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Maribel Casas1,2,3, Solène Cadiou8, Leda Chatzi9, Juan R. González1,2,3,
Regina Grazuleviciene7, Rosemary McEachan10, Rémy Slama8,
Marina Vafeiadi11, John Wright10, Murieann Coen4,12, Martine Vrijheid1,2,3,
Hector C. Keun4,5, Geòrgia Escaramís13,3,‡ and Mariona Bustamante1,2,3,‡,*,†

1ISGlobal, Barcelona 08003, Spain, 2Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain, 3CIBER
Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain, 4Division of Systems Medicine, Department of
Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK, 5Cancer Metabolism
and Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College
London, Hammersmith Hospital Campus, London W12 0NN, UK, 6Department of Environmental Health,
Norwegian Institute of Public Health, Oslo 0213, Norway, 7Department of Environmental Science, Vytautas
Magnus University, Kaunas 44248, Lithuania, 8Team of Environmental Epidemiology, IAB, Institute for
Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble 38000, France,
9Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
90033, USA, 10Bradford Institute for Health Research, Bradford BD9 6RJ, UK, 11Department of Social Medicine,
Faculty of Medicine, University of Crete, Heraklion 71003, Greece, 12Oncology Safety, Clinical Pharmacology
and Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0RE, UK and 13Departament de Biomedicina, Institut
de Neurociències, Universitat de Barcelona (UB), Barcelona 08036, Spain

*To whom correspondence should be addressed. Tel: +34 933160167; Fax: +34 932147320; Email: mariona.bustamante@isglobal.org

Abstract

Human metabolism is influenced by genetic and environmental factors. Previous studies have identified over 23 loci
associated with more than 26 urine metabolites levels in adults, which are known as urinary metabolite quantitative trait
loci (metabQTLs). The aim of the present study is the identification for the first time of urinary metabQTLs in children and
their interaction with dietary patterns. Association between genome-wide genotyping data and 44 urine metabolite levels
measured by proton nuclear magnetic resonance spectroscopy was tested in 996 children from the Human Early Life
Exposome project. Twelve statistically significant urine metabQTLs were identified, involving 11 unique loci and 10 different
metabolites. Comparison with previous findings in adults revealed that six metabQTLs were already known, and one had
been described in serum and three were involved the same locus as other reported metabQTLs but had different urinary
metabolites. The remaining two metabQTLs represent novel urine metabolite-locus associations, which are reported for the
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first time in this study [single nucleotide polymorphism (SNP) rs12575496 for taurine, and the missense SNP rs2274870 for
3-hydroxyisobutyrate]. Moreover, it was found that urinary taurine levels were affected by the combined action of genetic
variation and dietary patterns of meat intake as well as by the interaction of this SNP with beverage intake dietary patterns.
Overall, we identified 12 urinary metabQTLs in children, including two novel associations. While a substantial part of the
identified loci affected urinary metabolite levels both in children and in adults, the metabQTL for taurine seemed to be
specific to children and interacted with dietary patterns.

Introduction
Metabolite levels are considered a complex trait since their
variation in the human body is influenced by various factors,
specifically environmental conditions (nutrition, exposure to
xenobiotics, smoking and alcohol consumption, physical activ-
ity, etc.) and genetic variants (1,2,3).

The study of inborn errors of metabolism has allowed the
identification and functional characterization of many enzymes
and other proteins involved in human metabolism (4,5). Recent
technological advances in metabolomics and genetics have
allowed to systematically explore the less conspicuous influ-
ences of more common and less deleterious genetic variants on
human metabolism, known as metabolite quantitative trait loci
(metabQTL), by conducting genome-wide association studies
(GWAS) (6,7,8,9,10). In fact, these studies have suggested that
inborn errors of metabolism are only extreme cases of a wide
spectrum of genetic variation in human metabolism (1,2,3).
The study of metabQTLs might help to understand how genes
control metabolic pathways in the human body (1) and facilitate
causal inference in metabolite–disease associations, by applying
Mendelian randomization analyses (11). Furthermore, it can
shed light on the interplay between genetic variation and dietary
patterns and its effect on the metabolite levels and disease.

During recent years, more than 150 loci have been linked to
serum metabolite levels (6,7,9) and 23 loci to more than 26 urine
metabolite levels in adults (8,9,10). Nevertheless, to the best of
our knowledge, there is very little information on whether these
metabQTLs also affect the metabolism in early life. Indeed, in
other traits, such as body mass index (BMI), it has been shown
that the effects of some of the loci change across the life course
(12–17). Similarly, lactase persistence and non-persistence alle-
les represent another example of genetic variants in which the
effect—that is, lactase activity—is different in infancy than after
the weaning phase (18).

In this study, we aimed to identify urinary metabQTLs in chil-
dren. Using data from the Human Early Life Exposome (HELIX)
project involving 996 children of European ancestry (19), we
identified 12 urinary metabQTLs. Subsequently, we performed
fine-mapping and functional annotation of these metabQTLs,
compared them with findings in adults and tested their inter-
action with dietary factors.

Results
Description of study participants and study workflow

For this study, 996 European ancestry children presenting
both urinary metabolite levels and genome-wide genotyping
data were selected from the HELIX project (Supplementary
Material, Fig. S1) (19). Children were similarly distributed
among the cohorts (Table 1), with similar distributions of obese,
overweight and male children between cohorts (Supplementary
Material, Table S1). Around half of the children were males
and mean age was 7.9 years old. A noticeable percentage

Table 1. Descriptive of the study population

Total, N 996

Cohort, N (%)
BiB 88 (8.84)
EDEN 136 (13.65)
KANC 197 (19.78)
MoBa 200 (20.08)
Rhea 187 (18.78)
SAB 188 (18.88)

Sex, N (%)
Male 545 (54.72)
Female 451 (45.28)

Age (years), mean (SD) 7.93 (1.57)
Obesity statusa, N (%)

Thin 6 (6.12)
Normal 714 (71.69)
Overweight 150 (15.06)
Obesity 58 (5.82)
NA 13 (1.31)

Mother education level, N (%)
Low 111 (11.14)
Middle 339 (34.04)
High 514 (51.61)
NA 7 (0.70)

Meat intakeb, N (%)
Tertile 1 336 (33.73)
Tertile 2 286 (28.71)
Tertile 3 358 (35.94)

Dairy products intakeb, N (%)
Tertile 1 354 (35.54)
Tertile 2 329 (33.03)
Tertile 3 297 (29.82)

Fish intakeb, N (%)
Tertile 1 398 (39.96)
Tertile 2 293 (29.42)
Tertile 3 289 (29.01)

Beverages consumptionb, N (%)
Tertile 1 395 (39.66)
Tertile 2 350 (35.14)
Tertile 3 235 (23.59)

Urine sample type, N (%)
Night 32 (3.21)
Morning 31 (3.11)
Combined pool 933 (93.67)

az-score of the BMI classification according to the World Health Organization.
bFor all 4 food groups, 16 individuals had missing information (16.01%).
SAB: INMA Sabadell subcohort.

of the children presented overweight (15.06%) or obesity
(5.82%), and more than 90% of them had urine pooled samples
available, which provide a better average of the daily metabolic
fluctuations, including dietary intake, than spot urine samples
(20).

Urinary metabolite concentrations were similarly distributed
across the six cohorts (Supplementary Material, Table S2).
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Figure 1. Workflow of the study. Genome-wide genotyped genetic data of 996 HELIX children were analyzed to obtain the SNP heritability of 44 urinary metabolites by

GCTA-GREML (62,63) analysis as well as to identify metabQTLs using the CMS method. Results of the genome-wide association study were summarized per independent

LD blocks, based on a recombination map (64), in order to obtain the loci displaying a statistically significant association. This led to the identification of 12 metabQTLs,

involving 11 different loci and 10 metabolites. Next, we conducted association analysis using HRC imputed genetic data in these 11 loci, followed by fine-mapping by

the Bayesian-based method PAINTOR v3.0 (23). Then, comparison of our findings with results from other studies in adults was done. SNiPA (25), FUMA (26) and ProGeM

(27) were used to further narrow down the lead SNPs as well as to functionally annotate the lead SNP identified for each metabQTL. Finally, gene-by-environment

interactions were tested for candidate metabolites.

Moreover, no clustering of the cohorts can be observed in a
principal components analysis plot from the urinary and serum
metabolome (Supplementary Material, Fig. S2).

Figure 1 shows the workflow followed in the study, which
includes calculation of the single nucleotide polymorphism
(SNP)-heritability (h2) of urinary metabolites, identification
of child urinary metabQTLs, fine-mapping and functional

annotation, comparison with metabQTLs in adults and testing
their interaction with dietary factors.

SNP-h2 of urinary metabolites in children

SNP-h2, which is indicative of the proportion of phenotypic
variance due to the additive effects of a set of SNPs, was
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computed using the Genome-wide complex trait analysis (GCTA)
with the Genome-based restricted maximum likelihood (GREML)
method for the 44 urinary metabolites considering the 283 704
genotyped SNPs. The values of phenotypic and genotypic
variation for each trait can be observed in Supplementary
Material, Table S3. For 28 of the metabolites, SNP-h2 was
statistically significant (P-value < 0.05) and ranged from 0.36
to 1 with mean [standard deviation (SD)] of 0.65 (0.23). Four
metabolites showed a SNP-h2 of 1 (hippurate, 4-deoxyerythronic
acid, leucine and trimethylamine).

Identification of 12 urinary metabQTLs in children

In order to identify urinary metabQTLs, the Covariates for Multi-
phenotype Studies (CMS) method was used (21). The CMS algo-
rithm uses as covariates collected correlated phenotypes that
vary with the outcome but not with the genotype because of
shared risk factors; this decreases phenotypic variance inde-
pendently of the genotype and, hence, increases the statistical
power (21). In our study, serum and urinary metabolite levels
served as possible covariates for the CMS algorithm. Moreover,
models were adjusted for child’s age, sex, the first 20 GWAS
principal components (PCs) and urine sampling type.

After multiple-testing correction (corrected P-value threshold
< 1.52 × 10−9), 127 statistically significant SNP–metabolite asso-
ciations were obtained (Supplementary Material, Table S4). They
involved 11 unique loci and 10 different metabolites in a total of
12 metabQTLs. In the statistical models, CMS selected between
24 and 30 covariates (median = 28). On average, 60% of the
included covariates were serum metabolite levels. The increase
in statistical power achieved by CMS is visible in the quantile–
quantile (Q–Q) plot (Supplementary Material, Fig. S3). It allowed
the identification of two extra metabQTLs (with glycine and 3-
hydroxyisovalerate) which would have not been identified using
standard linear regression models (Supplementary Material,
Fig. S4).

Fine-mapping of child urinary metabQTLs

To gain insight into the 12 metabQTLs, we ran CMS again in these
loci, but now using genetic data imputed with the Haplotype
Reference Consortium (HRC) panel (22). The lead SNP in these
12 metabQTLs can be seen in Table 2, and additional signifi-
cant SNPs in each locus are shown in Supplementary Material,
Table S5. The SNP-h2 of all 10 metabolites displaying a sta-
tistically significant association with a locus was significant
(nominal P-value < 0.05). The percentage of phenotypic variance
of each metabolite explained by the lead SNP ranged from 2.49
to 10.26%, except for the lead SNP at the locus associated with
trimethylamine, which explained up to 48.23% of the phenotypic
variance (Table 2). Fine-mapping with the Probabilistic Annota-
tion INTegratOR (PAINTOR) framework identified minimal cred-
ible sets that included between 2 and 13 SNPs (Table 2) (23). The
list of these SNPs can be seen in Supplementary Material, Table
S6.

Comparison of child urinary metabQTLs with adult
metabQTLs

The 12 locus–metabolite associations identified in children were
compared with previous studies in adults (Supplementary Mate-
rial, Table S7). Six out of the 12 metabQTLs had already been
reported in urine in adult individuals (Table 2; Supplementary
Material, Table S8 in green) (8,24). All of them had consistent

direction of the effect. It should be noted that we compared
loci for 3-hydroxybutyrate + 3-aminoisobutyrate with loci for 3-
aminoisobutyrate alone as we could not isolate the NMR signals
of these two metabolites.

The other six urinary metabQTLs were novel SNP–metabolite
associations. However, four of the loci involving these six
metabQTLs were known loci related to other urinary metabolites
or to the same metabolite but in other biological matrices. In par-
ticular, the locus associated with urinary 3-hydroxyisovalerate
levels in our study had been previously described for
3-hydroxyisovaleric acid-carnitine, an intermediate of
3-hydroxyisovalerate, in the serum of adult subjects (Table 2;
Supplementary Material, Table S8 in orange) (7). Furthermore,
two loci associated with N-acetylneuraminic acid and one of
them associated also with 3-aminoisobutyrate had previously
been related to N-acetylaspartate in adults, but in the opposite
direction (Table 2; Supplementary Material, Table S8 in yellow)
(8). The last two metabQTLs, involving the urine metabolites
3-hydroxyisobutyrate (chromosome 9, lead SNP rs2274870) and
taurine (chromosome 11, lead SNP rs12575496), represented
novel loci described for the first time in this study (Table 2;
Supplementary Material, Table S8 in red). For these novel
metabQTLs, we performed fixed-effects based meta-analyses
by cohort, and while the metabQTL for 3-hydroxyisobutyrate
was consistent across the six cohorts (I2 = 0%), the metabQTL
for taurine showed some heterogeneity (I2 = 88%), yet all
cohorts, except SAB, presented the same direction of the effect
(Supplementary Material, Fig. S5, Table S9).

We then examined whether the seven additional metabQTLs
described in adults (8), and for which the associated metabolite
had been measured in HELIX, were at least nominally significant
in HELIX children (Supplementary Material, Table S10). One of
them could not be tested as we could not find a proxy SNP, and,
among the remaining, four of them were nominally replicated
in children. They involved two additional loci for glycine, one for
3-hydroxyisovalerate and one for tyrosine.

Functional annotation of child urinary metabQTLs

In order to increase our insight into the biological mechanisms
underlying the metabQTLs, identification of candidate causal
genes was carried out by combining information from several
tools (Supplementary Material, Table S11): Single Nucleotide
Polymorphism Annotator (SNiPA) (25), Functional Mapping and
Annotation of Genome-Wide Association Studies (FUMA) (26),
Prioritization of candidate causal Genes at Molecular QTLs (Pro-
GeM) (27) and Colocalisation Tests of Two Genetic Traits (coloc)
(28) for co-localization with kidney cortex expression quantita-
tive trait loci (eQTLs) (GTEX v8), the tissue most likely involved
in regulating urinary metabolite levels.

For the six known urine metabQTLs, our strategy identified
the same potential top causal genes as described in (8) through
manual curation of the literature (Supplementary Material,
Table S12). In addition, two of the metabQTLs were also identified
as eQTLs linked to their potential causal gene in several tissues
(Table 2; Supplementary Material, Tables S11 and S12).

The candidate gene for the locus related to
N-acetylneuraminic acid and 3-aminoisobutyrate was
N-Acetyltransferase 8 (NAT8) gene, also described by (8). However,
our strategy also identified the Centrosome and basal body
associated protein (ALMS1) gene with the same score. The other
locus for N-acetylneuraminic acid contained as potential causal
gene Alpha 1–3-N-acetyl-galactosaminyltransferase and Alpha 1–3-
galactosyltransferase (ABO), as described before (8). The potential
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causal gene for the loci related to 3-hydroxyisovalerate was
Methylcrotonoyl-CoA carboxylase 1 (MCCC1), as proposed elsewhere
(8). In all four cases, the metabQTLs were also identified as
eQTLs of their potential causal genes in several tissues (Table 2;
Supplementary Material, Tables S11 and S12).

Finally, regarding the two novel urinary metabQTLs, we
identified Nipsnap homolog 3A (NIPSNAP3A) as the potential
causal gene for the 3-hydroxyisobutyrate metabQTL (Fig. 2A).
The SNP identified as lead for this metabQTL is a missense
variant (p.Arg100Gln) in NIPSNAP3A and also has been reported
to be an eQTL for the same gene in several tissues (Table 2;
Supplementary Material, Tables S11 and S12). Furthermore, the
metabQTL locus has been associated to the response to cytidine
analogs (gemcitabine) trait (29) according to the NHGRI-EBI
GWAS Catalog (Supplementary Material, Table S13), and visual
inspection of stacked locus zoom plots suggest that they could
be the same signal (Supplementary Material, Fig. S6).

On the contrary, we could not find any causal gene for
the metabQTL associated with taurine (Table 2; Supplementary
Material, Tables S11 and S12). Moreover, the lead SNP was neither
an eQTL nor a SNP associated with a trait according to the
NHGRI-EBI GWAS Catalog (Supplementary Material, Table S13).
The regional association plot for taurine shows that the lead
rs12575496 SNP is in an intergenic region (Fig. 2B): the closest
upstream gene (at 0.46 Mb) is the Long intergenic non-protein
coding RNA 2720 (LINC02720) and the closest downstream gene
(at 0.65 Mb) is the MIR4300 Host gene (MIR4300HG). Both of them
are long non-coding RNAs with unknown functions.

Although some of the metabQTLs were in linkage disequi-
librium (LD) with eQTLs described in several tissues, the co-
localization analysis could not prove that the signal for the
metabQTL was also involved in the regulation of the expres-
sion of nearby genes in kidney cortex (Supplementary Material,
Table S14).

Interaction of urinary metabQTLs with dietary factors
in children

Interactions between lead SNPs, representing five different
metabQTLs and dietary factors were studied. These five
metabQTLs, which involved four different metabolites (tau-
rine, trimethylamine, lysine and 3-hydroxybutyrate + 3-
aminoisobutyrate), were selected for analysis because a previous
association between the metabolite and dietary patterns had
been described in the literature (30–34) (see Material and
Methods). The studied dietary factors were meat, fish, dairy
products and beverage intake frequencies, which were treated
in tertiles (Table 1). The different cohorts presented slightly
different intake frequencies (Supplementary Material, Table S1).

Two gene-by-environment interactions (GxE) were found to
be statistically significant after Bonferroni multiple-testing cor-
rection (Fig. 3). They involved SNP rs12575496 at chromosome
11, which interacted with meat (P-value = 2.50 × 10−4) and
beverage (P-value = 2.84 × 10−4) frequency intake with respect to
taurine levels. Children with the CC genotype had similar taurine
levels regardless of their meat and beverage frequency intake,
while children with the alternate T allele had increasing levels
of taurine with increasing meat and beverage frequency intake.
Neither of the two GxE interactions involving rs12575496, urinary
taurine levels and meat or beverage dietary patterns replicated
for serum taurine levels (P-value interaction = 0.117 and 0.2003,
respectively) (Supplementary Material, Table S15). In fact, uri-
nary and serum taurine levels did not correlate (Spearman’s rank
correlation coefficient (ρ) = −0.0113). The fixed-effects based

meta-analyses by cohort showed heterogeneous results across
cohorts (I2 > 50%), especially for the interaction between the
taurine metabQTL and meat dietary patterns (Supplementary
Material, Fig. S7, Table S15). Only the interaction term between
the metabQTL and the third tertile of beverage intake remained
significant (P-value = 0.006).

Discussion
The GWAS of 44 urine metabolite levels measured in 996
children from the HELIX project resulted in the identification
of 12 metabQTLs, involving 11 unique loci and 10 different
metabolites. Overall, six of them were already known urinary
metabQTLs in adults, three involved known loci but associated
with different urinary metabolites, and one locus had been
described in serum in adults and was also nominally significant
in urine, and finally, the last two represented novel urinary
metabQTLs, described for the first time in HELIX children.

The six urinary metabQTLs already known in adults involve
the following metabolites: glycine, lysine, trimethylamine,
2-hydroxyisobutyrate and the sum of 3-hydroxybutyrate plus
3-aminoisobutyrate. Fine mapping allowed us to reduce the
number of SNPs in the loci to a maximum of seven. The genes
annotated to these loci following our strategy coincided with
the genes manually curated by (8): Alanine—glyoxylate amino-
transferase 2 (AGXT2), 4-Hydroxyphenylpyruvate dioxygenase (HPD),
Pyridine nucleotide-disulfide oxidoreductase domain 2 (PYROXD2) and
three members of the solute carrier family (SLC6A13, SLC7A9 and
SLC36A2) (Supplementary Material, Table S12).

The metabQTL identified for 3-hydroxyisovalerate had
already been described in serum for 3-hydroxyisovaleric acid-
carnitine, an intermediate of 3-hydroxyisovalerate (7). The
proposed causal gene for the serum metabQTL was MCCC1,
which is in agreement with the causal gene proposed by us.
This gene is responsible for the first reaction in the synthesis
of 3-hydroxyisovalerate by converting 3-methylcrotonyl-CoA to
3-methylglutaconyl-CoA in the mitochondria (35).

Three metabQTLs involved two known urinary loci but
associated with different metabolites: one at chromosome
9 associated with N-acetylneuraminic acid, and the other
at chromosome 2 also associated with N-acetylneuraminic
acid as well as with 3-aminoisobutyrate. As far as we know,
we are the first to study genetic variation related to N-
acetylneuraminic acid, and, thus, no comparison is possible.
Differently from the current study, no associations between
3-aminoisobutyrate and SNPs at this locus were described
in (8). In contrast, associations between the same two loci
and N-acetylaspartate were found in (8), but in the opposite
direction. However, an association displaying a negative effect—
as in our results—between the locus on chromosome 2
and N-acetylornithine in serum was identified in another
study (7). Thus, it seems that this locus participates in
the regulation of several metabolites. We identified two
candidate causal genes for this locus: N-acetyltransferase 8
(NAT8) and ALMS1. Given the biologically meaningful link
between the function of the NAT8 gene product and the
associated metabolites (acetylated compounds), NAT8 seems
a plausible candidate gene. In addition, SNPs in the region
act as eQTLs for NAT8 in several tissues and have been
related to kidney function (36). At the same time, ALMS1 has
been implicated in a number of kidney health disorders (37).
Regarding the metabQTL in chromosome 9 associated with
N-acetylneuraminic acid, we and Raffler et al. (8) attributed
the causal gene to the ABO. The lead SNP in the locus is
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Figure 2. Regional plot of the two novel urinary metabQTLs identified in HELIX children. (A) Regional plot of the metabQTL associated to 3-hydroxyisobutyrate. (B)

Regional plot of the metabQTL associated to taurine. Both regional plots represent association results from the imputed data. The x-axis represents the genomic position

(in Mb). The y-axis displays the strength of the association [represented as −log10(P-value)]. The SNPs’ symbols represent the functional annotations, while the colors

show the pairwise LD correlations to the sentinel variant. Furthermore, the plot shows the estimated recombination rate, genes and regulatory elements. All functional

annotation displayed in the plots was obtained by the SNiPA annotation browser (25).

an eQTL for the ABO gene in whole blood, pancreas, skeletal
muscle and adipose visceral tissue. This gene codifies for a
glycosyltransferase, which determines the blood group of an

individual by modifying the oligosaccharides on red blood
cell surface glycoproteins (38). Although these glycoproteins
are not modified by the addition of N-acetylneuraminic
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Figure 3. Graph representing the gene-by-environment (GxE) interactions for taurine. The horizontal axis represents the different values for (A) meat or (B) beverages

intake frequency (from low to high intake frequency): first tertile (T1), second tertile (T2) and third tertile (T3). The vertical axis shows the predicted taurine urinary

level. In each graph, the corresponding SNP and its genotypes are displayed, being, in both cases, ‘T’ the effect allele. Both graphs show non-parallel lines, implying a

different SNP effect depending on the environmental condition: (A) meat intake and (B) beverage intake.

acid, the ABO gene product does modify these proteins by
addition of other sialic acids, such as N-acetylglucosamine
or N-acetylgalactosamine. All sialic acids are formed from N-
acetylneuraminic acid (39). Therefore, by modifying the levels
of other sialic acids through addition on the glycoproteins of
red blood cells, the levels of their precursor (N-acetylneuraminic
acid) could also be affected. Alternatively, the proton nuclear
magnetic resonance spectroscopy (1H NMR) peak assigned to
N-acetylneuraminic acid could also include other metabolites
with N-acetyl groups, such as N-acetylglucosamine and
N-acetylgalactosamine.

We identified, for the first time, two novel urinary metabQTLs
in HELIX children: at chromosome 9 for 3-hydroxyisobutyrate
and at chromosome 11 for taurine. The fixed-effects based
meta-analysis of both metabQTLs showed consistent results
across cohorts. 3-hydroxyisobutyrate was not measured in
the largest study to date in adult population (8), and thus
the locus at chromosome 9 could still be relevant in adults.
3-hydroxyisobutyrate is a ketone body, reabsorbed in the
kidneys through vesicles by a Na+-gradient-dependent system,
especially when there is a low availability of glucose (40). The
lead SNP (rs2274870) is a missense variant (p.Arg100Gln) at the
NIPSNAP3A gene. Also, it is in LD with eQTLs for NIPSNAP3A in
several tissues, but we could not prove co-localization in the kid-
ney cortex. NIPSNAP3A encodes for a protein expressed in several
tissues, including the kidneys, that participates in the vesicular
transport, and thus it could be involved in the reabsorption of
3-hydroxyisobutyrate (41). Furthermore, visual inspection of the
region suggests that this metabQTL could also be involved in
the response to gemcitabine, a chemotherapy drug. An effect of
NIPSNAP3A on drug pharmacokinetics could be responsible for
this finding, rather than 3-hydroxyisobutyrate being causal of
chemoresistance to gemcitabine, since no link has been reported
between this metabolite and the drug.

The metabQTL for taurine seemed to be specific of HELIX
children because, although the metabolite was measured
in adults (8), no signal was observed at this locus. Taurine
(2-aminoethanesulfonic acid) is the most abundant, semi-
essential, sulfur-containing amino acid. It is not incorporated
into proteins; rather taurine acts as an intracellular osmolyte
as well as a neurotransmitter, and it has many functional
properties, including antioxidant and neuroprotectant effects
(42). Moreover, it has several potentially beneficial effects
to prevent the metabolic syndrome: it reduces triglycerides,
improves insulin resistance, lowers cholesterol and reduces

blood pressure by acting on the renin-angiotensin-aldosterone
system, among others (33,43). Our functional annotation strategy
did not provide any candidate causal gene for the taurine
metabQTL. The credible set contained eight SNPs, presenting
the lead one (rs12575496) a low minor allele frequency (MAF)
(∼0.05) and located in a gene desert region (44). Besides the two
closest genes (at ∼0.5 Mb), which are non-coding genes with
unknown function, the lead SNP is located at 1.68 Mb from the
Prolylcarboxypeptidase (PRCP) gene. PRCP codes for an enzyme that
cleaves C-terminal amino acids linked to proline in peptides,
such as angiotensin II, III and des-Arg9-bradykinin, resulting in
a decrease in blood pressure (45).

Diet is the main source of taurine, although smaller amounts
are also synthesized endogenously in the liver. Its levels in blood
are regulated through urinary excretion. Two of the principal diet
sources of taurine are meat, specially turkey and chicken, and
energy drinks, where taurine is added as a supplement (46). We
found that both meat and beverage intake frequency interacted
with SNP rs12575496 to determine the urinary taurine levels.
Although the link between meat and taurine is clear, meat being
an external source of taurine, the possible link between bever-
age consumption and taurine remains more elusive. Previous
findings have reported an interplay between taurine, which acts
as a renal osmolyte, and high sugar intake-induced hyperten-
sion due to renin-angiotensin system dysregulation (33). The
intake of beverages, characterized by high sugar levels, may alter
blood pressure, leading to changes in renal osmolytes excretion,
including taurine. In our data, the r2 between meat and bever-
ages intake was 0.006, which could be indicative that the two
interactions are independent. In carriers of the T allele, dietary
intake of meat and beverages correlated with urinary levels,
while in carriers of the C allele, urinary levels were independent
of dietary intake. This suggests that carriers of the C allele have
the ability to adjust taurine renal excretion to environmental
conditions (food intake), whereas carriers of the T allele seem to
lack this food intake-dependent taurine renal excretion control.
However, this proposed mechanism does not seem to apply
in serum since this GxE interaction was not found for serum
taurine levels. Nevertheless, replication in other datasets of the
taurine urinary metabQTL and its interaction with diet would be
needed, especially given the fact that there was substantial het-
erogeneity among cohorts and the P-values of the meta-analyses
of the interaction terms were mostly not statistically significant.
No other interactions between metabQTLs and dietary factors
were found after multiple-testing correction.
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Although our SNP-h2 results were in the range of estimations
obtained in other studies in adults (3,6), they must be interpreted
with caution due to the relatively small sample size, which
causes the SNP-h2 estimate to substantially fluctuate, often hit-
ting ≈0 or ≈1 boundary values. Therefore, these values of 0 and
1 do not represent accurate SNP-h2 estimations but are rather
an indicator of low or high SNP-h2, respectively. However, the
estimated SNP-h2 of 1 for hippurate does not seem to be in line
with findings in another study, where a low familial proportion
of biological variance was reported for hippurate in urine (47).
Regarding the 10 metabolites for which we detected significant
metabQTLs, they presented an average SNP-h2 of 0.58, higher
than the average SNP-h2 estimated for the other 34 metabolites,
which was 0.46. In addition, the average inter-individual variabil-
ity calculated from the urine samples collected during 1 week in
a subset of 20 HELIX children (20) was also higher for these 10
metabolites (40.71%) compared with the average of the others
(22.69%). In order to quantify the extent to which the identified
metabolic loci capture metabolite variance, the estimated SNP-
h2 was compared with the metabolite variance explained by the
lead SNP. For all 10 metabolites for which metabQTLs were iden-
tified, SNP-h2 was higher than the metabolite variance explained
by the lead SNP, which ranged between 2.49 and 10.26%. This
is indicative that, apart from the lead SNPs, there are other
SNPs (in the same locus or others) which are contributing to the
variance of these metabolite levels. However, for trimethylamine,
the estimated SNP-h2 is likely to be highly influenced by the lead
SNP (rs942814), which explains up to 48.28% of the metabolic
variance.

Our study has many strengths. First, the use of the CMS
method resulted in an increase in statistical power, thus, evi-
dencing the benefit of the use of shared variance between vari-
ables for the identification of metabQTLs. Second, to the best
of our knowledge, this is the first study in which genetic influ-
ences on urine metabolites have been identified in children and
one of the few studies—either in adults or children—focusing
on urine metabolites. Moreover, pooled urine samples, which
best control for intra-individual variability (20), were available
for the majority of individuals. Previous analysis of phenotypic
variability in some of these samples reported an excellent ana-
lytical reproducibility and precision (20). Furthermore, identified
metabQTLs were fine-mapped to credible sets covering from 2
to 13 SNPs, and 11 of them were functionally annotated with
plausible relationships between the metabolite and the gene
function. Finally, GxE were tested for candidate metabolites.

There are, however, some shortcomings in this project. First,
the final sample size (N = 996) was relatively small. For this rea-
son, a minimum MAF of 5% was selected, since associations with
SNPs with a lower MAF could have led to false positive associa-
tions. Second, although the analyses of serum and urine metabo-
lite levels in the cohorts were harmonized and samples were
fully randomized, the results regarding GxE interactions could be
influenced by the differences in dietary patterns among cohorts
as well as by other potential confounding factors present in the
cohorts. Third, owing to the computational burden present in
the CMS method, neither genome-wide imputed genotype data
nor urine metabolite ratios were considered in the present study.
Imputed genotype data were only evaluated for statistically
significant metabQTLs as part of the fine mapping approach.
Fourth, the comparison between urinary metabQTLs in adults
and children was restricted to common metabolites measured in
both populations, subjected to potential limitations of metabo-
lite annotation and limited by our statistical power. Indeed,
we could nominally (P-value < 0.01) replicate four metabQTLs

previously described in (8). Finally, the sample size was smaller
than the one recommended for GCTA-GREML analysis, causing
SNP-h2 estimations to vary within a great range.

In summary, this is the first study identifying urinary
metabQTLs in children. We have detected 12 metabQTLs, involv-
ing 11 unique loci and 10 different metabolites. Comparison
with previous findings highlighted a substantial fraction of SNP–
metabolite associations common to children and adults, while
the association with taurine seemed to be child-specific or at
least not previously reported in adults. Moreover, urinary taurine
levels resulted from the combined effect of genetic variation and
dietary patterns.

Materials and Methods
The HELIX project

HELIX is a collaborative research project across six established
and ongoing longitudinal population-based birth cohort studies
in six European countries (19,46): the Born in Bradford (BiB) study
in the UK (48), the Étude des DÉterminants prÉ et postnataux
du dÉveloppement et de la santÉ de l’ENfant (EDEN) study in
France (49), the INfancia y Medio Ambiente (INMA) cohort in
Spain (50), the Kaunas cohort (KANC) in Lithuania (51), the
Norwegian Mother, Father and Child Cohort Study (MoBa) (52)
and the Mother–Child Cohort study in Crete (Rhea) in Greece
(53). For 1301 children, exposure data, ‘omics’ molecular profiles
and child health outcomes were measured at 6–11 years of age.
Research has been carried out according to the international and
national guidelines and regulations (including the declaration
of Helsinki) (20). All six HELIX cohorts had been in existence
for some years and had undergone the required evaluation and
obtained all the required permissions for their cohort recruit-
ment and follow-up visits. Participants were asked to sign an
informed consent form for specific HELIX work, including clin-
ical examination and biospecimen collection (19). Each cohort
also confirmed that relevant informed consent and approval
were in place for the secondary use of data from pre-existing
data. The work in HELIX was covered by new ethics approvals in
each country. The final dataset included 996 European ancestry
children presenting both serum and urine metabolite levels
as well as genotyping data (Supplementary Material, Fig. S1).
Workflow of the study is show in Fig. 1.

Data processing

Data processing, as well as the rest of the analyses, were per-
formed using R (‘The R Project for Statistical Computing’) soft-
ware environment (v3.5.0) (54), unless stated otherwise.

Genotype data, quality control and imputation

Peripheral blood was collected in EDTA tubes, centrifuged and
the buffy coat was saved for DNA extraction. DNA was extracted
using the Chemagen kit (Perkin Elmer) at the CeGen-ISCIII (Uni-
versidad de Santiago de Compostela). Genome-wide genotyping
of 1397 HELIX samples was performed using the Infinium Global
Screening Array (GSA) MD version 1 (Illumina), which includes
692 367 variants, at the Human Genomics Facility (HuGe-F), Eras-
mus MC (www.glimdna.org). Genotype calling was carried out
using the GenTrain2.0 algorithm based on a custom cluster file
implemented in the GenomeStudio software. SNPs coordinates
were reported on human reference genome GRCh37/hg19 and
on + strand. DNA extraction and genome-wide genotyping were
performed using the same harmonized protocol in all cohorts.
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Quality control (QC) was performed with the PLINK program
following standard recommendations (54,55). Sample QC con-
sisted of filtering by <97% sample call rate (N = 43), sex dis-
cordance (N = 8), heterozygosity (N = 0), relatedness—including
potential DNA contamination—(N = 10) and duplicate samples
(N = 19). Next, the Peddy program was used to predict ancestry
from GWAS data (57). To do so, 6642 genetic variants which
are highly polymorphic among populations were extracted from
HELIX and compared with the 1000G project data (58). Ancestry
predicted from GWAS was, then, contrasted with the ancestry
recorded in the questionnaires, which led to the identification
and exclusion of 12 samples with discordant ancestry. Overall,
93 samples (6.7%) were filtered out, and 1304 samples remained
after sample QC. Regarding genetic variant QC, 408 217 SNPs
were filtered out because they either had a variant call rate
below 95% (N = 4046), were not in the Hardy–Weinberg equilib-
rium (HWE) (P-value < 1 × 10−06) (N = 913), displayed MAFs <

5% (N = 388 822) or were not aligned to the reference genomes
(N = 14 436). Finally, SNPs located in the mitochondrial DNA and
in the non-canonical pseudo-autosomal region (PAR) of chro-
mosome Y were removed (N = 446). As a result, 283 704 SNPs
remained in the dataset.

Imputation of the GWAS data was performed with the Impu-
tation Michigan server (59) using the HRC cosmopolitan panel,
version r1.1 2016 (22). Before imputation, PLINK GWAS data
were converted into VCF format, and variants were aligned
with the reference genome. The phasing of the haplotypes was
done with Eagle v2.4 (60) and the imputation with minimac4
(61), both implemented in the code by the Imputation Michigan
server. Chromosome X was imputed, including PAR and non-PAR
regions. In total, we retrieved 40 405 505 variants after imputa-
tion. Then, we applied the following QC criteria to the imputed
dataset: imputation accuracy (r2) > 0.9, MAF > 1%, HWE P-value
> 1 × 10−06; and genotype probabilities were converted to geno-
types using the best guest approach. The final post-imputation
QCed dataset consisted of 1304 samples and 6 143 757 variants
(PLINK format, Genome build: GRCh37/hg19, + strand).

Metabolomic data and QC

Although this project focused on the identification of urinary
metabQTLs, serum metabolite levels were considered as covari-
ates in the statistical models (see in the following). Urine and
serum samples were collected and processed according to iden-
tical pre-defined standardized protocols across all six cohorts
(30). As for urine samples, two samples, representing last night-
time and first morning voids, were collected on the evening and
morning before follow-up visit and were subsequently pooled
to generate a more representative sample of the last 24 h for
metabolomic analysis (n = 933). Either the night-time void (n =
32) or morning void (n = 31) sample was analyzed in cases where
a pooled sample was missing (Table 1). Serum was obtained from
the peripheral blood collected during the follow-up visit, with a
mean postprandial interval of 3.65 h.

Urinary metabolic profiles were analyzed by 1H NMR on a
14.1 Tesla (600 MHz 1H) NMR spectrometer at Imperial College
London, following a non-targeted approach. Samples from all
cohorts and batches were fully randomized. A total of 44 metabo-
lites belonging to 22 metabolic classes were annotated: quan-
tification was achieved for 24 metabolites, and the remaining
20 metabolites were semi-quantified (Supplementary Material,
Table S16) (20,30). The mean of the coefficients of variations (CV)
across the 44 NMR detected urinary metabolites was 11% [SD =
5.7%]. Individual CV and type of evidence used for metabolite

assignment is indicated in Supplementary Material, Table S16
(30). Urine metabolite levels were normalized with the median
fold change method and one-half of the minimum value was
used as an offset. Then data were log2 transformed. A summary
of urinary metabolite concentrations across the six cohorts can
be found in Supplementary Material, Table S2.

The levels of the serum metabolites were analyzed by a tar-
geted approach using the AbsoluteIDQ p180 kit (BIOCRATES Life
Sciences AG) following the manufacturer’s protocol using LC–
MS/MS and Agilent HPLC 1100 liquid chromatography coupled
to a SCIEX QTRAP 6500 triple quadrupole mass spectrometer at
Imperial College London (20,30,62). Samples from all cohorts and
batches were fully randomized. A total of 177 serum metabolites
were quantified (Supplementary Material, Table S17). Serum
metabolite concentrations were log2 transformed prior to statis-
tical analyses (30).

Dietary data

Data on the food intake frequency of 44 food items from 11
main food groups were collected through a short food frequency
questionnaire, and the average number of times per week that
each food item was consumed was recorded. Frequencies were,
then, classified into tertiles. Only data from the following four
main food groups, which are known to be associated to at least
one metabolite with an identified metabQTL, were considered in
this project: meat (processed meat, poultry and red meat), fish
(canned fish, oily fish, white fish and seafood), dairy products
(yogurt, cheese, milk and dairy desserts) and beverages (sugar-
sweetened soft and fizzy drinks and artificially sweetened, low-
sugar or sugar-free soda) (30). Dietary data were available for 980
individuals.

Calculation of SNP-h2 of urinary metabolites

SNP-h2 for the 44 metabolites was computed using the genome-
wide complex trait analysis (GCTA) program, which estimates
the additive contribution to a trait’s heritability of a particular
subset of SNPs (GREML analysis) (63). First, estimates of genetic
sharing between individuals, represented as a genetic relation-
ship matrix (GRM), from only the genome-wide autosomal com-
mon SNPs (MAF > 5%) were computed by GCTA (63). Then, GCTA’s
restricted maximum likelihood (REML) (64) was used to estimate
the variance explained by the GRM (random-effects) adjusted
for selected fixed-effects (age, sex and urine sampling type)
in a linear mixed-effects model. The resulting SNP heritability
from the REML analysis represented the proportion of pheno-
typic variation (i.e. metabolite levels) explained by the genotypic
variation (i.e. set of SNPs).

Identification of child urinary metabQTLs

Data from the six cohorts were combined in a single dataset to
perform the analyses for the identification of metabQTLs. The
reasons for this were: (i) the well-established and harmonized
protocol across cohorts; (ii) the absence of batch effect between
cohorts in the serum and urine metabolome data (Supplemen-
tary Material, Fig. S4) and (iii) the control of potential population
substratification by adjusting for the first 20 GWAS PCs.

For the identification of metabQTLs, we applied the CMS
method (21). It consists of, when testing for association between
a genotype and a phenotype (outcome), including as covariates
other collected correlated phenotypes that vary with the
outcome because of shared risk factors. The core of the method
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is an approach to select these covariates that are correlated with
the phenotype but not with the genotype, thereby decreasing
the phenotypic variance independently of the genotype (e.g.
phenotypic variance due to environmental factors), hence,
increasing the power. This approach achieves a gain in power
equivalent to that resulting from a 2- to 3-fold increase in
sample size (21). In this study, which aimed to identify urinary
metabQTLs, both urine and serum metabolite levels served as
possible covariates of the model in which a urine metabolite
was the outcome variable. Therefore, serum metabolite levels
were only included in the model as covariates since no serum
metabQTLs were studied.

The CMS pipeline is a three-step code: (i) pre-processing and
pre-filtering of the data, which pre-selects covariates (metabo-
lites levels expressed in log2) for each studied phenotype and
standardizes all variables (i.e. metabolite levels and variables
adjusting the model) to a standard normal distribution (mean =
0 and SD = 1); (ii) CMS running for each SNP—metabolite combi-
nation and (iii) summarization of results by approximately inde-
pendent LD blocks (64) and creation of tables and plots (65). The
statistical analysis performed by CMS consisted of linear regres-
sion models under the assumption of an additive genetic model
after selecting—if any—the correlated covariates to be included
in the model. Models were adjusted for age, sex, 20 first GWAS
PCs calculated in European ancestry children—accounting for a
31.2% of the GWAS variability—and urine sampling type (night
only, morning only or pooled sample). Categorical variables, such
as sex and urine sampling type, were treated as dummy variables
and were subsequently standardized in the first step of the CMS
pipeline as well as the rest of variables. SNPs located in the non-
PAR region of chromosome X were codified as 0–2 in males and
as 0–1–2 in females. Instead, SNPs in the PAR region were codified
as 0–1–2 in both males and females.

In a first screening, CMS was applied on the genome-wide
genotyped SNPs. Significant associations were determined by
dividing the standard genome-wide significance threshold of 5
× 10−8 by the virtual number of independent tests across the real
number of tests performed computed by taking into account the
degree of correlation between urinary metabolites levels, named
as the effective number of tests (ENT), adapted from elsewhere
(67,68). A P-value of 1.52 × 10−9 was obtained. For the metabQTLs
identified through analysis of the genotyped data, we repeated
the CMS analysis with genotyped plus HRC imputed SNPs (MAF
> 0.05) located within the 11 independent LD blocks in which
the 11 statistically significant metabQTLs were found. For each
statistically significant locus–metabolite association identified
in this second screening, a lead SNP was identified (see in the
following). The proportion of the phenotype’s variance explained
by the lead SNP was computed for each metabolite according to
a method used by Teslovich et al. (69).

Moreover, we performed standard linear regression analyses
by cohort (adjusted for sex, age, urine sample type and 20 first
GWAS) of the two novel metabQTLs identified in order to address
potential heterogeneity across cohorts. CMS was not used for
this analysis since, for these two metabQTLs, results provided
by the CMS algorithm were very similar to those obtained
without adjusting for the covariates selected by CMS (Table 2).
Results by cohort were combined through fixed-effects-based
meta-analysis and represented in forest plots with the meta
R package (70).

Fine-mapping of child urinary metabQTLs

Fine-mapping was performed with the Bayesian-based method
PAINTOR v3.0 (23). PAINTOR used the genotype–phenotype asso-

ciation results from the second screening (genotype plus HRC
imputed data) to calculate, for each SNP, its posterior inclusion
probability (PIP). PIP allows to estimate the minimum set of
SNPs, known as ‘credible set’, that contains all causal SNPs
with a probability of alpha. In this study, we used an alpha of
0.1 (confidence interval of 90%). Next, the selection of the lead
SNP for each statistically significant locus was carried out. To
do so, apart from the credible set obtained by PAINTOR, the
FUMA (26) web-based platform was ran using default parameters
except for the LD threshold used to define ‘independent’ SNP(s)
within each locus, which was set to r2 < 0.4. Results from these
two resources were combined into a score table in which each
proposed lead SNP obtained a score based on: (i) if it was present
in the credible set obtained by PAINTOR; (ii) if FUMA had selected
it as a lead SNP; (iii) if FUMA had selected it as an independent
significant SNP and (iv) if an association between this SNP and
levels of a metabolite (either serum or urinary) was described
in the NHGRI-EBI GWAS Catalog (71) (Supplementary Material,
Table S11).

Comparison of child urinary metabQTLs with
metabQTLs in adults

MetabQTLs identified in our study in children were compared
with results from other GWAS studies of urinary metabolites in
adults (Supplementary Material, Table S7). To do so, the summary
statistics of all significant SNP–metabolite associations from
these studies were converged together to create a reference
dataset for comparison. The Metabolomics GWAS Server (7,72)
and the NHGRI-EBI GWAS Catalog (71) (study GCST003119 (8)
downloaded on 08/06/2019) were used to download most of these
results, while others were manually added from the published
paper. For those significant metabQTLs not previously described
in urine, we searched whether they had been described in other
biological matrices, such as serum. For this, we queried the
Metabolomics GWAS Server (7,72) and the NHGRI-EBI GWAS
Catalog (71).

Functional annotation of child urinary metabQTLs

Mapping SNP(s) for each statistically significant locus to candi-
date genes that are most likely causally linked to the observed
changes in the metabolite levels was carried out using three
different functional annotation tools: SNiPA (25), FUMA (26) and
ProGeM (27). As for ProGeM, the size of the LD region was the only
parameter modified to 500 kb upstream and 500 kb downstream
of the SNP. These tools, despite not performing statistical co-
localization analysis, carry out extensive searches across mul-
tiple eQTL data sources to identify if any of the queried SNPs,
or SNPs in LD, have been identified as eQTLs in diverse tissues
(with the exception of kidneys). To complement them, we per-
formed a co-localization analysis between all metabQTLs and
eQTLs for kidney cortex described in GTEx v8, using the coloc
R package with default parameters (28). This package tests five
hypotheses [H0: no association with either trait; H1: association
with metabolite levels (metabQTL) only; H2: association with
gene expression (eQTL) only; H3: association with metabolite
levels and gene expression, two distinct causal variants and
H4: association with metabolite levels and gene expression, one
shared causal variant] and provides a posterior probability at
the SNP level for each one. Summary statistics and MAF of all
common SNPs in our association analysis (using imputed SNPs)
and GTEx data for kidney cortex located within 1 Mb centered at
the lead SNP of each metabQTL were considered for the analysis.
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Selection of the candidate gene(s) affected by the lead SNP
and presumably causally linked to the observed changes in the
metabolite levels was done similarly to the selection of the lead
SNP. The outputs of SNiPA, FUMA and ProGeM were analyzed and
a summary table was built in which each gene proposed by either
of the three programs received a score based on: (i) how many
programs identified the gene as candidate gene; (ii) if it was the
nearest gene; (iii) if the lead SNP was an eQTL linked to the gene;
(iv) if the lead SNP was located in a coding region of the gene
and (v) if an association between the lead SNP and the gene was
described in the NHGRI-EBI GWAS Catalog (71) (Supplementary
Material, Table S11). This classification was manually curated
based on the UCSC Genome Browser (73).

Furthermore, as performed by FUMA, each lead SNP was
searched in the NHGRI-EBI GWAS Catalog to find previously
reported associations between the SNP and a variety of phe-
notypes (Supplementary Material, Table S13). The stacked locus
zoom plot representing 3-hydroxyisobutyrate metabQTL and an
association with response to gemcitabine in the same locus was
obtained by the ‘LocusCompareR’ R package.

Interaction of urinary metabQTLs with dietary factors

For statistically significant metabQTLs, where the metabolite
had been related to a dietary factor in the literature or in
the Exposome-Explorer database (31), GxE interactions were
tested. In the case of taurine, the Exposome-Explorer indicated
an association with protein intake (31), thus, we tested the
interactions between the lead SNP of the taurine metabQTL
and the different sources of proteins: SNP × meat, SNP × dairy
and SNP × fish intake. Furthermore, an association between
sugar-sweetened beverage intake and taurine urinary levels
is described in the literature (32), so the SNP × beverages
consumption interaction was also studied. Trimethylamine
is produced by the action of gut microbiota using dietary
precursors such as choline, betaine or l-carnitine, which are
present in meat, fish and daily products, among others, thus
we tested SNP × meat, SNP × dairy and SNP × fish intake.
Shellfish intake is associated with lysine urine levels (34), thus,
for lysine, we tested SNP × fish intake since shellfish intake is
included in the fish intake variable. Finally, in the case of the trait
combining 3-hydroxybutyrate and 3-aminoisobutyrate levels, an
interaction between the lead SNP and beverage consumption
was computed (30). For the rest of metabolites with metabQTLs,
no associations between their levels and food intake could be
found in the Exposome-Exporer database.

GxE were tested for the lead SNP of each metabQTLs identi-
fied by the fine-mapping of the association results of the sec-
ond CMS analysis in which genotyped plus HRC imputed SNPs
were tested. Standard linear regression models were used under
the assumption of an additive genetic factor interacting with a
dietary factor. Models were adjusted for age, sex, urine sampling
type and the 20 first PCs. Present analysis included 980 indi-
viduals with available dietary pattern data. To find statistically
significant interactions with the lead SNP, an analysis of variance
(ANOVA) was carried out to compare the model with the inter-
actions against the null model (Supplementary Material, Table
S15). Moreover, we analyzed the two statistically significant GxE
interactions, involving taurine and meat or beverages intake, by
cohort. Results by cohort were combined through fixed-effects
based meta-analysis and were represented in forest plots.

Supplementary Material
Supplementary Material is available at HMG online.
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https://helixomics.isglobal.org/. The main code can be found
at: https://github.com/beacalvo/metabQTLs.
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