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ABSTRACT: The National Academies of Sciences and Medicine 2020 consensus statement advocates the reinstatement of research in
preconception heritable human genome editing (HHGE), despite the ethical concerns that have been voiced about interventions in the
germline, and outlines criteria for its eventual clinical application to address monogenic disorders. However, the statement does not
give adequate consideration to alternative technologies. Importantly, it omits comparison to fetal gene therapy (FGT), which involves
gene modification applied prenatally to the developing fetus and which is better researched and less ethically contentious. While both
technologies are applicable to the same monogenic diseases causing significant prenatal or early childhood morbidity, the benefits and
risks of HHGE are distinct from FGT though there are important overlaps. FGT has the current advantage of a wealth of robust preclin-
ical data, while HHGE is nascent technology and its feasibility for specific diseases still requires scientific proof. The ethical concerns sur-
rounding each are unique and deserving of further discussion, as there are compelling arguments supporting research and eventual clini-
cal translation of both technologies. In this Opinion, we consider HHGE and FGT through technical and ethical lenses, applying
common ethical principles to provide a sense of their feasibility and acceptability. Currently, FGT is in a more advanced position for clin-
ical translation and may be less ethically contentious than HHGE, so it deserves to be considered as an alternative therapy in further
discussions on HHGE implementation.

Key words: human heritable genome editing / fetal gene therapy / gene modification / ethical lens / ethical principles / National
Academies of Sciences and Medicine 2020 consensus statement

Introduction
Gene modifying technologies (GMTs), encompassing gene addition and
gene editing (GE) strategies, facilitate treatment in numerous mono-
genic disorders, ranging from perinatally-lethal diseases (e.g. a-thalasse-
mia major (ATM), primary immunodeficiencies) to major debilitating
conditions (spinal muscular atrophy (SMA), cystic fibrosis (CF)) affect-
ing large populations globally (Piel, 2016; Ernst et al., 2020; Guggino
and Cebotaru, 2020). As most genetic diseases manifest during child-
hood, early prevention is required to reduce poor health outcomes
(Scheuner et al., 2004; O’Connell et al., 2020). CRISPR/Cas9 (clus-
tered regularly interspaced short palindromic repeats/CRISPR-

associated protein 9) is a GMT poised to make substantial impact in
perinatal medicine by making prenatal correction of pathogenic muta-
tions a technical possibility. With heritable human genome editing
(HHGE), which applies CRISPR/Cas9 tools to the human embryo (or
gametes), the intention is to ensure healthy, disease-free genetically-re-
lated offspring without the ability to transmit mutations to their prog-
eny (Rossant, 2018). Additionally, HHGE may be the only option for
couples at risk of Y-chromosome microdeletions, or autosomal genetic
disorders where one or both parents are homozygous for dominant
or recessive alleles.

The National Academies of Sciences and Medicine (NASEM) 2020
consensus statement (‘the Report’) advocates the reinstatement of
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research in HHGE and suggests an inevitability of HHGE implementa-
tion as a potential future strategy within the confines of a narrow set
of criteria for clinical application (The_Royal_Society et al., 2020). The
Report is likely to become an authoritative source of information for
scientists and physicians involved in research policy development and
eventual counseling of prospective parents on possible GMT options
for hereditary diseases. However, it critically omits discussion of alter-
native technologies such as potential prenatal interventions to mitigate
pathological effects of genetic diseases in existing or future children.
Published following the birth of ‘CRISPR babies’ Lulu and Nana
(Begley, 2018; Doxzen and Halpern, 2020), the Report states that, at
this stage, only carrier parents of monogenic diseases caused by well-
characterized mutations with high penetrance and serious morbidity
should be considered for the research application of HHGE. The
Report lists specific conditions in its Category A (CF, sickle cell disease,
b-thalassemia major) and in a small subset of its Category B (e.g.
Huntington’s disease). Although the Report provides a robust compari-
son of HHGE and certain postnatal somatic GE strategies, it does not
consider alternative perinatal therapies which have already been applied
to Category A candidate diseases in research settings, the importance
of which is acknowledged in the World Health Organization Position
Paper on human genome editing (World_Health_Organization, 2021),
which did not compare the two strategies.

In this Opinion, we discuss HHGE in relation to prenatal GMT
viewed through ethical and technological lenses. For our purposes,
HHGE refers to application of the CRISPR-Cas9 system to certain
germline cells. Though it can be applied to spermatogonial stem cells,
oocytes matured in vitro or gametes derived from induced pluripotent
stem cells (Vassena et al., 2016; Plaza Reyes and Lanner, 2017), we
will confine our discussion to HHGE in the embryo.

Alternatives to HHGE for
correcting genetic disease in
early development
Monogenic disorders can be addressed at one of three stages (Fig. 1):
preconceptionally, to produce disease-free offspring; prenatally, to miti-
gate intrauterine pathogenesis; postnatally, in early infancy before ma-
jor morbidity or lethality manifests (Traeger-Synodinos, 2013;
O’Connell et al., 2020). Established clinical methods to address mono-
genic disease preconceptionally include carrier screening in at-risk pop-
ulations, and personalized ART, such as preimplantation genetic testing
for monogenic diseases (PGT-M) with embryo selection following IVF
(Goodeve, 2008; Su et al., 2011; Barrett et al., 2017). Genomic inter-
ventions have become steadily ingrained in reproductive services, as
expected pregnancy outcomes include disease-free offspring in addition
to live births. PGT-M requires at least one IVF cycle, trophectoderm
biopsy and genotyping to ensure that only mutation-free embryos are
transferred (Ben-Nagi et al., 2019). This is useful for at-risk carrier cou-
ples willing to undergo a lengthy medical process, and accepting the
possibility that they may ultimately not have an embryo suitable for
transfer. Prenatal strategies include invasive genetic diagnosis with se-
lective pregnancy termination before the legal gestational limit.
Postnatal interventions range from palliative (e.g. enzyme replacement

therapy) to potentially curative (e.g. gene addition therapy) (Mukherjee
and Thrasher, 2013; Mendell et al., 2021; Sun and Roy, 2021).

Prenatal technologies employ GMTs to target the developing human
before birth, when it is possible to correct gene mutations before
pathogenesis commences. Prenatal fetal gene therapy (FGT), which
like HHGE has yet to be translated clinically, provides a viable option
for curing Category A candidate disorders (Nishida et al., 2015; Dighe
et al., 2018; Shangaris et al., 2019; Cortabarria et al., 2020). FGT
involves delivering transgenes encoding the correct version of aberrant
disease-causing genes to somatic cells (Mattar et al., 2012; Peranteau
and Flake, 2020), potentially reducing disease burden, supported by ro-
bust years-long evidence of successful correction, safety and longitudi-
nal surveillance in non-human mammalian recipients (Mattar et al.,
2012; O’Connell et al., 2020). Proof-of-cure and safety have been
demonstrated in high-fidelity animal models of blood disorders, neuro-
metabolic diseases and SMA, especially when compared with postnatal
therapies (Abi-Nader et al., 2012; Mattar et al., 2012; Roybal et al.,
2012). The International Fetal Transplantation and Immunology Society
(iFeTIS) published consensus statements in support of fetal stem cell
transplantation (SCT) and gene therapy, as the main advantage is the
higher therapeutic efficacy compared with postnatal intervention
(MacKenzie et al., 2015; Almeida-Porada et al., 2019). FGT can be
considered for its unique benefits over postnatal somatic GMT, includ-
ing reduced immune-toxicity and access to immune-privileged organs
like the central nervous system (Mattar et al., 2012; Massaro et al.,
2018; Almeida-Porada et al., 2019; Peranteau and Flake, 2020). The
distinct advantage of early intervention is recognized in clinical gene
therapy trials of severe combined immunodeficiency syndrome (SCID)
and SMA (Thrasher et al., 2005; Waldrop et al., 2020; Houghton and
Booth, 2021; Sun and Roy, 2021), and illustrated in recent clinical trials
of early-onset severe monogenic diseases actively recruiting very young
children (Supplementary Table SI). We will limit our discussion to a
comparison of HHGE and FGT, particularly focusing on the ethical
controversies accompanying their application in clinical research.
HHGE and FGT share scientific methods, and when the technology is
available, either intervention may be applied to an appropriate disease
candidate. HHGE and FGT permit intervention early in development
before a disease manifests, primarily because of the advantageous tem-
poral factors enhancing the likelihood of therapeutic success (Fig. 2).
Those involved in clinical research will need to determine which inter-
vention is more ethically acceptable. Likewise, policy-makers and re-
search funders must decide which technology to support.

Principle of proportionality in
HHGE and FGT
One of the most important questions to answer is if potential clinical
benefits afforded by these technologies are commensurate with the ef-
fort and resources invested, particularly if healthcare is publicly funded.
Invoking a proportionality principle, emphasizing appropriateness and
non-excessiveness, may aid in assigning priority to one technology over
the other. The proportionality principle assures patients and other
stakeholders that no more harm is borne than necessary, and that
benefits outweigh risks and burdens (Hermerén, 2012). Applying pro-
portionate actions toward curing devastating genetic diseases means
selecting the least-risky option that can achieve the intended
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..therapeutic effects, while not excessively consuming finite resources.
Such risks should be understood on societal and individual levels.

A key difference between HHGE and FGT is that only the former
intentionally modifies the human germline. Even if there is no guarantee
that future progeny’s gametes will carry the corrected genetic sequen-
ces (Mehravar et al., 2019), germline transmission following HHGE
would be absent only if mosaicism, where some embryonic cells re-
main uncorrected, results in unedited germline cells. Germline trans-
mission may affect an unknown number of future generations in ways
not yet anticipated. Precisely because of this, some have called for a
moratorium on editing the human germline, pending widespread socie-
tal consensus on the appropriateness of applying this technology to a
particular condition (Baylis, 2017; Lander et al., 2019). On one hand,
concerns over detrimental effects may be directed at the risks to fu-
ture generations. On the other, there is a present concern that if the

human genome is the ‘common heritage of humanity’ (Primc, 2020),
alterations to this heritage should be undertaken only if there is global
agreement on the permissibility of such actions. Meanwhile, FGT car-
ries a small probability of germline transmission, estimated at �1 in
6250 in animal models (Kazazian, 1999; Almeida-Porada et al., 2019),
which may be further mitigated by vector engineering for specific-cell
targeting and gene-editing. So, while both HHGE and FGT treat
disease-causing mutations before birth, HHGE aims to permanently
eliminate genetic mutations from the familial lineage thus relieving fu-
ture generations’ risk of the same hereditary condition (Ishii, 2017;
Rossant, 2018; He et al., 2020).

Proportionality analysis also requires individualized benefit-risk as-
sessment directed at the mother-to-be and future child. It is worth
noting that �25% of PGT-M cycles neither produce unaffected em-
bryos nor yield healthy completed pregnancies (Gutiérrez-Mateo et al.,

Figure 1. Proposed workflow to counsel a couple known to be at risk of having a baby with a genetic disease toward heritable
human genome editing and/or perinatal gene therapy. Ideally, couples complete genetic screening prior to conception to assess carrier
status, discuss risk of inheritance with the clinical geneticist, and determine the suitabilty and value of IVF, preimplantation genetic diagnosis and
embryo gene editing. Prenatal diagnosis is presented as an alternative option followed by fetal or neonatal therapy. Risks of individual treatments are
presented in the schema. OHSS, ovarian hyperstimulation syndrome; PGT, pre-implantation genetic testing.
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..2009). In fact, academic physicians have recently debated if GE should
replace embryo selection following PGT (Wells et al., 2019), particu-
larly advantageous for situations in which the few implantable embryos
produced by IVF all carry the disease mutation. HHGE may produce
mutation-free embryos, saving time and cost particularly for women
with reduced ovarian reserve who are less likely to produce good-
quality embryos, the primary factor affecting cumulative live-birth rates
(Niinimäki et al., 2015; Zhao et al., 2020). Certainly, a policy of PGT-
M and HHGE may reduce embryo wastage and the need for multiple
IVF cycles. As HHGE is dependent on IVF-PGT-M, several courses of
follicular stimulation may be required to produce sufficient embryos,
risking maternal morbidity from ovarian hyperstimulation and invasive
procedures (Zhao et al., 2020). Embryo damage from delivery of
CRISPR-Cas9 editing tools can cause physical harm to the embryo and
unpredictable molecular perturbations (Sato et al., 2016; Le et al.,
2021), risks also carried by IVF-PGT. The impact of these multiple

processes on the embryo’s ability to implant and develop into a viable
fetus is unknown (Ben-Nagi et al., 2019; Aluko et al., 2021).

A clear safety concern of HHGE is mosaicism resulting in unpredict-
able (perhaps uncorrected) phenotypes. Conversely, undesirable off-
target mutations and insertions/deletions may be retained in the em-
bryonic cells designated to become gametes, increasing the likelihood
of germline transmission of new mutations to future progeny.
Preclinical experiments in human and non-human mammalian embryos
demonstrate a wide range of mosaicism, an outcome which can be re-
duced by applying a high concentration of editing agents as early as
possible in the embryonic timeline (Mehravar et al., 2019). This is chal-
lenging in clinical practice, given the necessary interval between embryo
production by IVF, biopsy, molecular diagnosis and editing. Because of
these undesirable molecular effects, implementation of HHGE should
be accompanied by prenatal or postnatal genetic diagnosis. It is unclear
what other biological impact HHGE will have on the embryo and

Figure 2. Strategies to achieve genetic modification in the embryo by ex vivo gene editing or gene addition therapy. The authors
propose that embryo gene editing may be achieved in vitro following confirmation of the genetic mutation by embryo biopsy (currently performed on
Day 3 to Day 5 embryos). Alternative strategies in the fetus include direct in vivo gene addition therapy via injection of viral vectors carrying the neces-
sary transgenes, ex vivo gene editing or gene addition therapy of autologous HSC harvested from the fetus, or transplantation of allogenic hemopoetic
stem cells from a non-affected donor. Embryo gene editing can potentially achieve germline correction in future generations, while pre- or post-con-
ception gene editing or addition may achieve efficient correction of multiple tissue types (by correcting stem cells), resulting in reversal or arrest of
early pathogenesis, acquisition of immune tolerance and avoidance of perinatal demise. GT, gene therapy; HHGE, heritable human genome editing;
HSCT, hemopoetic stem cell transplantation.
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subsequent pregnancy, and if manipulation will increase pregnancy loss
or complications. Numerous editing steps will cause physiological
stress to the embryo and may affect embryo survival and implantation.
About 18% of IVF cycles produce only one transferable embryo per
cycle. Even among women under 25 years of age, 40% will produce
only 1–2 blastocysts per cycle and 50% have three or fewer evaluable
blastocysts (Franasiak et al., 2014). Approximately 4.5% of IVF-PGT-M
cycles performed for at-risk couples (heterozygous carrier parents with
a 25% chance of producing a homozygous recessive embryo) will be
candidates for HHGE (Gyngell et al., 2017). This demonstrates the
tightly restricted context in which HHGE may be applied (Viotti et al.,
2019).

Compared to postnatal gene therapy, advantages of FGT include:
greater cellular transduction efficacy, higher potential for phenotypic
correction; lower immunogenic toxicity; greater efficacy at penetrating
physiological barriers, e.g. blood–brain barrier; and specific organ tar-
geting (Peranteau and Flake, 2020). Most monogenic diseases do not
require gene modification at the level of embryonic cells as cellular pa-
thology is often limited to specific organs (Mattar et al., 2012). FGT
can achieve targeted delivery of GMT agents, potentially limiting off-
target effects. These benefits are appreciated when treating diseases
with severe early-onset manifestations, for example ATM, as therapeu-
tic efficacy is significantly better in younger recipients without substan-
tial end-organ damage (Waldrop et al., 2020; Houghton and Booth,
2021). Though clinical GMT trials for b-thalassemia are restricted to
children over 5 years of age (Supplementary Table SI), promising out-
comes from SMA and SCID trials encourage physicians to consider
extending these technologies to at-risk fetuses (Amjad et al., 2020).
The long history of invasive fetal therapy demonstrates the relatively
low-risk nature of minimally-invasive fetal access for stem cell harvest
or transplantation (Moise, 2014; Kreger et al., 2016). FGT carries a 1–
2% miscarriage risk per invasive fetal procedure, higher if the fetus is ill
at the time of therapy (e.g. hydrops fetalis from ATM). Mosaicism, off-
target mutations and low-frequency vector integration into the host ge-
nome can arise following FGT (Chan et al., 2019), but in animal mod-
els the integration sites were random and avoided disruption of known
genes.

Comparing high-expense HHGE and FGT, the calculated risks to
maternal health may be appropriate for the potential payload of a
disease-free disability-free future child, when the science has ad-
vanced to the point at which therapeutic effectiveness and safety
have been optimized in vivo. A poor outcome would be an
incompletely-corrected phenotype, perhaps due to sub-therapeutic
transgene expression and incomplete reversal of tissue damage,
resulting in a child with significant disability or at risk of off-target
effects (e.g. tumorigenesis). In this scenario, the negative outcome
is disproportionate to the high cost of treatment. As spontaneous
pregnancy failure affects 10–30% of IVF-PGT-M cycles (Ben-Nagi
et al., 2019), a negative outcome is perceivable despite the resour-
ces invested into HHGE. Stakeholders, including policy-makers and
funders, must use available evidence to decide if the known and un-
known risks are proportionate to the gains to prospective parents,
the future child, future generations, and society at large. Focusing
on the main aim of curing disease should not distract from the real-
ity of finite resources and the need for judicious allocation to bene-
fit at-risk communities (Fins and Miller, 2020).

The maternal–fetal conflict
HHGE and FGT are experimental procedures directly benefiting the
unborn child, and offer no direct clinical benefit to the prospective
mother. HHGE does not place the mother at risk of bystander effects
as all genetic manipulation is completed in vitro and imposes no surgical
risks to the mother other than those associated with IVF. Maternal au-
tonomy could still be affected by concerns about the outcome of the
intervention and adverse effects on the child. As caregiver burdens re-
main unequally distributed and delegated to women, the choice of
HHGE may be affected by such considerations. In comparison, FGT
may result in adverse maternal bystander effects, some of which can-
not be quantified such as the remote effects (tissue transduction, inte-
gration mutagenesis) of transplancental trafficking of gene therapy
vectors, though maternal risks from invasive procedures used to de-
liver gene therapy agents are minimal (Almeida-Porada et al., 2019;
Sagar et al., 2020). With the focus on the health of the unborn child,
maternal risks and desires may be easily overlooked. Ethical regulations
typically only require the mother to consent to any experimental fetal
procedure, though other regulations require both parents to grant per-
mission for participation in studies which offer the prospect of direct
benefit solely to the fetus (Johns_Hopkins_Medicine, 2005). If only the
mother’s consent is required, treatment can proceed even in the pres-
ence of conflicting views between the mother and her partner.
Conversely, maternal autonomy overrides fetal beneficence and the
mother always retains the right to refuse treatment. This may not pre-
vent situations in which a physician’s desire to act in the best interest
of the fetus may lead to conflicted situations in which the mother feels
coerced into consenting to intervention, or experiences guilt for not
‘sacrificing’ herself for her baby, which carry ethical or legal ramifica-
tions particularly if the mother then withdraws consent for fetal inter-
vention (Rodrigues et al., 2013; Briscoe et al., 2016).

While a preimplantation embryo does not meet the criteria of a ‘pa-
tient’, alterations to the embryo should still be consistent with the
well-being of the future child (Nuffield Council on Bioethics, 2018). A
physician–maternal conflict may arise if the embryo carries a persistent
genetic mutation post-HHGE and the parents nevertheless request
embryo transfer. Transfer of these embryos may violate the ethics of
non-maleficence (to the future child) and duty of care (to the mother)
to transfer disease-free embryos (Pennings et al., 2007; Ethics_
Committee_of_the_American_Society_for_Reproductive_Medicine,
2017). Certainly, the physician’s obligations to this novel mother-
HHGE-treated embryo dyad should be parsed in greater detail
through wider ethical debate. One perspective may be that HHGE
does not save lives, and rather is a ‘selective reproductive technol-
ogy’, a means of producing healthy future persons who may not exist
otherwise, which is also true of IVF-PGT and embryo selection (Rulli,
2019; Schaefer, 2020). This distinction calls into question which party
benefits from the strategy chosen. Here, the prospective parent,
rather than GE recipient, by fulfilling a deeply-held desire for healthy
genetically-related offspring, is arguably the primary beneficiary of
HHGE, yet the future person bears the burden of both desirable and
undesirable gene effects. Whereas the moral obligation to develop a
technology like FGT for the fetus qua patient is strong, whether there
is a similarly strong moral obligation to develop HHGE remains an
open debate.
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A question of human
enhancement
An important debate is the delineation of boundaries between curing
human disease and human enhancement. This is a realistic scenario,
given the genetic basis of desirable physical features, and arguments for
selecting the best features (Porter, 2017), which can possibly be justi-
fied from the population health perspective (Piel, 2016; Schaefer,
2020). HHGE and FGT may be appropriated not just for disease-
causing mutations, but to also produce non-disease-related traits
matching the future parents’ preferences (Segers et al., 2019), some-
times called enhancement. There are serious ethical concerns about
enhancing or selecting ‘desirable’ human qualities (e.g. intelligence) in
IVF babies, but this is a very difficult endeavor and is likely to be strictly
regulated by ethics committees in transparent and continued discussion
with all stakeholders to determine permissibility limits. Both HHGE
and FGT offer far more potential benefits that should shift opinion
firmly toward supporting research into, and eventual clinical translation
of, these technologies.

Lifting barriers to HHGE
Advocates of HHGE or FGT believe that parents have a right to having
children free of certain genetic diseases, and understand that the path
to this ultimate goal is long and complex, not least because the current
barriers, placed with the intention of avoiding harm, may end up im-
peding any realistic chance of clinical translation. As Hermerén (2012)
espoused, employing the safest alternative because of ‘knowledge gaps
and uncertainties in the wake of new and emerging technologies’ may
derail innovative research. The Report illustrates a willingness to lift
existing barriers to HHGE research, and this is supported by new gov-
ernance statements from the International Society for Stem Cell
Research (ISSCR) supporting categories of research involving extended
embryo culture and chimeric embryo development in vitro, though not
editing of human embryos for reproduction owing to unproven safety
and insufficient scientific rationale (Lovell-Badge et al., 2021).
Eventually, progressing to clinical HHGE will require further lifting of
restrictions, particularly enabling extended embryo culture beyond the
current limitation of <14 days (before gastrulation). In the event that
all implantable embryos generated by IVF-PGT-M carry the mutation,
the best embryos will be subjected to microinjection of editing tools,
repeat biopsy to confirm correction and prolonged embryo culture
while awaiting molecular analyses. The UK Human Fertilisation and
Embryology Authority currently stipulates that in vitro embryo culture
not exceed 14 days, which limits the number of biopsies that can be
conducted in this time (Chan, 2018). Embryos can be cryopreserved
during molecular analyses and correctly edited embryos transferred in
a future natural cycle (Bourdon et al., 2021). NASEM and ISSCR make
an important point that researchers should maintain transparency and
open public discourse on ethical, moral and societal limits to guide per-
missibility of germline editing. We believe that public dialogue on ac-
ceptable human germline modifications and the permissibility of
influencing future generations’ genetic makeup should develop in tan-
dem with a broad consensus on diseases that should be tested for by
PGT-M.

If the ethical and technological hurdles to germline modification
prove insurmountable, a practical way to achieve HHGE may be to fo-
cus on deriving functional gametes from reprogrammed gene-edited
stem cells. In vitro gametogenesis (IVG) has seen significant progress in
derivation of gametes from embryonic and induced pluripotent stem
cells in mice (Gupta et al., 2021), but progress in human cells is neces-
sarily restrained by regulations prohibiting formation of embryos fol-
lowing IVG because of unresolved safety issues (Clark et al., 2021).
Any progress in this field will require the same stringent ethical over-
sight and is subject to similar restrictions as current HHGE; research in
IVG and HHGE for reproductive purposes is currently prohibited,
pending convincing safety and efficacy data (Lovell-Badge et al., 2021).

Can HHGE and FGT co-exist?
It is important to recognize the nuanced difference between HHGE
preventing disease but not directly saving lives, and FGT which can po-
tentially save a life where there is a lethal disease (Ishii, 2017; Rulli,
2019). This could influence allocation of research funds (Rulli, 2019).
Scientific aims, technical advances and ethical boundaries must be con-
sidered in tandem, as the science cannot rightfully advance without the
ethics. Similarly, to discuss HHGE in isolation without a balanced com-
parison to perinatal interventions is to limit appreciation of its role and
acceptance of its place in reproductive and perinatal medicine (Fig. 1).
For physicians who will counsel prospective parents on GMT, perform
personalized ART or monitor treated offspring, an appreciation of
these issues will aid in selecting the appropriate application for the spe-
cific indication (Critchley et al., 2018). HHGE requires specialized skills
for IVF-PGT, which is inherently labor-intensive, costly and resource-
heavy, and may not be readily accessible in some at-risk communities;
access inequalities should be urgently addressed prior to clinical intro-
duction of HHGE (Pennings et al., 2008). FGT requires skills in fetal
blood sampling and intrauterine transfusions, thus we anticipate higher
adoption in at-risk communities with access to these specialized fetal
services. Substantial progress in fetal surgery (e.g. meningomyelocoele)
and intrauterine SCT (for ATM, osteogenesis imperfecta), illustrate the
growing regard of the fetus as a distinct entity deserving of the highest
duty of care (Williams et al., 2001), and increasing acceptance of fetal
interventions to overcome devastating congenital conditions (van Lith
et al., 2013; MacKenzie et al., 2015; Sagar et al., 2020). For HHGE to
be implemented, rigorous decades-long surveillance is required to
study long-term genotoxicity to assess the full intergenerational impact.
Protection of the future person’s autonomy vis-à-vis collection of per-
sonal medical data in the interests of future beneficiaries versus the
right to privacy, medical infrastructure and equitable access to health-
care for all affected generations, could drive the costs of HHGE far be-
yond those of IVF-PGT-M and GE (Pennings et al., 2007, 2008;
Howard et al., 2018).

Conclusion
Owing to the rapid flux of scientific advancements in genetic medicine,
temporal aspects will influence the benefit-risk ratio of HHGE and
FGT. Presently, as a result of the wealth of evidence from animal stud-
ies, FGT is in a more advanced position for clinical translation, and less
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.
ethically contentious as it avoids germline targets. HHGE is nascent
technology around which the ethical considerations will evolve with
time and greater understanding. Evidence on its feasibility is still at a
very early stage and the ethics remain controversial. Eventually, HHGE
may be in a similar position backed by scientific evidence of editing effi-
ciency, minimal off-target effects and in vivo safety, but preferable pre-
cisely because of germline modification that allows future generations
to inherit the corrected gene and also avoids maternal bystander
effects. Thus the balance of favor in the long term may shift from FGT
to HHGE, with technical advancements and greater acceptance of
germline targeting within specified limits. The Report serves as an invi-
tation to a larger conversation on human GE and concurrent public di-
alogue on the ethical implications of this technology is imperative. It is
conceivable that at-risk parents will be open to HHGE or FGT know-
ing the medical burden that can be avoided (Wertz et al., 1991).
Physicians involved in patient care must remain well-informed of the
rapidly-evolving scientific, ethical and legal landscape pertaining to pre-
natal GMT. Genome modifications made in the best interest of the
child must focus on curing disease rather than selecting preferred phys-
ical traits—this guiding ethical principle should be honed by the particu-
lar community it serves.
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Supplementary data are available at Human Reproduction online.
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Niinimäki M, Veleva Z, Martikainen H. Embryo quality is the main
factor affecting cumulative live birth rate after elective single em-
bryo transfer in fresh stimulation cycles. Eur J Obstet Gynecol Reprod
Biol 2015;194:131–135.

Nishida K, Smith Z, Rana D, Palmer J, Gallicano GI. Cystic fibrosis: a
look into the future of prenatal screening and therapy. Birth Defects
Res C Embryo Today 2015;105:73–80.

Nuffield Council on Bioethics. Genome editing and human reproduc-
tion. London, 2018. http://nuffieldbioethics.org/wp-content/uploads/
Genome-editing-and-human-reproduction-FINAL-website.pdf (6
August 2021, date last accessed).

O’Connell AE, Guseh S, Lapteva L, Cummings CL, Wilkins-Haug L,
Chan J, Peranteau WH, Almeida-Porada G, Kourembanas S. Gene
and stem cell therapies for fetal care: a review. JAMA Pediatr 2020;
174:985–991.

Pennings G, de Wert G, Shenfield F, Cohen J, Tarlatzis B, Devroey P;
ESHRE Task Force on Ethics and Law including. ESHRE Task Force
on Ethics and Law 13: the welfare of the child in medically assisted
reproduction. Hum Reprod 2007;22:2585–2588.

Pennings G, de Wert G, Shenfield F, Cohen J, Tarlatzis B, Devroey P;
ESHRE Task Force on Ethics and Law. ESHRE Task Force on Ethics
and Law 14: equity of access to assisted reproductive technology.
Hum Reprod 2008;23:772–774.

Peranteau WH, Flake AW. The future of in utero gene therapy. Mol
Diagn Ther 2020;24:135–142.

Piel FB. The present and future global burden of the inherited disor-
ders of hemoglobin. Hematol Oncol Clin North Am 2016;30:
327–341.

Plaza Reyes A, Lanner F. Towards a CRISPR view of early human de-
velopment: applications, limitations and ethical concerns of genome
editing in human embryos. Development 2017;144:3–7.

Porter A. Bioethics and transhumanism. J Med Philos 2017;42:
237–260.

Primc N. Do we have a right to an unmanipulated genome? The hu-
man genome as the common heritage of mankind. Bioethics 2020;
34:41–48.

Rivat C, Santilli G, Gaspar HB, Thrasher AJ. Gene therapy for pri-
mary immunodeficiencies. Hum Gene Ther 2012;23:668–675.

Rodrigues HCML, van den Berg PP, Düwell M. Dotting the I’s and
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