs, respectively.

Haplotype reconstruction, case–control comparisons for
haplotype frequency distributions and individual haplotype
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and diplotype probability estimation. The program PHASE
was used to reconstruct haplotypes in this study. This
program was developed by Stephens et al. (66,67), on the
basis of a Bayesian approach and the partition ligation algor-
ithm. These algorithms have been claimed to be more accurate
in reconstructing haplotypes than the expectation-maximum
(EM) algorithm, especially when the HWE does not hold
among some markers, as is the case for our data (Table 1)
(66–68). Haplotype frequencies were estimated and their dis-
tributions were compared between cases and controls directly
by PHASE.

PHASE was also used to estimate the probabilities of all
likely pairs of haplotypes (i.e. diplotypes) for every individual.
The individual-phased diplotypes that could be unambigu-
ously inferred by PHASE have a probability of 1.0; the
unphased diplotypes that were ambiguously inferred by
PHASE have probabilities between 0.0 and 1.0. These haplo-
type and diplotype probabilities were entered into the
regression model discussed subsequently for analysis. Uncer-
tain haplotype data cannot be accurately analyzed by the SA
method, but can be analyzed by the regression method
described subsequently.

To reconstruct the haplotypes more accurately, our sample
(except those with affective disorders) was separated
into two subgroups, that is, the genetically inferred EAs
(European ancestry proportion greater than 0.5) and the
genetically inferred AAs (African ancestry proportion
greater than 0.5) haplotypes were reconstructed within the
‘genetic’ EAs and AAs, respectively, rather than within the
self-reported EAs and AAs. Haplotypes in the patients with
affective disorders were reconstructed within the self-reported
EAs, because their ancestry proportions were not available.
The haplotype frequency distributions were compared
between cases and controls separately within populations;
but different populations were combined as one admixed
population in the aforementioned SA analysis and in the
after mentioned correlation analysis and regression model.

Marker–marker interaction effect analysis. Different markers
within CHRM2 were in LD to varying degrees (Fig. 2).
Markers in the same haplotype block could exert interaction
effects on trait. Identification of such an interaction could
increase our understanding of the mechanisms through
which the gene acts to modify risk for expression of the
trait; ignoring an existing interaction might make the main
effects of the markers appear non-significant or lead to incor-
rect conclusions with respect to determination of the mode of
inheritance and erroneous estimation of the magnitude of the
effects of the markers (69–71). One commonly used method
for evaluation of marker–marker interaction effects is stratifi-
cation analysis (72–74), e.g. the sample can be stratified into
three groups according to the three genotypes of the first SNP,
and then, within each genotype group, the relationship
between the genotypes of the second SNP and the phenotype
can be evaluated. However, when many markers (i.e. sub-
groups) are involved, stratification analysis can reduce the
sample size in each subset unacceptably. Furthermore, the
stratification analysis uses the unphased genotype data
directly, but not the phased diplotype data, thereby ignoring
the LD among markers and the diplotype frequency

distribution in the whole population, and thus inflates the
type I error rate (because of maximal subdivision of the
sample). Another method commonly used for analyzing
marker–marker interaction effects is regression analysis,
which directly models all of the variables in a single analysis
using the entire data set, thereby optimizing the statistical
power (75–78).

The interaction effect depends on the correlation between
markers and is related to the traits. The correlation per se
between markers (such as LD) depends on the physical
distance between markers, the allele frequencies of markers,
population history and the nature of traits (including the
definition of phenotypes, the sample size and the ethnicity).
Before considering the interaction effects in the regression
model, a correlation matrix of the markers was created.
Only when the marker–marker correlations were strong, the
interaction effects were considered in the regression model,
because the strong marker–marker correlations suggested
likely marker–marker interaction effects on trait. The
marker–marker correlation analysis includes allele–allele
correlation and genotype–genotype correlation (between
different markers), which is equivalent to pairwise LD analysis
between single markers. Incorporating information on the LD
among markers into haplotypes, the haplotype–haplotype cor-
relation and the diplotype–diplotype correlation might more
likely suggest an interaction effect on trait than marker–
marker correlation, because haplotypes or diplotypes are
mutually exclusive in genetic structure (i.e. a single chromo-
some expresses exactly one haplotype). Furthermore, haplo-
types and diplotypes might be more informative than single
markers in the analysis of interaction effects, because haplo-
types and diplotypes reflect information from more closely
mapping unknown markers on the same haplotype background
that, although not detected, might be involved in interaction
effects. Thus, in this study, we analyzed haplotype–haplotype
correlation and diplotype–diplotype correlation and con-
sidered their interaction effects in the regression model.

Haplotypes or diplotypes themselves reflect LD information
among markers; the correlations among haplotypes or diplo-
types should be attenuated, because their correlations on
genetic structure have been excluded. Thus, only the strongest
haplotype–haplotype and diplotype–diplotype correlations
(which were nevertheless not as strong as the marker–
marker correlations) were considered in the regression
model (see red color in Fig. 3). The correlation coefficients
(r ) were visualized through application of the program
GOLD (79) (Fig. 3).

Regression analysis. A general backward stepwise logistic
multivariate regression analysis was used to test associations
between gene and diseases. We modeled the analysis with
the following equation:

ln½P=ð1 2 PÞ� ¼ b0 þ baX a þ bsX s þ SbiX i þ SbjX iX j

þ SbkX iX jX k;

where P is the probability of disease; b0 corresponds to the
intercept; ba, bs, bi, bj and bk are regression coefficients,
among which ba, bs and bi correspond to the main effects
and bj and bk correspond to the two-way and three-way
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interaction effects, respectively; Xa denotes the European
ancestry proportions predicted by the program STRUCTURE
(omitted for the second set of samples); Xs denotes the sex of
individuals and Xi, Xj and Xk denote the ith, jth and kth
(i , j , k ) allele probabilities (model 1), genotype probabil-
ities (model 2), haplotype probabilities (model 3) or diplotype
probabilities (model 4). In the matrix Xi, for allele data, only
one common allele from each SNP was entered into the
regression model with probability 0, 0.5 or 1; for genotype
data, only two genotypes among the three from each SNP
were entered into the model with probability 0 or 1 and for
haplotype or diplotype data, only the haplotypes and diplo-
types with population frequencies greater than 0.01 were
entered into the model. The backward stepwise regression
method could reduce the variable number to a minimum in
the final step of the equation (Table 5).

Ancestry proportions were included in the model for the
first set of samples to exclude both population stratification
and admixture effects. Sex was included in the model to
exclude its potential confounding on associations, because it
was highly asymmetrically distributed between cases and con-
trols, and a sex-specific role of CHRM2 in depression has been
reported (12). The probabilities, instead of the categories, of
alleles, genotypes, haplotypes and diplotypes were included,
because the probabilities preserve more information than
does the direct use of categorical variables.
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