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Diabetic nephropathy (DN) is one of the most serious complications of diabetes, accounting for the majority
of patients with end-stage renal disease. The molecular pathogenesis of DN involves multiple pathways in a
complex, partially resolved manner. The paper presents an exploratory epistatic study for DN. Association
analysis were performed on 231 SNP loci in a cohort of 264 type 2 diabetes patients, followed by the epistasis
analysis using the multifactor dimensionality reduction and the genetic algorithm with Boolean algebra.
A two-locus epistatic effect of EGFR and RXRG was identified, with a cross-validation consistency of 91.7%.

INTRODUCTION

Excessive plasma glucose in diabetic patients induces
microvascular complications such as nephropathy and retinopa-
thy. As the major cause of end-stage renal disease (1), resulting
in patient morbidity andmortality, diabetic nephropathy (DN) is
a growing public health concern. Among diabetic patients,�5%
of Caucasians, 10% of Asian Americans, 20% of African
Americans and Mexican Americans, and 50% of native
Americans eventually require kidney dialysis (2). The decline
of renal function on diabetic patients is correlated with hypertro-
phy of mesangium and glomerular basement membrane, from
excessive deposition of extracellular matrix (ECM) (3,4); and
interstitial fibrosis (4). Such structural lesions precede any
clinically observable changes in blood or urine (1). Hence, a
risk-assessment method of nephropathy, based on the geno-
types, would benefit the patient care of diabetes.

Multiple pathways have been implicated in the molecular
pathogenesis of DN (1,4–7). Excessive ambient glucose
induces reactive oxygen species, which then activate protein
kinase C and mitogen-activated protein kinases (3,5,7), result-
ing in mesangial cell hypertrophy and the accumulation
of ECM (4). The renin–angiotensin system (RAS) is
also involved, which has been shown to be up-regulated
in hyperglycaemia. Intra-glomerular hypertension induces

fibrogenic cytokines such as transforming growth factor b
(TGF-b), which augments mesangial ECM expansion and
renal insufficiency (6,8,9).

Genetic variations has also been implicated in the etiology
of DN among type 1 and type 2 diabetic patients (4,7,10).
Familial aggregation of DN occurred in the Pima Indians
(11). The genetic pathogenesis of DN comprises both
hypertension-related and non-hypertension-related mechan-
isms (4,12). Concerning hypertension-related mechanisms, a
polymorphism in the angiotensin-converting enzyme (ACE),
an element of RAS, has been associated with DN. Both ACE
inhibitors and angiotensin receptor I antagonist attenuate DN
(4), hence, they are used as treatments for diabetes, aiming
to prevent the onset and progression of complications (12).
As for the non-hypertension-related factors, several candidate
alleles have been reported. Shcherbak and Schwartz (13) have
conducted a single nucleotide polymorphism (SNP) associ-
ation study on a G-protein b3 subunit gene (GNB3) from
Russian type 1 diabetic patients, and concluded that no signifi-
cant association of this gene to DN could be identified. In posi-
tive studies, an SNP in the manganese superoxide dismutase
gene was found to be associated with DN among Japanese
type 2 diabetic patients (14). A meta-analysis of six indepen-
dent association studies supported the association of SNP in
the glucose transporter type 1 gene (GLUT1) with DN (15).
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A mutation of the TGF-b gene was also found to be associated
with DN (16). Roles of TGF-b and GLUT1 in DN, inferred
from in vitro studies, are summarized in (8). Recently, the
association between the IGF-binding protein 1 (IGFBP1)
and the impaired renal function has been reported (17).

The analysis of epistasis is very important for revealing the
genetic basis of complex traits (18,19). It requires the geno-
types of multiple loci from each study subject. However, the
aforementioned studies were mostly on the single gene/
single SNP basis. A large-scale investigation of nephropathy
and diabetes is currently in progress on four ethnic groups:
European Americans, African Americans, Mexican Americans
and American Indians (20); and the results have not yet been
reported. Considering the complex mechanisms involved, the
susceptibility of DN may be adequately evaluated on the
basis of the epistasis of multiple genes. Hence, we conducted
a retrospective study to investigate the epistatic effects among
genes. The epistatic effect will be presented in a terse model
which can be consistently verified in independent datasets.
The patients were type 2 diabetes patients of the Han
Chinese population in Taiwan.

A two-stage methodology was employed for the epistasis
analysis. First, the allele and genotype frequencies of 231
SNP loci were compared between the case (DN) and control
(type 2 diabetes mellitus, DM) groups using x2 statistics
(21). Those loci with smaller P-values were further analyzed
in the second stage, employing the multifactor dimensionality
reduction (MDR) method (22), as well as the genetic algor-
ithm with Boolean algebra method (GABA) (23). The
purpose of using two methods is to combine their strengths
for this analysis.

RESULTS

Study group comparison

The demographic information of study patients is compared
and summarized in Table 1. The average years of diabetic

history are 15 for the DN group and 13 for the DM group.
Comparing age, body mass index (BMI) and hip circumfer-
ences between the two groups, all P-values were larger than
0.05, implying no significant difference were detected.
Fasting plasma glucose and HbA1c levels were also similar
between the two groups (P . 0.05). In contrast, urinary
albumin and blood urea nitrogen (BUN) levels were signifi-
cantly different between the two groups (P ,,0.0001). All
the P-values reported in this paper were derived from two-
sided tests. In the DM and DN groups, 63.33 and 97.92% of
patients, respectively, received antihypertensive medication.
As the antihypertensive medication is not controlled in our
study design, the hypertension-related genetic association
tests should only serve as a reference.

Single SNP association analysis

Five groups of candidate genes were screened in this study
due to their putative roles in the development of DN:
(i) fibrotic and inflammatory genes (ABCC8, AHSG,
GPR87, GPR105, IL4R, KNG1, LPL, MED12L); (ii) genes
involved in the construction/destruction of the ECM (BGN,
COL1A1, COL3A1, COL6A1, MMP9, MMP14, SDC1); (iii)
genes involved in cell growth and proliferation (DGKG,
EGFR, MKKS, PDGFRB, RXRG); (iv) insulin and diabetes-
related genes (IGF2R, PCSK2, SNAP25) and (v) the
hypertension-related genes (ACE, AGT, AGTR1, KCNS3,
LRP3). The 28 genes are summarized in Table 2. Gene
names and symbols were provided according to the HUGO
gene nomenclature committee (24). A set of 231 SNPs in
these genes were investigated, where the allelic and genoty-
pic frequencies between the case and control groups were
compared using standard x2 statistics for contingency tables
(21). The genotypic comparison employs a three by two con-
tingency table, comparing three (one heterozygous and two
homozygous) genotypes with two traits (DN and DM).
Among the 231 SNPs, 13 SNPs obtained P-values smaller

Table 1. Comparisons of demographic and clinical information of study subjects

DN (n ¼ 144) DM (n ¼ 120) DN versus DM

n Statistics n Statistics P-value

Agea (years) 144 62.9+ 8.8 120 63.1+ 8.7 0.8764
Diabetes durationa (years) 144 15.5+ 7.7 120 13.7+ 7.1 0.0491
Gender (% male) 144 50 120 41.67 0.1763
BMI (kg/m2) 143 25.7+ 3.7 116 24.8+ 4.3 0.0605

Weight (kg) 143 66.8+ 11.8 116 63.3+ 12.5
Height (cm) 143 160.9+ 8.5 116 159.7+ 10.4

Hip circumference 133 99.3+ 8.8 115 97.5+ 8.8 0.1124
Fasting plasma glucose (mmol/l) 144 9.9+ 3.7 120 9.3+ 0.2 0.1069
HbA1c (%) 110 8.8+ 2.0 96 8.5+ 1.3 0.1649
Urinary ACR (mg/mmol) 124 249.2+ 244.4 120 2.2+ 1.4 ,0.0001
BUN (mg/dl) 142 32.5+ 16.9 120 15.0+ 3.2 ,0.0001
Blood pressure (mmHg)

Mean systolic 139 136.7+ 17.1 115 126.7+ 16.8 ,0.0001
Mean diastolic 139 78.3+ 12.6 115 73.4+ 9.2 0.0004

Antihypertensive medication (%) 144 97.92 120 63.33 ,0.0001

Statistics are represented as mean+ standard deviation.
n is the sample size.
aIn December 2002.
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than 0.05 in either the allelic or genotypic comparison. These
SNPs were summarized in Table 3. However, since 231
SNPs were assessed altogether, issues of multiple compari-
sons may be considered. The P-value is adjusted as 0.05/
231 ¼ 0.0002 using the Bonferroni correction method.
None of the 13 SNPs is significant enough according to the
Bonferroni correction method (Table 3).

An SNP in the SNAP25 gene (rs1051312, SNP12) showed
the strongest associations in both the allelic comparisons
(P ¼ 0.0043, power ¼ 98.2%) and genotypic comparisons
(P ¼ 0.0055), among all the SNPs in this study. This SNP
resides on the 30 un-translated region of the gene. Tests of
Hardy–Weinberg equilibrium (HWE) on the 13 SNPs were
also performed on the basis of the x2 statistics (25). The
tests were conducted on the DN and DM groups, as well as
the whole study population, DNþDM (Table 3).

Analysis of epistasis

MDR and GABA were employed for the analysis of epistatic
effects on the dichrotomous, qualitative traits, DN versus DM.
The epistatic effect is depicted by the models. The MDR is
employed to enumerate all possible combinations of SNPs,
with various model lengths between one and 10. The
optimum model of each length is presented in Table 4. A
12-fold cross-validation test was conducted such that the

model constructed on the training data (comprising 11/12 of
the entire dataset) is validated (on the remaining 1/12 portion
of the dataset). The cross-validation consistency is the
primary indication of model performances, based on the
assumption that a reliable model should be consistently
detected regardless of which portion of the dataset was used
(22). The prediction accuracy, an average of accuracies calcu-
lated on all the validation datasets, is the secondary perform-
ance index. When single-locus SNPS were assessed by
MDR, SNP12 was considered optimum (Table 4). This is con-
sistent with the result in the previous section. The two-locus
MDR model, comprising SNPs zero and 11, has the highest
cross-validation consistency (11/12 ¼ 91.7%) and prediction
accuracy (62.7%) among all the models. It also achieved the
smallest P-value of the sign test for the cross-validation. The
two-locus MDR model is presented in Figure 1.

Using the same dataset with 13 SNPs, the GABA software
detects an optimum model comprising seven loci in six genes,
based on the sensitivity and specificity of predictions. A dia-
betic patient susceptible to nephropathy is identified if the
following statement is true:

ðSNP0 ¼ ‘CC=GC’Þ � ðSNP7¼ ‘GG=AG’Þ � ðSNP11 ¼ ‘GG’Þ

þ ðSNP1 ¼ ‘TT=CT’Þ � ðSNP2 ¼ ‘AA=AT’Þ

� ðSNP6 ¼ ‘AA=AG’Þ � ðSNP12 ¼ ‘TT’Þ

where the multiplicative operator ‘�’ corresponds to the logical
‘AND’ and the additive operator ‘þ ’ the logical ‘OR’. In
contrast, the insusceptible patients are identified if the follow-
ing complement statement is true:

ððSNP0¼ ‘GG’Þ þ ðSNP7¼ ‘AA’Þ þ ðSNP11 ¼ ‘AG=AA’ÞÞ

� ððSNP1 ¼ ‘CC’Þ þ ðSNP2 ¼ ‘TT’Þ þ ðSNP6 ¼ ‘GG’Þ

þðSNP12 ¼ ‘TC=CC’ÞÞ

When the seven SNPs are combined for the prediction of
patients in the study group, the result is as shown in
Table 5. The sample size is 246, because the other 18 subjects
have missing genotypes occurring in the seven loci. The per-
formance indexes of the prediction are as follows: the sen-
sitivity is 81.5%, the specificity is 61.3%, the positive
predictive value (PPV) is 71.9% and the negative predictive
value (NPV) is 73.1%. The concordance rate between the
clinical status and the prediction is 72.4%. Considering
other non-genetic factor involved in the development of
nephropathy, the prediction performance is reasonably
acceptable.

The combination of SNP0 (on EGFR) and SNP11 (on
RXRG) in the two-locus MDR model also appeared as a
portion of the seven-locus model of GABA. The repeated
appearance of SNP0 and SNP11 motivated our further inves-
tigation on their epistatic effects. Simplifying the seven-locus
GABA model for susceptible patients, we obtain a two-locus
model in the Boolean statement as

ðSNP0 ¼ ‘CC=GC’Þ � ðSNP11 ¼ ‘GG’Þ:

The prediction performance of the above model is shown in
Table 6. The sensitivity is 62.7%, the specificity is 68.1%,

Table 2. The 28 genes (231 SNPs) screened in this study

Gene symbols No.
of SNP

Gene name

ABCC8 17 ATP-binding cassette, sub-family C, member 8
ACE 6 Angiotensin I converting enzyme
AHSG 6 Alpha-2-HS-glycoprotein
AGT 1 Angiotensinogen
AGTR1 1 Angiotensin II receptor, type 1
BGN 4 Biglycan
COL1A1 4 Collagen, type I, alpha 1
COL3A1 1 Collagen, type III, alpha 1
COL6A1 1 Collagen, type VI, alpha 1
EGFR 8 Epidermal growth factor receptor
DGKG 26 Diacylglycerol kinase, gamma
GPR105 13 G-protein-coupled receptor 105
GPR87 5 G-protein-coupled receptor 87
IGF2R 10 Insulin-like growth factor 2 receptor
IL4R 4 Interleukin 4 receptor
KCNS3 3 Potassium voltage-gated channel,

delayed-rectifier, subfamily S, member 3
KNG1 3 Kininogen 1
LPL 7 Lipid protein lipase
LRP3 5 Low density lipoprotein receptor-related protein 3
MED12L 1 Mediator of RNA polymerase II transcription
MKKS 3 McKusick–Kaufman syndrome
MMP14 2 Matrix metalloproteinase 14
MMP9 16 Matrix metalloproteinase 9
PCSK2 50 Proprotein convertase subtilisin/kexin type 2
PDGFRB 9 Platelet-derived growth factor receptor, beta

polypeptide
RXRG 9 Retinoid X receptor, gamma
SDC1 3 Syndecan 1
SNAP25 13 Synaptosomal-associated protein

Total=28 231
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the PPV is 70.6%, and the NPV is 59.8%. The concordance
rate between the clinical status and the prediction is 65.1%.
Although the two-locus model does not reach a prediction per-
formance as high as the seven-lous model, the two-locus
model may demonstrate a consistent epistatic effect in inde-
pendent datasets, based on its parsimonious format, as well
as the cross-validation evidences of MDR.

Analysis of linkage disequilibrium on egfr and rxrg

Linkage disequilibrium (LD) among the SNPs of the EGFR
and RXRG genes was further investigated. LD was shown as
D prime numbers in Figures 2 and 3, which is calculated by
the Haploview software using the default algorithm on confi-
dence intervals (26). Three blocks were identified on RXRG.
SNP10 and SNP11 of Table 3, corresponding to numbers 3
and 5 of Figure 2, respectively, reside in different LD block.
The association study based on haplotypes is presented in
Table 7. It is shown that the haplotype ‘TA’ of Block2 is
associated to DN, with a P-value of 0.0330. In comparison,
no blocks were detected from the eight SNPs of EGFR,
because the adjacent SNPs were in linkage equilibrium.
SNP0 and SNP1 of Table 3 correspond to numers 3 and 4
of Figure 3, respectively. The distance between SNP0 and
SNP1 is 40 kb, a large distance that reduces the possibility
for them to reside in the same LD block.

DISCUSSION

Single SNP association analysis

This research employs a two-stage methodology, where the
first stage is the single SNP association study. We screened
231 SNPs, and 13 of them have a P-value less than 0.05 in
either the allelic or genotypic tests. The 13 SNPs belong to
eight genes EGFR, MED12L, IGF2R, IL4R, LPL, PDGFRB,
RXRG and SNAP25.

Among the genes pertaining to fibrosis and inflammation,
IL4R, LPL and MED12L were identified. The Interleukin 4
receptor (IL4R) is a pro-inflammatory cytokine produced by
many different cell types, including glomerular mesangial
cells. It is related to fibroblast proliferation, collagen pro-
duction, chemotaxis, fibrosis as well as inflammation, which
could contribute to interstitial fibrosis and renal failure.
No association was found in the genes involved in the
construction/destruction of ECM.

Among the genes related to cell growth and proliferation,
EGFR, PDGFRB and RXRG were identified. PDGF is
known to be a significant mitogen for mesangial cells (27).
The epistasis effect of EGFR and RXRG was also identified
and will be discussed in the next section. Among the genes
related to insulin functions, IGF2R and SNAP25 were ident-
ified. The insulin-like growth factor receptor gene (IGF2R)
was reported to bind to the TGF-b complex (28).

Table 4. The models detected by MDR and their performance

Locus
no.

List of locus in the optimum model Cross-validation
consistency

Prediction
accuracy

Sign test
(P-value)

1 SNP12 7/12 0.5250 8 (0.1938)
2 SNPs 0, 11 11/12 0.6270 11 (0.0032)
3 SNPs 0, 2, 11 9/12 0.5966 10 (0.0193)
4 SNPs 0, 2, 5, 11 5/12 0.5322 8 (0.1938)
5 SNPs 0, 2, 5, 9, 11 2/12 0.4497 6 (0.6128)
6 SNPs 1, 2, 4, 6, 8, 9 4/12 0.4568 5 (0.8062)
7 SNPs 1, 2, 4, 5, 6, 7, 9 5/12 0.4531 3 (0.9807)
8 SNPs 0, 1, 2, 3, 5, 8, 9, 10 2/12 0.4387 5 (0.8062)
9 SNPs, 0, 1, 2, 3, 4, 5, 6, 9, 11 2/12 0.2308 1 (0.9998)
10 SNPs, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11 10/12 0.3750 4 (0.9270)

Table 3. Result of comparisons on allelic and genotypic frequencies between the DN and DM groups. The P-values were derived from x2 test. Only those SNPs
which have at least one P-value smaller than 0.05 (shown in bold face) are presented here. Tests on HWE of these SNPs were also presented

SNP ID Gene symbols dbSNP ID ABI assay ID Allele Number Association (x2 P-value)

DN DM Allele Genotype HWE (All) HWE (DN) HWE (DM)

SNP0 EGFR rs12671550 C___2678627_0 G/C 142 119 0.0084 0.0181 0.0077763 0.376743784 0.006697498
SNP1 EGFR rs2072454 C___2678638_1_ C/T 141 117 0.0185 0.0576 0.0131299 0.289707177 0.025391149
SNP2 MED12L rs6782313 C___268273_10 A/T 141 120 0.4599 0.0469 0.5119526 0.036166936 0.207240256
SNP3 IGF2R rs600324 C___1898214_10 C/T 142 118 0.0361 0.0715 0.2084132 0.948250432 0.112617427
SNP4 IGF2R rs1803989 C___1979425_10 C/T 142 119 0.0415 0.0897 0.6121855 0.338480013 0.957354183
SNP5 IL4R rs6498012 C___2769593_10 C/G 143 119 0.0148 0.0444 0.363717 0.933816969 0.293973266
SNP6 LPL rs326 C___1843005_1_ A/G 144 119 0.5403 0.0481 0.0121221 0.982285123 0.000327745
SNP7 PDGFRB rs6865659 C___11263234_10 A/G 141 118 0.0228 0.0676 0.7574324 0.611732254 0.77248226
SNP8 PDGFRB rs2304058 C___11260229_1_ C/G 143 117 0.0257 0.0841 0.9176754 0.945138055 0.997455653
SNP9 PDGFRB rs740750 C___2277878_1_ A/G 142 115 0.0397 0.1181 0.1013249 0.116600065 0.57564379
SNP10 RXRG rs746332 CC___1007816_20 A/C 143 116 0.0013 0.0141 0.5393246 0.16604897 0.195027125
SNP11 RXRG rs3818569 CC___3194630_10 G/A 144 117 0.0151 0.0363 0.2555648 0.676766882 0.182034255
SNP12 SNAP25 rs1051312 CC___339356_10 T/C 144 119 0.0043 0.0055 0.3820841 0.719791965 0.10232779
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The synaptosomal-associated protein, SNAP25, is a pre-
synaptic plasma membrane protein that functions in the synap-
tic vesicle membrane docking and fusion pathway. It is also
involved in the regulation of insulin secretion (29,30).

No significant association was found on the hypertension-
related genes, probably because the genetic effects were
obscured by the antihypertensive treatments of the study
groups. Lack of significant association on these genes did
not necessarily mean that they have no influence on nephropa-
thy. More sophisticated study design, which stratifies patients
according to the longitudinal measurements of blood pressures
and antihypertensive medications, is required to reveal the
hypertension-related associations.

When investigated individually, the 13 SNPs were of
interest, because the null hypotheses of no association were
rejected. However, when the 231 SNPs were assessed together,
the P-values of these 13 SNPs cannot pass the criteria set by
the Bonferroni correction method. Thus, their role of disease
association need to be further confirmed, particularly on their
epistasis. The null hypothesis of no association could not be
rejected for the remaining SNPs, thus, they were excluded
from the epistasis analysis. The removal of the remaining
SNPs can avoid obscuring the true epistatic effects. It can
also reduce the search space of epistasis models.

Analysis of epistasis

Analysis of epistasis has been advocated for the genetic dis-
section of complex diseases (18,19). A detailed account on
various definitions of epistasis is given in (31). Bell et al.
(18) presents a two-locus model for hypertension, based on
whole-genome sib-pair studies. For examples of higher-order
interactions, MDR has successfully identified the interactive
roles of four SNPs on the sporadic breast cancer (22), as
well as the three-locus epistatic effect on atrial fibrillation (32).

Figure 3. The LD, shown as D prime numbers, among the eight SNPs
of EGFR.

Table 5. The prediction performance of the 7-locus model detected by GABA

Clinical status

Positive Negative

Prediction Positive 110 43
Negative 25 68

Table 6. The prediction performance of the two-locus model described by
a Boolean statement

Clinical status

Positive Negative

Prediction Positive 89 37
Negative 53 79

Figure 2. The LD, shown as D prime numbers, as well as the LD blocks
among the nine SNPs of RXRG.

Figure 1. The optimum two-locus model detected by MDR. This model
comprises SNP0 and SNP11. ‘XX’ denotes the missing genotypes.
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We combined the strength of MDR and GABA for finding
the epistatic effect on DN. MDR presents the epistasis effect in
a tabular format where each cell of the table represents a par-
ticular combination of genotypes (e.g. Fig. 1). This format of
presentation is not adequate for higher-order interactions (e.g.
involving more than five loci). Unlike MDR, GABA presents
models in Boolean expressions, where the interactions of loci
are stated in an algebraic equation (23). GABA is capable of
detecting higher-order interactions and showing them in
terse statements. That is why we employ GABA in addition
to MDR for facilitating further biological interpretations.

The pathogenesis of DN involves complicated interactions
between multiple genetic and environmental factors. The strin-
gent criteria on the study groups have permitted us to obtain
evidences on the novel coupling effect of EGFR and RXRG
on DN. SNP0 (rs12671550) resides in the first intron region
of EGFR. The EGFR signaling pathway is one of the most
important pathways that regulate growth, survival, prolifer-
ation and differentiation in mammalian cells (33). The
expression of EGFR is also closely related to tumorigenesis
(33). RXRG, a member of the retinoid X receptor (RXR), is
a nuclear receptor which is involved in mediating the anti-
proliferate effects of retinoic acid. Retinoids, including
vitamin A and its synthetic and non-synthetic derivatives,
modulate fundamental cellular processes, including cell
growth, differentiation and apoptosis. EGFR and retinoid-
dependent signaling pathways have both been shown to play
roles in carcinogenesis.

The epistatic effect of EGFR and RXRG provides a starting
point for further fine-mapping and functional studies on these
two regions, which is currently in progress. Haplotypes are
valuable information for association, particularly, after the
dataset of International HapMap project is released for refer-
ence (34). This is certainly an important direction for further
investigations. However, this project was initiated in 2002,
and the study design was based on the concept of diplotype,
which was defined as the collection of single-locus genotypes
whose phase is unknown (35). The SNPs were selected
without the consideration of haplotype structures (and
Tag-SNPs) of the human genome. Consequently, the SNPs of
many genes (e.g. EGFR) cannot be used to construct haplo-
types. This has limited our in-depth analysis on haplotypes

using the current raw data. It is our future work to genotype
EGFR and many other genes on the Tag-SNPs, taking advan-
tage of the resources from the International HapMap project
(34). This will enable the investigation of the epistatic effects
based on multiple haplotypes. Nevertheless, our initial findings
on the epistatic effect of EGFR and RXRG may lead toward
detailed views on the pathophysiological mechanism of DN,
and potential points for clinical interventions.

MATERIALS AND METHODS

Study population

Case/control groups of type 2 diabetic patients, all ethnically
Han Chinese, were recruited from the Tri-Service General
Hospital in Taipei, Taiwan in 2002. The control group com-
prised 120 type 2 diabetic patients without nephropathies
(DM); the case group comprised 144 diabetic patients with
nephropathies (DN). All the recruited patients fulfilled the
following criteria: (i) the age was between 30–75 years old;
(ii) had been diagnosed with diabetes for more than 5 years;
(iii) the fasting plasma glucose was greater than 6.93 mmol/l
(126 mg/dl); (iv) the HbA1C was greater than 6%. The ration-
ale of criterion (ii) is that DN is a chronic process that a long-
term observation of patients is required to correctly stratify
patients. The study subjects were then further classified as
DN or DM according to three surrogate endpoints: urinary
albumin to creatinine ratio (ACR), BUN and serum creatinine.
ACR were measured more than twice at different time points.
Patients fulfilling either one of the following three criteria
were classified as the DN group: (i) average ACR was
greater than 52.8 mg/mmol (300 mg/mg); (ii) serum creatinine
was greater than 1.7 mg/dl; (iii) BUNwas greater than 20 mg/dl.
The rest of the patients were classified as the DM group. In
this definition, microalbuminuric and macroalbuminuric
patients were classified into the DN group.

Approval was obtained from the Internal Review Board of
the Tri-Service General Hospital before conducting the
study, and the approved informed consent form was signed
by each subject.

Genes and snps selection

Genes were selected so as to address important aspects of DN:
(i) interstitial fibrosis, (ii) ECM disposition and (iii) cell
growth and proliferation. The three aspects were all associated
with the progression of nephropathy. In addition, insulin and
diabetes-related genes were also investigated. Finally,
hypertension-related genes were also investigated. All the
SNPs chosen had minor allele frequency larger than 5%.
They were also confirmed not residing in the repetitive area
of the genome, avoiding erroneous associations.

Dna extraction and genotyping

DNA was isolated from blood samples using QIAamp DNA
blood kit following the manufacture’s instructions (Qiagen).
The qualities of isolated genomic DNAs were checked using
the agarose gel electrophoresis and the quantities determined
using spectrophotometry.

Table 7. Associations of haplotypes of the RXRG gene with DN were shown as
x2 P-values. The P-value smaller than 0.05 is shown in bold face

Block Haplotype P-value Haplotype frequency

Block 1 GA 0.0643 0.248106061
GC 0.2854 0.409090909
AC 0.7182 0.327651515

Block 2 TA 0.0330 0.174242424
TG 0.9265 0.185606061
CG 0.2011 0.623106061
CA 0.2733 0.001893939

Block 3 CGG 0.8551 0.007575758
CGT 0.4236 0.21780303
TGG 0.5312 0.284090909
TGT 0.4450 0.132575758
TAG 0.2344 0.35515873
TAT 0.9552 0.003968254
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Genotyping was performed using commercial TaqManw

Genotyping assays of Applied Biosystems Inc. (ABI).
TaqManw PCR was performed according to the manufac-
turer’s standard protocol as follows: 5 ng of genomic DNA
was mixed with the 2X TaqMan Universal PCR Master Mix
and 20X TaqMan Assay Mix to a final volume of 5 ml,
which was then dispensed to a 384-well plate. Each sample
underwent 40 amplification cycles on the GeneAmpw PCR
System 9700 instrument (ABI). Fluorescent signals of the
two probes, corresponding to two different alleles, were ana-
lyzed using PRISMw 7900HT Sequence Detection System
(ABI). Genotypes were determined automatically by Sequence
Detection Software (ABI). SNP IDs in Table 3 were referred
to the dbSNP database of the National Center for Biotechnol-
ogy Information, as well as the ABI assay IDs.

Methods for epistasis analysis

MDR and GABA were chosen for the analysis of epistasis
because they are suitable for this study on dichrotomous,
qualitative traits (DN versus DM). MDR is a non-parametric
approach (22). The case/control ratio of this study is
144/120 ¼ 1.2, a value which is reasonably close to 1, fulfill-
ing the assumption of MDR. The open-source Java version
MDR software v1.0.0rc1 was used. This software was down-
loaded from SourceForge.net.

The GABA algorithm was proposed and described in (23).
It is briefly summarized here for the ease of readers. It is a
combination of a genetic algorithm (GA) and the Boolean
algebra (BA). The BA is used to present the model. The GA
can systematically evaluate a variety of models, shown as
the varying numbers of SNPs jointed together by different
Boolean operators. Models were continuously generated by
the mutations and cross-over operations on the previous
models with above-average performance. GABA carries out
a heuristic optimization process with respect to sensitivity
and specificity, until the optimum model appears.

Methods for haplotype analysis

The LD blocks were identified by the Haploview software
downloaded from SourceForge.net (26). After the LD blocks
were determined, the haplotypes of each block were then
derived from the diplotype data (35), using the expectation-
maximization method (36).
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