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BACKGROUND: Sperm heterogeneity in the human, as observed in oligo-astheno-teratozoospermia (OAT), is associ-
ated with hypospermatogenesis. METHODS: The chromatin of sperm from OAT and normospermic males was
characterized with antibodies specific for nucleosomes, the histone H3.1/H3.2 isoform, histone TH2B, apoptosis-
associated H4 acetylation (KM-2) and protamines. Subsequently, sperm samples were stained with the thiol-specific
fluorochrome monobromobimane (mBBr) before and after reduction with dithiotreitol (DTT) as most thiol groups
reside in the cysteine-rich protamines. We also used fluorescence-activated cell sorter (FACS) for sperm histograms
and sorting for high or low free and total thiol levels. These fractions were further analysed for DNA damage with
the TdT-UTP nick end-labelling (TUNEL) assay. RESULTS: OAT sperm nuclei stained higher for nucleosomes
and KM2-epitopes, and lower for TH2B. For free, and total, thiol groups, OAT sperm were characterized by biphasic
distributions, reflecting incomplete thiol oxidation as well as overoxidation, and possibly reduced protamine contents.
The TUNEL assay on sperm subfractions, for both control and OAT sperm, revealed that a lower level of free
thiol groups is associated with a higher TUNEL incidence, and this relationship was also found for total thiol
levels. Hence, both overoxidation and a low total number of thiol groups predestine for sperm apoptosis.
CONCLUSIONS: Chromatin characteristics reflecting an incomplete nucleosome to protamine remodelling
were found in subfertile males. Sperm apoptosis is related to both incomplete remodelling and protamine
overoxidation.
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Introduction

Mammalian sperm heterogeneity can be defined at many levels

such as overall morphology, motility, nuclear differentiation,

capacitation and receptor status. Compared with that of farm

and experimental animals, human spermatozoa are more vari-

able in overall morphology (Bedford et al., 1973). Sperm con-

centration in the ejaculate is inversely related to the incidence

of abnormal morphology and the variation in motility (Zollner

et al., 1996). Oligo-astheno-teratospermia (OAT) largely

occurs due to abnormal spermatogenesis (hypospermatogen-

esis or a combination of this condition with incomplete matu-

ration arrest) (Johnsen, 1970; Levin, 1979; Carrell et al.,

2007). The biological significance of the increased sperm het-

erogeneity observed in OAT has received more attention in

recent years due to the use of these sperm samples in classical

IVF and ICSI. For the latter application, visual selection of

motile and ‘normal’ looking sperm is the only parameter

used worldwide (Ramos and Wetzels, 2001; De Vos et al.,

2003; Ramos et al., 2004).

Nuclear elongation halfway during spermiogenesis is

accompanied by the transition of chromatin from a

nucleosome-based structure to a protamine-based structure

(for a review, see Dadoune, 2003), largely reducing the

nuclear volume and increasing chromatin compaction. In

human and mouse, two types of protamines (PRM1 and

PRM2) contribute to the compaction of chromatin. For this

purpose, histones are first exchanged for transition proteins 1

and 2 (TNP1 and TNP2), which are later replaced by PRM 1
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and PRM2. During this process, DNA double strand breaks

occur (McPherson and Longo, 1993; Laberge and Boisson-

neault, 2005) and are subsequently repaired. When sperm is

passing from the testis to the epididymis, a further stabilization

of nuclear structure is achieved by thiol-oxidation of the

cysteine-rich protamines. In mouse and man cauda epididymis,

�95% of SH groups are converted into -S-S- bridges (Sao-

waros and Panyim, 1979; Pellicciari et al., 1983; Seligman

et al., 1994). Protamine thiol oxidation has been linked to the

stability of the DNA, yielding a shift from red to green acridine

orange (AO) fluorescence in rodents and man after acetic acid/
alcohol fixation (Kosower et al., 1992). The replacement of his-

tones by protamines is less complete in the human (85%)

(Gatewood et al., 1987) compared with other mammals

(Bench et al., 1996). de Yebra and Oliva (1993) were the

first to notice with biochemical methods that over a range of

infertile patients higher PRM1/PRM2 ratios correlated with

higher histone levels. By fluorescence-activated cell sorter

(FACS) measurements of total sperm cell thiol levels (after

DTT reduction) (Rufas et al., 1991), an indication of the

reduced presence of the cysteine-rich PRM1 and PRM 2 pro-

teins in oligospermic patients had already been obtained.

A number of subsequent observations reinforce the con-

clusion of a nuclear differentiation defect during spermiogen-

esis in OAT males.

First, CMA3 fluorescence as an indicator for underprotami-

nation (Bianchi et al., 1993) or reduced protamine thiol cross-

linking is much more frequently observed in sperm samples

from OAT male patients (Iranpour et al., 2000). Furthermore,

sperm of infertile men are much more sensitive to DNase I,

highlighting the role of uncompacted (higher histone contain-

ing) chromatin in infertility (Sakkas et al., 2002).

Second, Steger et al. (2001) observed that the frequency of

PRM1 and PRM2 transcribing round spermatids is negatively

related to the severity of the spermatogenic defect. In concor-

dance with this finding, the fraction of elongating spermatids,

that were immunofluorescence positive for hyperacetylated

histone 4 (H4), marking the onset of the nucleosomal tran-

sition, was decreased by a factor 0.6–0.75 in azoospermic to

oligospermic patients (Sonnack et al., 2002).

Third, when the ratio of PRM1 to PRM2, which in normosper-

mic human samples is around 1 (Balhorn et al., 1988), is evalu-

ated in oligospermic subjects, often a shortage of PRM2 is found

in combination with the presence of PRM2 precursor proteins (de

Yebra et al., 1998). The same observation is made in mouse

models deficient for TNP1 and 2 (Yu et al., 2000; Zhao et al.,

2001). TNP1 and 2 and PRM2 deficiency lead to altered chroma-

tin compaction as demonstrated by electron microscopy (Yu

et al., 2000; Zhao et al., 2001; Cho et al., 2003).

In this study, we have used highly specific antibodies against

histones in a nucleosomal context, histone subtypes (DNA

replication-dependent H3.1/H3.2, TH2B) and histone modifi-

cations (acetylated forms of histone 4) in an in situ immuno-

fluorescence (IF) investigation of expanded sperm nuclei

from normal and OAT donors. As a follow up study, we charac-

terized SH profiles of human sperm samples by FACS and

selected subfractions to measure sensitivity for the TdT-UTP

nick end-labelling (TUNEL) reaction and to study chromatin

compaction by the use of a double-strand DNA (dsDNA) anti-

body on whole nuclei.

Evidence for an apoptotic chromatin imprint has been

obtained. By the use of an anti-dsDNA antibody, the conclusion

is also reached that chromatin compaction is compromised in

OAT sperm. For all parameters studied, the increased nuclear

heterogeneity in OAT sperm can be related to variability of

chromatin remodeling in elongating spermatids.

Our results complement insights generated by other investi-

gators and add to the conclusion that OAT sperm samples

quantitatively differ from normospermic samples by an incom-

plete nucleosome to protamine transition, the basis of which

likely is laid during the second half of pachytene meiosis.

Materials and Methods

Sperm samples

Sperm samples were obtained from 10 normospermic and 13 infertile

donors (Table I). Classification was based on World Health Organiz-

ation (WHO, 1999) criteria. Accordingly, all infertile patients were

classified as OAT. Morphology was assessed by the strict criteria

(Menkveld et al., 2001). Table I lists the spermiogram data. For the

histone characterizations (IF experiments) and FACS thiol fluor-

escence sorting experiments, pools of four normospermic donor

samples and four or five oligospermic donor samples were assessed

(see Table I for composition of pools). For the determination of

dsDNA immunofluorescence in thiol sorted samples, the sperm of

one normospermic donor and a pool of two OAT males were used.

All sperm samples were cryopreserved using a dilution 1:1 with

cryoprotectant freezing medium (TYB; Irvine Scientific, Santa Ana,

CA, USA) in liquid nitrogen vapour. The sperm concentration

varied between 5–20 � 106/straw in order to allow pilot experiments

to be executed on the same samples. Pooled samples were made after

thawing aliquots of individual donors and mixed for equivalent

numbers of cells per donor. Cryopreserved sperm were thawed at

room temperature and washed once with human tubal fluid medium

(HTF; Cambrex, Verviers, Belgium) supplemented with 10% human

plasma proteins (GPO; CLB, Amsterdam, The Netherlands) in order

to eliminate the cryopreservation medium by spinning for 5 min at

500g. The pellet was resuspended in 200 ml phosphate-buffered

saline (PBS; Sigma, St. Louis, MO, USA), pH 7.4.

Induction of nuclear expansion for IF

The sperm suspension (pools normospermic and OAT) was diluted 1:4

in MilliQ–water. Drops of 5 ml were placed on a glass slide and air

dried. An amount of 100 ml of freshly prepared decondensing mix

[25 mM dithiotreitol (DTT; Roche Biochemicals, Mannheim,

Germany); 0.2% Triton-X-100 (Sigma); 200 IU heparin/ml (Leo Lab-

oratories, The Netherlands) in PBS) was placed over the dried sperm

cells that were incubated in a humidified atmosphere for 12–18 min.

The speed and degree of nuclear decondensation was followed by

phase-contrast microscopy. When the majority of nuclei appeared

dull grey with roughly twice the surface area of the undecondensed

sperm heads, the slide was placed in a coplin jar with 4% paraformal-

dehyde (PFA in PBS, Sigma) at pH 7 for 15 min. Subsequently, slides

were washed thrice for 5 min in PBS and allowed to dry. A 2 ml cell

suspension of mouse spermatogenic cells was placed on one end of the

slide for an IF control.
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Antibodies

Monoclonal antibody PL2-3 recognizes H2A.H2B DNA in a nucleo-

somal context (dilution 1:2000) (Losman et al., 1992; Dieker et al.,

2005); monoclonal antibody KM-2 (1:3000) (Dieker et al., 2007)

recognizes H4acK8, 12 and 16 with a preference for apoptotic

nuclei and apoptotic bodies; monoclonal antibody #34 (1:1500)

recognizes the replication-dependent histone 3 isoform H3.1/H3.2

(van der Heijden et al., 2005; Henikoff and Ahmad, 2005); mono-

clonal antibody #36 (1:200) (Smeenk et al., 1988) recognizes

dsDNA. The tyrosine hydroxylase antibody (1:100) (van Roijen

et al., 1998) recognizes hTSH2B (Zalensky et al., 2002). Hup1N

and Hup2B monoclonal antibodies (Stanker et al., 1987) specific

for, respectively, PRM1 and PRM2 were applied in a 1:3000 dilution.

Mouse monoclonal antibody gH2AX (Upstate #05-636) was used at

1:1000.

Secondary antibodies A11001 fluor 488 goat anti-mouse IgG

(HþL) and A11012 fluor 594 goat anti-rabbit IgG (HþL) from Mol-

ecular Probes, (Oregon, USA) were, for the detection of primary anti-

bodies, used at a 1:500 dilution. IF was performed as described

previously (Baart et al., 2000).

Images were obtained with a Zeiss axioplan fluorescence micro-

scope and captured by a Zeiss AxioCam MR camera with Axiovision

3.1 software (Carl Zeiss). The expanded sperm nuclear grades þþ

and þþþ (see Fig. 1A) showed uniform staining when probed wit

mab #36 specific for dsDNA. Fluorescence intensities for these expan-

sion classes were subjectively scored in five grades. No signal detected

(2); some small specks of low intensity not covering the entire

nucleus (þ/2); small specks of low intensity covering the entire

nucleus (þ); overall signal with increasing brightness (þþ) and

overall strong signal up to covering the entire nucleus (þþþ)

(Fig. 1B). For numerical representations, these grades received the

values 0–4 [corresponding to (2); (þ/2); (þ); (þþ) and

(þþþ), respectively].

Thiol characterizations by FACS and cell separation

For the monobromobimane (mBBr, Calbiochem, CA,USA) staining of

free thiol (SH2) groups, sperm cells were fixed for 15 min in 1% PFA

in PBS at room temperature and washed twice in PBS (spinning

10 min at 500g). The sperm pellet was resuspended in 100 ml mBBr

solution [50 mM mBBr in 20 mM Tris-buffered saline (TBS), pH

Figure 1: (A) Decondensation of sperm nuclei after DTT/heparin
treatment and IF results
The degree of decondensation was subjectively assessed as (2) for no
decondensation; (þ) for minimal decondensation; (þþ) for open
chromatin and (þþþ) for highly open chromatin. Only sperm
nuclei with sufficient decondensation (category þþ and þþþ)
were subjectively evaluated. (B) IF intensity was assessed as: no
signal (2); only a few weak foci (þ/2); foci all over the nucleus
but still of weak intensity (þ); foci all over the nucleus with strong
intensity (þþ) and highly fluorescent nuclei (þþþ)

Table I. Sperm analysis of the samples included in this study and experiments carried out with each sample.

Samples Code Volume (ml) Concentration �106 % motility % normal
morphology

Experiment 1 Experiment 2

Normospermic
donors

N-1 2.2 195 80 47 FACS –
N-2a 2.4 185 60 22 FACS TUNEL
N-3a 3.8 200 80 33 FACS IF-dsDNAþTUNEL
N-4a 2.5 100 70 25 FACS TUNEL
N-5a 3.6 85 55 35 FACS TUNEL
N-6 2.3 130 60 17 IF-chromatin –
N-7 4.2 150 75 12 IF-chromatin –
N-8 1.5 130 75 25 IF-chromatin –
N-9 2.4 100 65 12 IF-chromatin –
N-10 3.1 100 50 15 IF-chromatin –

OAT donors O-1b 1.5 30 15 2 FACS IF-dsDNA
O-2b 1.0 45 20 3
O-3c,e 7.3 5 25 2 FACS IF-dsDNAþTUNEL
O-4c 3.6 40 25 7
O-5d 5.0 7 30 1 FACS –
O-6d,e 4.2 7 25 5 TUNEL
O-7e 7.9 15 10 1 FACS TUNEL
O-8e 3.7 20 35 7 FACS TUNEL
O-9 8.4 5 50 5 IF-chromatin –
O-10 1.1 3.8 10 1 IF-chromatin –
O-11 6.3 1.0 15 2 IF-chromatin –
O-12 5.3 5.0 40 3 IF-chromatin –
O-13 1.7 1.9 20 2 IF-chromatin –

Experiments 1 and 2: flow cytometry, FACS; immunofluorescence for chromatin markers, IF-chromatin; immunofluorescence with monoclonal antibody against
ds-DNA, IF-dsDNA; TdT UTP-nick end labelling, TUNEL. apooled samples for the final FACS sorting experiment (Normo pool); b,c,dpooled samples for
measurements with FACS; epooled samples for the final FACS sorting experiment (OAT pool).
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7.4] and kept in the dark for 20 min at room temperature (Kosower and

Kosower, 1987). The sample was washed once more in PBS and the

pellet was resuspended in 500 ml PBS for fluorescence measurements

and sorting by FACS.

For the determination of the total amount of SH2groups in the

cells, one sperm aliquot was reduced using DTT. First, samples

were fixed in 4% PFA in PBS for 10 min at room temperature. The

cell suspension was washed once in PBS and the pellet resuspended

in 500 ml 1 mM DTT in TBS, pH 9.5 (15 min at room temperature).

Reduced sperm samples were washed twice in PBS (5 min, 500g)

before staining with mBBr.

Cells were analysed and sorted on an Altra HyperSort flowcyt-

ometer (Beckman Coulter, Miami, USA). A 408-nm Vioflame laser

running at 25 mW was used for excitation of mBBr and a 525-nm

band-pass filter for emission. Spermatozoa were first gated on

forward scatter versus side scatter to discriminate sperm from debris

and other cells as much as possible (Gate A, Fig. 2). Depending on

the final concentration per sample, a minimum of 150 000–500 000

Figure 2: (A and B) FACS plot representation of unstained normospermic and OAT pools
Gate ‘A’ represents the sperm population analyzed and sorted for further experiments. (C and D) mBBr stained sperm detecting free thiol groups. (E and
F) total thiol content in the DTT reduced mBBr stained sperm samples. Horizontal bars in C–F (R and S populations) give selection criteria for sorting
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particles was sorted for high or low fluorescence in the mBBr and

DTT–mBBr stained samples.

The gate A population and stained fractions from the A-gated popu-

lation were collected in 500 ml HTF medium and spun for 10 min at

1500 g. Sperm cell populations were fractionated (sorted) by high

and low free and total SH levels (see Fig. 2). After centrifugation,

pellets were resuspended in 30 ml HTF for further processing, such

as the determination of DNA breakage by the TUNEL reaction and

chromatin compaction by measuring accessibility of the DNA to the

dsDNA-specific antibody #36.

TUNEL staining

The TUNEL assay (Cell Death Detection kit, Roche Biochemicals)

was executed following the manufacturer’s specifications with

minor modifications (Ramos et al., 2002). Briefly, air-dried spermato-

zoa were fixated in 1% PFA in PBS for 10 min at room temperature

and rinsed twice with PBS followed by permeabilization with 0.2%

Triton X-100 in PBS, for 10 min. Nuclei were exposed to the

TdT-labelled nucleotide mix for 60 min at 378C. Slides were rinsed

twice (5 min) in PBS and the sperm nuclei were counterstained with

DAPI (0.01 mg/l in PBS). Nuclei were mounted in 25 ml Vectashield.

The total number of DAPI blue staining sperm nuclei per field was

counted first. A minimum of 200, but mostly between 300 and 400,

nuclei per fraction was scored by two observers.

Nuclear condensation patterns with IF

Sperm fractions were embedded in a fibrin clot (Hunt et al., 1995) by

mixing 1 ml of cell suspension with 3 ml of fibrin (Catalogue number:

341573, Calbiochem) on a precleaned coverslip, after which 1 ml of

thrombin (Catalogue number: T-6634, Sigma) was added. A clotting

reaction induced by body heat follows within one minute. The clot

was washed briefly in PBS. Subsequently, the cells were fixed in

0.5% PFA in PBS for 5 min, treated with 1 mM DTT for 30 min

and refixed for 30 min with ice-cold methanol (modified from

Zalensky et al., 2002).

Statistics

Chi-square analysis was used to test for independency of variables

such as observers and staining patterns within samples. The Spearman

rank correlation coefficient was used as an estimate for the congruence

between observers. In the case of more than two groups, one-way

analysis of variance was used. P-values ,0.05 were considered stat-

istically different. Statistical analysis was carried out with the SSPS

12.0 software package (SPSS Inc., Chicago, IL, USA).

Results

Histone characterization of expanded sperm nuclei

Sperm from the OAT pool expanded (decondensed) more

slowly than sperm from normal donors. Overall, the results

were comparable between expansion classes (þþ) and

(þþþ) (see Figs. 1 and 3 for examples of expansion classes

and IF signals and Table II for results).

Chromatin markers were either expressed in each sperm

nucleus (Table II) or only in a fraction, such as for TH2B

and KM-2. For TH2B, we observed that a significantly

higher percentage of nuclei contained a fine spotted signal in

the normospermic pool than in the OAT pool (þ/2 and þ,

38 versus 16%), which is in concordance with other studies

(van Roijen et al., 1998; Zalensky et al., 2002). The signal

was spread throughout the nucleus. For KM2, an antibody that

has recently been characterized to recognize H4 acetylated at

K8, 12 and 16 and associates with apoptosis-induced chromatin

changes in somatic cells (Dieker et al., 2007), the reverse was

found. This marker was present in 44% of nuclei from the OAT

pool and in only 21% of nuclei from normospermic males.

Heavier labelling patterns (þþ and þþþ) that were hardly

present in normospermics occurred in 3% of OAT nuclei.

The nucleosome-specific PL2-3 antibody, detecting its

epitope in each sperm nucleus, clearly showed an increase in

signal for the OAT pool (Table II). Also, the variation in

signal was larger for OAT sperm. Nucleosomes characterized

by the replication-dependent H3.1/H3.2 (mab #34) this were

found to a lesser degree (Table II). Mab PL2-3 detects all

nucleosomes containing either the replication-dependent

H3.1, H3.2 or replication-independent H3.3 isoforms.

For PRM1 (Hup1N), we found some sperm with a low signal

(þ/2; 10 and 20% for normospermics and OAT, respect-

ively), but the mean intensity for both groups did not differ

(see Table II). For PRM2 (Hup2B), only 0.3% of the normos-

permic pool had a low intensity signal (þ/2) compared with

2.7% for the OAT pool (P ¼ 0.05). No difference in mean

intensity was observed for this marker as well.

Neither the OAT pool nor the normospermic pool reacted

with the monoclonal antibody gH2AX (data not shown).

Analysis of thiol status by FACS

The higher intensity of IF signals for nucleosomes theoretically

should represent a lower presence of protamines in the OAT

pool, but this was not found using IF for PRM1 and

2. Another approach to study underprotamination is the use

of mBBr staining in combination with FACS. Therefore, we

executed pilot mBBr-FACS runs for free thiol and total thiol

measurements. The analysis makes use of the fact that both

PRM1 and 2 are rich in cysteines. First pilot experiments

used combinations of two OAT donors (see Table I) and (indi-

vidual) normospermic donor samples. The data of each FACS

run were comparable with the results given in Fig. 2. Because

of the number of sperm necessary to perform sorting of frac-

tions, a large pool was made (pool normospermic donors:

N-2, N-3, N-4, N-5; pool OAT donors: O-2, O-6, O-7, O-8).

The FACS run of the pooled samples is represented in Fig. 2.

In the forward and side scatter plots of Fig. 2A and B, each

dot represents one sperm cell. Sperm with a specific and regular

size were labelled ‘gate A’ in normospermic samples, this gate

contained around 80% of the measurements and around 60%

for the OAT samples.

In the histograms of Fig. 2C–F, horizontal bars indicate the

fluorescence criteria that were used for the sorting of high (R)

and low (S) intensity fractions, respectively. Table III gives the

frequencies and average fluorescence values of nuclei con-

tained in these windows. Appreciable differences emerged

between normospermic and OAT donor pools. For both the

free SH groups and total SH groups (after DTT reduction),

OAT sperm were characterized by biphasic distributions

(Fig. 2D and F), that for the free SH groups was also visible

in the normospermic samples, however, not as pronounced

(Fig. 2C). For both types of SH measurements, the normosper-

mic samples were much more homogeneous. When comparing
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Figure 3: Decondensed human sperm heads were stained by using monoclonal antibodies for different chromatin markers
Only decondensed sperm heads grade (þþ) or (þþþ) were used for IF intensity scoring (in this figure, scored cells are given within dotted
circles). Depending on the intensity and pattern of the signal, semi-quantitative values were given (2, þ/2, þ, þþ, þþþ)
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the right borders (upper limits) that give an indication of

maximum fluorescence yields, the OAT samples are higher

with respect to free thiol groups (Fig. 2D), whereas the normos-

permics are higher for total SH content (Fig. 2E).

Considering the mean intensity after DTT reduction [normo

pool (R): 3602 arbitrary units] as the 100% level of the free

SH-groups in a sperm population, the percentage of free

thiols per sample was estimated. Using this approach, the

normal percentage of free thiols in human sperm cells was

�5%, but was increased in OAT sperm to 13% of the total.

Assuming that protamine cysteine thiols are the main contribu-

tors to sperm thiols, a lower total SH–content after DTT

reduction indicates a lower nuclear protamine content (2790

versus 3602 arbitrary units for the R windows of OAT and nor-

mospermics, respectively). Because in the OAT pool DTT–

mBBr intensity was overall lower than in the normo pool

(Table III), it is assumed that chromatin remodelling in OAT

sperm is incomplete or delayed during spermiogenesis.

TUNEL measurements

Table IV gives the outcomes of the TUNEL measurements of

mBBr-sorted sperm. TUNEL was evaluated by two indepen-

dent observers, between which no statistical differences

emerged. The TUNEL scores before or after FACS show that

in the normospermic pool, the staining and passage of sperm

through the sorter had little effect on the outcome. However,

a greater effect of presumably gating was observed in the

OAT patients. Both for normospermic and OAT pools, a

lower level of free thiol groups was associated with a higher

TUNEL score and vice versa (Table IV). Hence, the larger

fraction of low free thiol sperm in the OAT sample (Fig. 2D)

is responsible for the higher TUNEL level in OAT ejaculates.

Likewise, when fractionating for total thiol levels, in both

samples the TUNEL score of the low fraction was about

twice that of the high fraction.

IF detection of ds DNA in whole mount sperm nuclei

Underprotamination predicts a more open chromatin configur-

ation. In order to establish if we could detect a more open chro-

matin configuration with IF, we applied to a subset of the

samples (see Table I), a monoclonal antibody against dsDNA

to the mBBr–FACS sorted spermatozoa. The various patterns

and intensities obtained are given in Fig. 4. In both the normos-

permic and OAT samples, there was considerable variation in

antibody penetration-dependent DNA detection. The antibody

reacted more intensely at the nuclear periphery, and always

accentuated nuclear vacuoles (Fig. 4C). In nuclei with

background- or low fluorescence, a ‘negative’ band could be

observed (Fig. 4B) situated in the posterior nucleus close to

the attachment of the axonema. For the FACS-selected

Table II. IF intensity values of the different chromatin proteins (protamines, histones types, histone variants and histone modifications for KM-2).

Antibody Poola n Mean+SD
IF intensity

Ratio O/Na P-value IF intensity (%)

High
(þþþ)

Intermediate
(þþ/þ)

Low
(þ/2)

No signal
(2)

PL2-3 (nucleosomes) N 350 1.71+0.72 1.49 ,0.001 1 57 42 0
O 300 2.54+1.12 27 50 23 0

#34 (H3.1/H3.2) N 400 1.51+0.78 1.14 0.001 3 33 64 0
O 350 1.72+0.94 8 40 50 2

TH2B N 300 0.39+0.50 0.41 ,0.001 0 1 38 61
O 200 0.16+0.37 0 0 16 84

HuP-1N (protamine 1) N 500 2.13+0.59 0.97 n.s 1 89 10 0
O 300 2.07+0.71 3 78 19 0

HuP-2B (protamine 2) N 350 3.11+0.69 1.0 n.s 30 70 0 0
O 300 3.11+0.76 32 65 3 0

KM-2
(AcH4K8,12,16)

N 550 0.26+0.57 2.19 ,0.001 0 4 17 79
O 600 0.57+0.76 0 10 34 56

aN, normospermic pool; O, OAT pool.

Table III. Mean fluorescence intensity (arbitrary units) and percentage of
cells in each fraction (Fig. 2) after FACS sorting.

Sorted fractions Mean intensity (%)

Normo pool OAT pool

% cells in Gate Aa 79 62
mBBr low (S), n (%) 34 (22) 52 (42)
mBBr high (R), n (%) 194 (72) 360 (41)
DTT–mBBr low (S) 695 (7) 730 (42)
DTT–mBBr high
(R), n (%)

3602 (92) 2790 (56)

aSee Fig. 2 (FACS plots).

Table IV. Percentage TUNEL positive sperm in the different sorted
fractions.

Fractions Normo pool OAT pool

n % TUNEL P-value n % TUNEL P-value

mBBr (control)a 462 10 n.s 477 47 0.008
Gate A (control)b 432 7.4 413 33.4
mBBr low 651 32.7 ,0.001 518 59.2 0.002
mBBr high 697 17.8 600 40.8
DTT–mBBr low 621 20.9 ,0.001 148 65.5 ,0.001
DTT–mBBr high 649 11.7 615 31.7

aSperm stained with mBBr before sorting with FACS; bSee Fig. 2 (FACS
plot): unstained sperm after a FACS run.
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samples, this band was most frequently observed in the

mBBrþ fraction of the normospermics (82% showed a band

contrary to 46% in the corresponding OAT sperm fraction

P ¼ 0.001), therefore we assume this to represent a normal

nuclear differentiation feature. Although less accentuated, a

difference in the same direction was preserved after thiol

reduction (50 versus 43%, n.s.).

Both samples harboured a fraction of nuclei that did not stain

with anti-dsDNA. For this limited set of material (see Table I)

the overall level of freely accessible DNA was larger in the

OAT sample than in the normospermic samples (Fig. 5). No

differences were found between high and low free thiol

levels (mBBr) of normospermic samples (see bars in Fig. 5A

for ‘control, mBBrþ and mBBr–’) or OAT samples

(compare bars for ‘control, mBBrþ and mBBr–’). Similarly,

for high and low total thiol levels (DTT–mBBR), no difference

was found between selected samples (control versus DTT–

mBBrþ and DTT–mBBr–) both for normospermic and

OAT samples (Fig. 5).

Discussion

The purpose of this investigation was to obtain further insight

into sperm nuclear differentiation/maturation in oligospermic

individuals compared with normospermics. Chromatin remo-

delling of spermatids is a differentiation characteristic. For

the characterization of sperm maturation, SH cross-linking,

between and within protamines, is used.

Figure 4: Fluorescence patterns obtained with mab #36 specific for dsDNA
Band describes a fluorescence negative zone, i.e. often found near the nuclear annulus in the posterior nucleus. Intensity refers to the overall level
of fluorescence. Only nuclei that showed their biggest circumference were scored
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During the nuclear elongation phase of spermiogenesis,

chromatin remodelling from a nucleosomal structure to

protamine-induced DNA compaction is less complete in the

human compared with laboratory rodents and farm animals

(Gatewood et al., 1990; Bench et al., 1996). Also, the variation

in this process is larger in patients with deficiencies in sperma-

togenesis compared with normospermic donors (Rufas et al.,

1991; de Yebra et al., 1998; Zhang et al., 2006). Besides

enrichment of nucleosomes at the telomeres (Mudrak et al.,

2005), genes can harbour an alteration of areas with protamines

and histones (Wykes and Krawetz, 2003). Centromeric and

pericentromeric regions contain nucleosomal chromatin in

the bull (Palmer et al., 1990) and human (Zalensky et al.,

1993), and this finding has been recently confirmed in the

mouse (van der Heijden et al., 2006). Hence, it would

appears that DNA repeat areas that are of structural importance

to chromosome functioning, such as telomeres and centro-

meres/centric heterochromatin, are enriched in nucleosomes,

providing a memory base for chromatin remodelling upon

nuclear expansion after sperm penetration (van der Heijden

et al., 2006).

These heterochromatic DNA repeat areas are by definition

gene poor. As a consequence, their nucleosomal make-up is

derived from S-phase, not influenced by transcription, i.e.

associated with chromatin remodelling involving de novo

nucleosome formation. Replication-derived nucleosomes

contain the H3.1/H3.2 histone variant, whereas transcription-

associated nucleosomes contain the H3.3 variant (for a

review on functions of histone isoforms and chromatin activity,

see Bernstein and Hake, 2006). For nucleosomes containing

H3.1/H3.2, we only found a small statistically significant

increase in OAT sperm (Table II). For total nucleosomes, the

OAT/normal score ratio was 1.5 (Table II). Hence, in the

human the transition of nucleosomal chromatin to protamine

by preference applies to H3.3 containing nucleosomes that

recently have been shown to increase during the second half

of the pachytene stage (van der Heijden et al., 2007), a

period, i.e. characterized by intense transcription (Geremia

et al., 1977). We conclude that a large fraction of OAT

sperm seems to be deficient in the remodelling of H3.3 contain-

ing nucleosomes, whereas areas where H3.1/H3.2 nucleo-

somes are present (as assembled at premeiotic and previous

S-phases) often may not be exchanged for protamines, either

in normal or OAT sperm samples. This analysis would position

the origin of the OAT syndrome at the primary spermatocytes

stage, for which more indications, such as deficient homolo-

gous recombination have been found (Gonsalves et al.,

2004). Support for this hypothesis comes from the fact that

the histological diagnosis of hypospermatogenesis (Levin,

1979) includes reduced numbers of primary spermatocytes.

Recently, the H4 K8, 12, 16 triacetylation modification, i.e.

detected by the monoclonal antibody KM-2, has been shown to

be enriched in apoptotic somatic nuclei (Dieker et al., 2007).

We found this mark to be about two times more frequently

present in OAT sperm which were on average more intensely

labelled. Around 40% of nuclei were positive, which is com-

parable to TUNEL scores in OAT samples as found by us

(Table IV) and in the literature (mean 40.9%) (Sergerie

et al., 2005). In the normospermic pool, we found around

21% KM-2-positive cells, which is higher than the TUNELþ

frequencies found in our control group (10%), but comparable

to the frequencies found in normospermics by other investi-

gators (Chohan et al., 2006).

Indications for an apoptosis-like process in sperm are numer-

ous now, ranging from mitochondrial membrane and caspase

determinations (Marchetti et al., 2004) to the discovery of

endonuclease activity in the sperm nucleus (Ward and Ward,

2004; Sotolongo et al., 2005). The question of interest here is

Figure 5: Fluorescence intensity patterns of mAb #36 in the different FACS fractions are represented by bars
Intensity of the signal was characterized as high, intermediate or low. From each sample, an unstained aliquot (control), the mBBr and
DTT-mBBr fractions after FACS were stained with mab # 36. No difference in IF staining was found in each sample separately (normospermic
or OAT) in the sorted fractions. A marked difference was found between normo and OAT samples but not within donors for the DTT-mBBrþ and
DTT-mBBr- sorted fractions
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at what stage during spermiogenesis H4 becomes modified, i.e.

when does the nucleus receive signals for the apoptotic

pathway. Hyperacetylation of H4 is the normal mark at the

onset of the histone to protamine change (Sonnack et al.,

2002). KM-2 is likely to sense more sites than just the classified

epitopes H4K8, 12 and 16, such as the homologous (acetylated)

region in H2A (Dieker et al., 2007).

The frequency of positivity for TH2B in normospermics was

comparable with data from the literature (van Roijen et al.,

1998; Singleton et al., 2007). Extrapolating from the finding

of the latter group that sperm which are positive for TH2B

have superior nuclear decondensation after gamete fusion,

the lower fraction of TH2B-positive sperm in OAT indicates

a lower fraction of optimally differentiated sperm in this

syndrome.

We have used FACS measurements of mBBr to substantiate

the IF data that were indicative of an increased level of nucleo-

somes in OAT sperm. Thiol fluorescence of human sperm

mainly represents the nucleus, although a low percentage (neg-

ligible for the total measurements) of the total mBBr fluor-

escence is derived from tails (Seligman et al., 1991). When

total thiol levels are determined by mBBr fluorescence, the his-

tograms obtained by us agreed with those of Rufas et al., 1991.

Under-representation of PRM2 in OAT (for a review, see

Carrell et al. 2007) is the main candidate for explaining the

higher total thiol fluorescence in normospermic samples

(Fig. 2E). We did not find lower protamine levels by the sub-

jective scoring of IF intensities, pointing to the fact that

when epitope levels are high, IF is not a suitable method for

quantification. A ratio of around 0.8 (OAT/normo) of total

thiol fluorescence in the ‘high windows’ of donor pools

(Table III) may well be in line with expectation, although in

gel systems such a ratio is not always found (Mengual et al.,

2003). The higher maximum of free thiol in the OAT sample

(Fig. 2D) is likely due to a delay in, or an interruption to,

thiol oxidation during nuclear maturation after spermiation.

The excess of OAT sperm with low free thiol levels could

originate from oxidative stress due to ROS production or apop-

totic processes, i.e. one aspect of incompletely transformed

immature human sperm (Bennetts and Aitken, 2005). The

fact that thiol oxidation functions in biological signalling

(Moran et al., 2001) and has been implicated in sperm capaci-

tation (de Lamirande and Gagnon, 2003), labels sperm with

low free thiol levels as pathogenic. In line with this interpret-

ation, we found TUNEL readings to be increased in fractions

with low free SH groups (Table IV), again indicating oxidative

stress (Greco et al., 2005; Aitken and Baker, 2006) during epi-

didymal transit as one aspect of the induction of apoptosis.

Protection of the genetic material is always mentioned as one

of the prime functions of chromatin remodelling during sper-

miogenesis and subsequent maturation/compaction of the

nucleus by thiol oxidation. Underprotamination by definition

entails a lower degree of compaction as does delayed or incom-

plete nuclear thiol oxidation (Kosower et al., 1992). We have

asked ourselves if immunofluorescence with an antibody that

detects dsDNA can serve to evaluate the degree of nuclear

compaction (hence its accessibility). For this purpose, we

adopted a protocol that does not include nuclear expansion

and preserves nuclear structures. To achieve this, we avoided

settling of sperm cells on glass by encapsulating the spermato-

zoa in a fibrin clot. Our results show the feasibility of this

approach. The nuclear periphery is most reactive, which

could partly involve the fact that telomeric histone containing

chromatin is adjacent to the nuclear envelope (Zalenskaya

et al., 2000). Vacuoles were faithfully recorded, which would

argue for proper penetration of the antibody. Overall in this

experiment, OAT sperm were by penetration of the antibody

less compacted, which is in agreement with the higher nucleo-

somal content and CMA3 scores (Iranpour et al., 2000). Within

pools, no difference was found between oxidized (low free SH)

and non-oxidized (high free SH) sperm. When we selected for

the sperm fractions with a high total thiol level, hence sperm

with higher protamine content, in both pools we did not

observe a striking improvement of ‘compaction’. This would

argue for another aspect of nuclear structure, likely involving

the nuclear matrix, to be not properly developed in OAT

sperm, as for instance could be demonstrated by the slower

decondensation kinetics in this study.

In conclusion, by the application of various chromatin anti-

bodies, we were able to suggest that H3.1/H3.2 containing

nucleosomes may be the most resistant to chromatin remodel-

ling at nuclear elongation during spermiogenesis. Therefore,

H3.3 containing nucleosomes that grow more numerous

during the second half of pachytene in the mouse (van der

Heijden et al., 2007) may be the major ones that are incomple-

tely exchanged for protamines in OAT sperm.

The free and total thiol status relates to the likelihood of

apoptotic development by TUNEL standard, with lower thiol

levels relating to a higher likelihood of apoptotic development.

Low levels of free thiol groups are indicative of oxidative stress

and therefore also predictive for apoptosis. Within normo and

OAT pools, free and total thiol levels do not predict the

amount of nuclear compaction as measured by the penetrability

of a monoclonal antibody for dsDNA. Hence other aspects of

nuclear differentiation also differ between normo and OAT

sperm.
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