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BACKGROUND: Human sperm contain similar amounts of protamine-1 (P1) and protamine-2 (P2). Although aber-
rant protamine ratios have been observed in infertile men, functional evidence is provided by protamine knockout
mice exhibiting male infertility. As sperm DNA integrity is known to be linked with DNA fragmentation and apoptosis,
we investigated whether the protamine ratio or Bcl2 content represent a reliable biomarker to discriminate fertile and
infertile men. METHODS: Real-time quantitative RT-PCR was used for P1, P2 and the apoptotic marker Bcl2 in tes-
ticular biopsies (TB; 74 infertile men versus 17 controls) and ejaculates (E; 95 infertile men versus 10 controls).
RESULTS: The P1–P2 mRNA ratio differed significantly between groups, namely 1:4 versus 1:3.2 in TB (P 5
0.0038) and 1:1.7 versus 1:1 in E (P 5 0.0002), for infertile men and controls, respectively. Bcl2 mRNA content
was correlated with protamine mRNA ratio (P 5 0.0250 for TB; P 5 0.0003 for E). Infertile men exhibit a more
than 10-fold (P 5 0.0155 for TB; P 5 7.0 3 1026 for E) higher Bcl2 mRNA content versus controls. No correlation
was found between absolute sperm density and the protamine mRNA ratio or Bcl2 mRNA content. No significant
correlation was demonstrated with fertilization rate after ICSI and either protamine ratio or Bcl2 content.
CONCLUSIONS: We found significantly aberrant protamine ratios and a higher Bcl2 content in TB and E of infertile
men compared to controls, suggesting that these molecules may be useful biomarkers for predicting male infertility.
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Introduction

Genes for protamines 1 and 2 are transcribed in Step 1–4

spermatids (Steger et al., 2000), while synthesis of the corre-

sponding proteins starts, with temporal delay, in Step 4 sperma-

tids (Le Lannic et al., 1993). Protamine–DNA interaction,

subsequently, results in chromatin condensation and termin-

ation of gene expression (reviewed in Steger, 1999, 2001).

Consequently, comparative microarray analysis revealed no

differences in the gene expression pattern between testicular

spermatids and ejaculated spermatozoa (Ostermeier et al.,

2002).

In human sperm, the histone to protamine exchange is only

�80% complete (Tanphaichitr et al., 1978) and the

protamine-1 (P1) to protamine-2 (P2) ratio is 0.8–1.2

(Balhorn et al., 1988). Numerous studies, however, demon-

strated that male infertility is associated with an abnormal

histone to protamine ratio (Zhang et al., 2006) and an aberrant

P1–P2 ratio at both the protein level in ejaculated spermatozoa

(Balhorn et al., 1988; Belokopytova et al., 1993) and the

mRNA level in testicular spermatids (Steger et al., 2001,

2003). Recently, abnormal protein synthesis has been reported

to be associated with aberrant mRNA retention suggesting that

defects in protamine translational regulation may contribute to

protamine deficiency in infertile men (Aoki et al., 2006b).

Functional evidence is provided by knockout mice demonstrat-

ing that a knockout of only one of the two protamine alleles is

sufficient to cause male infertility (Cho et al., 2001). For

further details refer to reviews from Steger (2003) and Oliva

(2006).

Applying real-time quantitative RT-PCR (qRT-PCR) in

the present study, we aimed at clarifying whether the P1–

P2 mRNA ratio represents a reliable biomarker for the
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discrimination of fertile and infertile men. We therefore

analysed the protamine ratio in both testicular spermatids and

ejaculated spermatozoa and compared data with the fertiliza-

tion rate after ICSI. As sperm DNA integrity is known to be

linked to the level of DNA fragmentation and apoptosis, we

additionally studied whether amplification of the apoptotic

marker Bcl2 is related with male fertility.

Materials and methods

Testicular tissue

After written informed consent, testicular biopsies were obtained from

74 infertile men exhibiting impaired spermatogenesis. In 17 patients

with obstructive azoospermia after vasectomy, biopsies were carried

out for diagnostic purposes during vasectomy reversal. These patients

revealed normal endocrine values and histologically normal spermato-

genesis and served as controls (Table I). Although one part of the

biopsy was cryopreserved for testicular sperm extraction (TESE),

the other part was fixed in Bouińs fixative and embedded in paraffin.

For histological evaluation, 5 mm paraffin sections were stained in

hematoxylin and eosin and scored, according to Bergmann and

Kliesch (1998).

Ejaculates

After written informed consent, ejaculates were obtained from 95 oli-

gozoospermic infertile men and analysed, according to the World

Health Organization (WHO, 1992). Ejaculates from volunteers with

normozoospermia (n ¼ 10) served as controls (Table II). The semen

was prepared by migration–sedimentation (Sanchez et al., 1996), a

method based on the technique of the common swim-up. Native eja-

culate was transferred into special tubes around an inner conus and

overlayed with medium. The motile sperm migrated actively into

the medium and was then sedimented passively into the conus by

gravity. After incubation at 378C for a period of 2–3 h, �10% of

the native quantity of sperm with a motility of �90% could be

detected in the medium.

RNA extraction and first strand cDNA synthesis

RNA extraction from testicular tissue was performed as published

(Steger et al., 2003). Briefly, six paraffin sections were collected in

a reaction tube and deparaffinized in 500 ml xylene for 10 min at

538C. After centrifugation, pellet was resuspended in 200 ml 1 M

guanidine thiocyanate, 0.5% sarcosyl, 0.72% b-mercaptoethanol,

20 mM Tris–HCl (pH 7.5). After adding proteinase K to a final con-

centration of 0.5 mg/ml, samples were digested for 12–16 h at 588C.

Note that digestion with proteinase K is indispensable for the liber-

ation of RNA from crosslined/fixed tissue (Fink et al., 2000) and

RNA-binding proteins binding within the coding sequence of P1

and P2 mRNA in round spermatids (Steger et al., 2002). Subsequently,

20 ml 2 M sodium acetate, 220 ml phenol (pH 4.3) and 60 ml chloro-

form/isoamylalcohol (24/1) were added. Samples were vortexed

and centrifuged for 15 min at 48C. The aqueous layer was collected,

1 ml glycogen (10 mg/ml) added, and precipitated with 200 ml isopro-

panol. Samples were frozen for one hour at –208C and centrifuged for

15 min at 12 000�g. Pellets were washed with 75% ethanol, air-dried

and resuspended in 10 ml RNase-free water.

RNA extraction from ejaculates was performed using the RNA

extraction kit RNeasy MINI (Qiagen, Germany).

First strand complementary DNA (cDNA) synthesis was performed

using Sensiscript (for testicular tissue) and Omniscript (for ejaculates),

according to the manufacturers protocol (Qiagen, Germany).

Real-time qRT-PCR

Real-time qRT-PCR was performed using iQTM SYBR Green Super-

mix and iCycler (BioRad, Germany). Per sample, 4 ml cDNA were

used for amplification of P1, P2 and Bcl2. Cycling conditions were

958C for 3 min, followed by 40 cycles of 958C for 30 s, 588C for

30 s, and 738C for 30 s. The following primers were employed

(MWG, Germany):

P1: 50cggagctgccagacacgga30 (forward; bp 182–200) and

50ctacatctcggtctgtacctggg30 (reverse; bp 224–246) resulting in a

65 bp amplification product.

P2: 50aagacgctcctgcaggcac30 (forward; bp 344–362) and

50gccttctgcatgttctctt30 (reverse; bp 396–414) resulting in a 71 bp

amplification product.

Bcl2: 50acatcgccctgtggatgact30 (forward; bp 1008–1027) and

50gggccgtacagttccacaaa30 (reverse; bp 1085–1104) resulting in a

97 bp amplification product.

Negative controls included samples lacking reverse transcriptase.

Furthermore, intron spanning primers were applied to avoid amplifica-

tion of genomic DNA. All experiments were carried out in duplicate.

Values recorded for quantification were the fractional cycle

numbers (Ct) where the background corrected amplification curves

crossed a threshold value. The threshold value was set within the log-

linear phase of the amplification curves.

Table I. Characterization of patients undergoing testicular sperm extraction
followed by ICSI.

Patients Controls P-value

Number of biopsies 74 17
Age (years), male partner
mean (range)

36.1 (25–53) 34.9 (20–58)

Age (years), female partner
mean (range)

31.7 (18–43) —

CtP1, mean+SEM 33.5+0.23 30.5+0.90
CtP2, mean+SEM 35.6+0.16 35.7+0.36
DCt(P2 – P1), mean+SEM 2.05+0.24 5.48+0.92 0.0038
CtBcl2, mean+SEM 32.2+1.26 36.6+0.76
DCt(Bcl2 – P1), mean+SEM 3.4+1.70 20.6+0.75 0.0115
Fertilization (%) 28.6+2.48 —
Pregnancy 9 —

P1, protamine-1; P2, protamine-2; Ct, fractional cycle numbers where the
background corrected amplification curves crossed a threshold value; DCt,
difference between two Ct values.

Table II. Characterization of patients undergoing ICSI with ejaculated
spermatozoa.

Patients Controls P-value

Number of ejaculates 95 10
Age (years), male partner
mean (range)

38.4 (26–56) 39.6 (21–65)

Age (years), female
partner mean (range)

34.0 (22–46) —

Sperm density (�106)
mean (range)

11.6 (0.05–50.1) 34.4 (6.5–69.2)

CtP1, mean+SEM 22.7+0.4 22.6+0.70
CtP2, mean+SEM 23.7+0.45 22.3+0.82
DCt(P2 – P1), mean+SEM 0.8+0.09 20.3+0.12 0.0002
CtBcl2, mean+SEM 31.2+0.55 34.9+0.86
DCt(Bcl2 – P1),
mean+SEM

26.7+0.94 214.2+0.51 0.000007

Fertilization (%) 73.6+2.18 —
Pregnancy 32 —
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Quality of oocytes and embryos

Oocytes were considered as good quality oocytes when they were in

metaphasis II stage and had no morphological defects, such as vacu-

oles, granulation, fragmentation or deformation in various patterns.

To evaluate the embryo quality, we classified the embryos on day 2

into four groups, according to Steer et al. (1992). (A) no fragmenta-

tion, equal blastomeres; (B) low fragmentation (,20%); (C) 20–

50% fragmentation; (D) high fragmentation (.50%). The number

of blastomeres and the fragmentation grade (A ¼ 4, B ¼ 3, C ¼ 2,

D ¼ 1) were added to a score. Pregnancy was defined as a serum

bHCG level .30 mlU/ml 2 weeks after puncture, combined with

the detection of a gestational sac.

Statistical analysis

Data were analysed using R (R Development Core Team, 2007).

Ct values of technical replicates were averaged and averages were

used for further calculations. Relative expression levels were expressed

by DCt values which represent a measure of the log-ratio of the tran-

script abundances in the samples. The log-ratio of P1 and P2 is given

by DCt ¼ CtP2 2 CtP1. The log-ratio of Bcl2 and P2 is given by

DCt ¼ CtP2 – CtBcl2. The normal distribution of Ct and DCt values

was checked with normal-QQ plots. Differences of the mean values

between groups were tested with the Welsh t-test (two-sided). Linear

correlations were tested using the Pearson coefficient of correlation.

All tests were performed at a confidence level of 95%. All values are

presented as means+SEM. Power analysis was performed with the

software G-Power using the ‘compromise analysis’ for t-tests on the

difference of sample means and correlations (Faul and Erdfelder,

1992). The power of the statistical tests at a ¼ 0.05 were .80%. The

power of the two-sided two-sample Welsh t-test do detect at least

‘strong’ relative effects (Coheńs d ¼ 1). In the mean, DCt between

patients and controls was 84% for ejaculates with n1 ¼ 10; n2 ¼ 95,

and 94% for testicular tissue with n1 ¼ 17; n2 ¼ 74. The power of the

correlation tests for r � 0.3 was 91% (n ¼ 95) and 85% (n ¼ 74).

Results

Testicular tissue

Real-time qRT-PCR for P1, P2 and Bcl2 was performed for

both testes per man. As no statistically significant difference

could be observed between right and left testes, the mean

value was used for further calculation. The mean of P1 in infer-

tile men (Ct ¼ 33.5+ 0.23) is lower than in the control group

(Ct ¼ 30.5+ 0.90), whereas the mean of P2 is almost identical

in infertile men (Ct ¼ 35.6+ 0.16) and in the control group

(Ct ¼ 35.7+ 0.36). The P1–P2 ratio is �1: 3.2 in the

control group and 1:4 in infertile patients. The difference of

the ratios between controls and infertile men is statistically sig-

nificant (P ¼ 0.0038) (Fig. 1a) and larger for P2 than for P1.

In addition, infertile men exhibit more than 10-fold the amount

of Bcl2 mRNA when compared with controls (P ¼ 0.0155)

(Fig. 1b). Furthermore, the Bcl2 content reveals a positive

linear correlation (P ¼ 0.0250) with the P1–P2 ratio (Fig. 2a).

TESE (n ¼ 74) in combination with ICSI (max three cycles)

produced nine pregnancies (12.1%), the fertilization rate was

28.6+ 2.48%. Neither the fertilization rate nor the pregnancy

rate revealed a significant correlation with the P1–P2 ratios.

In addition, no significant correlation could be demonstrated

between the pregnancy rate and the quality of oocytes and

embryos. Results are summarized in Table I.

Ejaculates

The P1–P2 ratio is �1:1 in the control group and 1:1.7 in infer-

tile men. The difference is statistically significant (P ¼ 0.0002)

(Fig. 1c). No correlation could be found between the absolute

sperm density and the P1–P2 ratio or the amount of Bcl2

mRNA. However, the amount of Bcl2 in infertile men is

more than 10-fold the amount of Bcl2 in the control group

(P ¼ 7.0 � 1026) (Fig. 1d). In addition, the Bcl2 content

revealed a positive linear correlation (P ¼ 0.0003) with the

P1–P2 ratio (Fig. 2b).

ICSI (1 cycle) with ejaculates (n ¼ 95) resulted in 32 preg-

nancies (32.5%), the ferilization rate was 73.6+ 2.18%.

Similar to TESE, neither the fertilization rate nor the pregnancy

rate revealed a significant relation with the P1–P2 ratio.

In addition, no significant correlation could be demonstrated

between the pregnancy rate and the quality of oocytes and

embryos. Results are summarized in Table II.

Discussion

Spermatozoa from normozoospermic men contain similar

amounts of P1 and P2 (Balhorn et al., 1988). An aberrant pro-

tamine ratio has been demonstrated in infertile men (Balhorn

et al., 1988; Belokopytova et al., 1993). In previous studies,

we demonstrated a significant correlation between the prota-

mine ratio and successful fertilization using in situ hybridiz-

ation (Steger et al., 2001; 65 patients; Mitchell et al., 2005;

Figure 1: (a) Protamine-1 to protamine-2 log-ratio (DCt(P2–P1))
of controls and patients in testicular biopsies (P ¼ 0.0038). (b)
Log-concentration of Bcl2 normalized to protamine-2 (DCt(P2–
Bcl2)) of controls and patients in testicular biopsies (P ¼ 0.0115).
(c) Protamine-1 to protamine-2 log-ratio (DCt(P2–P1)) of controls
and patients in ejaculates (P ¼ 0.0002). (d) Log-concentration of
Bcl2 normalized to protamine-2 (DCt(P2–Bcl2)) of controls and
patients in ejaculates (P ¼ 7.0 � 1026). Welsh two sample t-test.
Data are mean+SEM. DCt, difference between Ct values

Protamine and Bcl2 messenger RNA and male infertility
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41 patients) and qRT-PCR (Steger et al., 2003; 57 patients) on

testicular biopsies, as well as Western blot analysis

(Nasr-Esfahani et al., 2004; 71 patients) on ejaculated sperma-

tozoa. Applying qRT-PCR, in the present study, we compara-

tively analysed the protamine ratio in testicular biopsies and

ejaculates from fertile and infertile men. The testicular

samples were different from those used in our previous

studies (Steger et al., 2001, 2003).

We were able to demonstrate a significant difference in the

P1–P2 ratio between infertile (1:4 in testicular biopsies and

1:1.7 in ejaculates) and fertile (1:3.2 in testicular biopsies

and 1:1 in ejaculates) men. Both P1 and P2 change between

fertile and infertile men but P2 changes more than P1,

suggesting different mRNA stabilities for the two molecules.

P1 and P2 may have different functions, as (1) P2, unlike P1,

represents a zinc finger protein revealing a Cys2–His2 motif

(Bianchi et al., 1992) and (2) P1 is invariably present in all

mammals, while P2 is expressed only in some mammals

(Corzett et al., 2002) suggesting a more basic and conserved

function for P1 and an accessory function for P2.

As genes for protamines are solely transcribed in round sper-

matids (Steger et al., 2000) and stored as silent mRNAs for

later translation in elongating spermatids in which transcription

is no longer active (Steger, 1999, 2001; Aoki et al., 2006b), it is

well justified to consider altered mRNA levels as a potential

origin of altered protein levels. Owing to the fact that each

spermatid contains �20,000 protamine transcripts (Braun

et al., 1989) which may be stored as silent mRNAs for up to

7 days (Hecht, 1998), RNA extraction from routinely Bouin-

fixed and paraffin-embedded testicular biopsies followed by

qRT-PCR represents a suitable time- and tissue-saving pro-

cedure for the study of quantitative gene expression in

haploid male germ cells. This method has already been

reported to represent a valuable tool for RNA extraction from

archive material (Godfrey et al., 2000).

In the present study, the amount of P2 mRNA in testicular

spermatids was almost identical in patients and controls,

while the amount of P1 was lower in infertile men compared

with the control group: although this difference was not signifi-

cant, data were similar to that of other analysed patients (Steger

et al., 2003). By contrast, the protamine ratio exhibited a highly

significant difference between patients and controls. However,

no significant correlation could be demonstrated with the ferti-

lization and pregnancy rates. This is in contrast with IVF rates

that have been reported to be significantly reduced in patients

with abnormally low and high P1–P2 protein ratios (Aoki

et al., 2006c). However, success of ICSI—unlike IVF—

highly depends on the selection of the spermatozoon, as sperm

of a given semen sample is known to exhibit a significant intra-

sample heterogeneity of protamine content (Aoki et al., 2006a).

Since the protamine ratio obtained by counting the percentage of

protamine-positive round spermatids has been demonstrated to

exhibit a significant correlation with successful fertilization

(Steger et al. 2001), this may represent a more suitable predic-

tive marker for the estimation of successful fertilization than

the total amount of protamines obtained by qRT-PCR.

Ejaculated spermatozoa from fertile men contain equal

amounts of P1 and P2, both at the protein level (Balhorn

et al., 1988; Belokopytova et al., 1993) and at the mRNA

level (this study). Interestingly, in testicular spermatids, we

demonstrated an increased P1–P2 mRNA ratio of 1:3.2. Infer-

tile men exhibited an aberrant protamine ratio, namely 1:1.7 in

ejaculated spermatozoa and 1:4 in testicular spermatids.

Abnormal protamine expression may be the result of an abnor-

mal functioning of a regulator of transcription, translation or

post-translational modification that affects not only prota-

mines, but also a broad range of genes involved in spermato-

genesis. Therefore, protamine expression may act as a

checkpoint during spermiogenesis and abnormal protamine

expression may lead to an increased level of apoptosis.

It is known that P1 and P2 haploinsufficient mice exhibit

damaged DNA (Cho et al., 2003). When applying ICSI, it

was possible to activate oocytes, however, only a few could

progress to the blastocyst stage. A similar phenomenon has

been described in infertile patients (Tesarik et al., 2004).

There is evidence that links high DNA fragmentation indexes

with diminished sperm DNA integrity (Aoki et al., 2005),

decreased protamine content (Nasr-Esfahani et al., 2005) and

lower IVF and ICSI rates (Evenson and Wixon, 2006).

Although Oosterhuis et al. (2000)reported DNA strand

breaks and apoptotic marker annexin V in ejaculated

Figure 2: (a) Correlation between the protamine-1 to protamine-2
log-ratio (DCt(P2–P1)) and normalized Bcl2 log-concentration
(DCt(P2–Bcl2)) in testicular biopsies (R2 ¼ 0.3320, P ¼ 0.0250).
(b) Correlation between the protamine-1 to protamine-2 log-ratio
(DCt(P2–P1)) and normalized Bcl2 log-concentration (DCt(P2–
Bcl2)) in ejaculates (R2 ¼ 0.4636, P ¼ 0.0003). Pearson correlation
test. Circles represent controls, triangles patients

Steger et al.
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spermatozoa, Sakkas et al. (1999)suggested that DNA strand

breaks and apoptotic markers did not coexist in mature sperma-

tozoon, as ejaculated spermatozoa with apoptotic markers

appeared to have escaped programmed cell death in a process

called abortive apoptosis. Therefore, it will be important to dis-

tinguish between cells that show high levels of DNA strand

breaks and cells that are positive for apoptotic markers.

In recent years, the Bcl2/Bax system has been implicated in

the regulation of apoptosis in various physiological and patho-

logical states of cells (reviewed in Koji and Hishikawa, 2003).

Although Bcl2 blocks apoptosis, Bax promotes it. In the

present study, we concentrated on Bcl2, as Bax have been

demonstrated in all germ cells, whereas Bcl2 was present

solely in pachytene spermatocytes and spermatids (Damavandi

et al., 2002). We have shown that infertile men exhibit more

than 10-fold the amount of Bcl2 mRNA in testicular spermatids

and ejaculated spermatozoa when compared to the appropriate

control group. Furthermore, a linear correlation with the prota-

mine ratio was obvious. Investigations on a possible relation

between apoptosis and male fertility in mice concentrate on

the heterodimeric partner of Bcl2. Bax-deficient male mice

have been demonstrated to be infertile due to an accumulation

of premeiotic germ cells and a lack of adult spermatids in the

seminiferous tubules (Knudson et al., 1995).

In conclusion, we found significantly aberrant protamine

mRNA ratios and a higher Bcl2 mRNA content in both testicu-

lar spermatids and ejaculated spermatozoa of infertile men,

identifying these molecules as suitable predictive biomarkers

to discriminate between fertile and infertile men.
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