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study question: Are brain-derived neurotrophic factor (BDNF) and its receptors, NTRK2, NGFR and SORT1, regulated by ovarian ster-
oids in the uterus?

summary answer: BDNF and its low affinity receptor, nerve growth factor receptor (NGFR), are regulated by estradiol in the uterus.

what is known already: Recent studies have revealed a central role for neurotrophins in placental development, endometrial stem
cell neurogenesis, endometrial carcinoma and endometriosis. Complex signaling pathways involving BDNF and its receptors are regulated by
ovarian hormones in the brain, however their expression and regulation in the uterus is poorly defined.

study design, size, duration: This experimental animal study involved a total of 80 mice.

participants/materials, setting, methods: Female C57BL/6 mice (n ¼ 50) were monitored daily for estrous cycle stage,
and uterine horns were collected. A second group of mice (n ¼ 30) were ovariectomized and given estradiol, progesterone, estradiol + proges-
terone, or saline for 4 days. Uterine expression of BDNF and its receptors were quantified by real-time PCR and western blot, and localized using
immunohistochemistry.

main results and the role of chance: During the estrous cycle, expression of BDNF, NTRK2 and SORT1 remained constant,
while NGFR declined 11-fold from pro-estrus through to diestrus (P ¼ 0.005). In ovariectomized mice, estradiol treatment increased uterine
expression of mature BDNF greater than 6-fold (P ¼ 0.013, 25 kDa; P ¼ 0.003, 27 kDa), pro-BDNF 5-fold (P ¼ 0.041, 37 kDa band; P ¼
0.046, 40 kDa band), and NGFR 5-fold (P , 0.001) when compared with other treatments. NTRK2 and SORT1 were unaffected by ovarian
hormones. NGFR was primarily localized in epithelial cells in mice in diestrus or in ovariectomized mice treated with progesterone
(P ≤ 0.001; P ≤ 0.001, respectively). In contrast, NGFR switched to a stromal localization in ovariectomized mice administered estradiol
(P ¼ 0.002).

limitations, reasons for caution: This study was performed in one only species.

wider implications of the findings: Results of this study demonstrate the uterine regulation of BDNF and NGFR by estradiol,
and highlight the striking difference between hormone exposure during the estrous cycle and daily estradiol exposure after ovariectomy on neu-
rotrophin expression in the uterus. The results also show the spatial regulation of NGFR in the uterus in response to ovarian hormones. Sustained
estrogen exposure, as seen in estrogen-dependent disease, may alter the delicate neurotrophin balance and inappropriately activate potent
BDNF-NTRK2 pathways which are capable of contributing to endometrial pathology.
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Introduction
Although mainly recognized for their supportive function within the
nervous system, brain-derived neurotrophic factor (BDNF) and its high
affinity receptor neurotrophic tyrosine receptor kinase 2 (NTRK2)
have been shown to participate in ovarian development (Dorfman
et al., 2011), follicular development (Kerret al., 2009) and oocyte survival
(Dorfman et al., 2014). The neurotrophins are also important in endo-
metrial physiology where they participate in endometrial stem cell
neurogenesis (Shoae-Hassani et al., 2011) and normal placental develop-
ment (Kawamura et al., 2009, 2011; Non et al., 2012). However, the
overexpression of neurotrophins is associated with reproductive path-
ologies including premature ovarian failure (Dorfman et al., 2014), endo-
metrial cancer (Baoet al. 2013) and endometriosis (Borghese et al., 2010;
Browne et al., 2012; Barcena de Arellano et al., 2013).

The neurotrophins are small molecular weight proteins that act in the
nervous system to promote neuronal development, differentiation,
growth and maintenance (reviewed in Chao, 2003). The neurotrophin
signaling network is complex. Neurotrophins can be translated as pro-
proteins and cleaved into their active forms (Mowla et al., 2001, Gray
and Ellis, 2008) or they can induce signaling cascades in their pro-forms
(Lee et al., 2001; Koshimizu et al., 2009). Generally, the two forms
have opposing functions (reviewed in Chao and Bothwell, 2002; Teng
et al. 2010). The neurotrophin family comprises four ligands, BDNF,
nerve growth factor (NGF), neurotrophin 3 (NTF3) and neurotrophin
4 (NTF4), and four receptors: neurotrophic tyrosine receptor kinase
(NTRK) 1, NTRK2, NTRK3, and the nerve growth factor receptor
(NGFR) (reviewed in Chao, 2003; Reichardt, 2006). Although all
four neurotrophins bind to NGFR with similar affinities (Chao, 2003;
Reichardt, 2006), and their pro-protein forms have been shown to
bind to this receptor as well (Lee et al., 2001), they are more selective
in binding the NTRKs. NGF binds to NTRK1, BDNF and NTF4 to
NTRK2, and NTF3 to NTRK3, each with high affinity (reviewed in
Chao, 2003). Another lesser known neurotrophin co-receptor, sortilin
(SORT1), has been shown to interact with pro-neurotrophins in the
brain and to control their release (reviewed in Nykjaer and Willnow
2012). SORT1 is also involved in intracellular trafficking, directing pro-
teins to various fates: cell surface expression, secretion, endocytosis or
transport within the cell (reviewed in Nykjaer and Willnow, 2012).

The interaction between BDNF and NTRK2 is not only capable of in-
ducing neuronal development, differentiation, growth and maintenance,
activation of the BDNF-NTRK2 pathway also induces angiogenesis
(Kermani et al. 2005, Nakamura et al. 2006), proliferation (Tervonen
et al., 2006; Kawamura et al., 2010), adhesion (Zhou et al., 1997;
Douma et al., 2004; Geiger and Peeper, 2007) and resistance to apop-
tosis (Douma et al. 2004, Wang et al. 2005, Geiger and Peeper, 2007;
Kawamura et al., 2010; Li et al., 2011). Each of these pathways is inextric-
ably linked to reproduction, but the mechanisms regulating the uterine
expression of neurotrophins remain unknown.

Both estrogen (Singh et al., 1995; Gibbs, 1998, 1999, Jezierski and
Sohrabji, 2000, 2001; Berchtold et al., 2001; Liu et al., 2001; Solum and
Handa, 2002; Scharfman and Maclusky, 2005; Pan et al., 2010; Tang
and Wade, 2012) and progesterone (Kaur et al., 2007; Jodhka et al.,
2009; Meyer et al., 2012; Su et al., 2012; Atif et al., 2013) regulate
BDNF and its receptors in the brain, and we propose that their uterine
regulation occurs in a similar manner. The aims of this study are to deter-
mine whether uterine BDNF, NTRK2, NGFR and SORT1 are affected

by: (i) the acute, naturally occurring hormone fluctuations of the
estrous cycle, and (ii) daily exposure to the ovarian hormones in ovariec-
tomized mice. Here, we contrast the relatively stable expression of
BDNF and its receptors over the estrous cycle with the significant
up-regulation of uterine BDNF and its low affinity receptor NGFR in re-
sponse to prolonged exposure to estradiol. Additionally, we document
for the first time the presence of NGFR and SORT1 in the uterus.

Materials and Methods

Ethical approval
All procedures were approved by the animal research ethics board, McMas-
ter University, Hamilton, ON, Canada (AUP 12-04-13).

Mice
Sexually mature female C57BL/6 mice (n ¼ 80) were purchased at 8 weeks
of age from Charles River, and housed in a specific pathogen-free facility with
a 12 h light/dark cycle, standard rodent chow, and water ad libitum.

Cycling mice
Mice (n ¼ 50) were randomly selected for estrous cycle monitoring. Animals
were acclimated to vaginal lavage using sterile saline and a curved eye-
dropper for a 2-week period. Lavage was dried on a glass slide, and stained
with a rapid Giemsa (Sigma-Aldrich, Oakville, ON, Canada) protocol.
Briefly, slides were fixed in methanol for 5 min, air dried, and stained with
Giemsa for 5 min. Estrous cycle stage was assessed on a daily basis by
vaginal cytology (Wood et al., 2007; Caligioni, 2009; Byers et al., 2012).
Animals were euthanized at each stage of the estrous cycle (pro-estrus
n ¼ 8; estrus n ¼ 18; metestrus n ¼ 9; diestrus n ¼ 15) by anesthetic over-
dose (isoflurane, Pharmaceutical Partners of Canada, Inc., Richmond Hill,
ON, Canada). Uterine horns were immediately removed and stored
at 2808C.

Ovariectomy and hormone replacement
In the second experiment, sexually mature female mice (n ¼ 30) were ovar-
iectomized, and allowed to recover for 2 weeks. Mice were randomly
assigned to treatment groups as outlined in Fig. 1, using previously established
methods and doses (Domino and Hurd, 2004; Gillgrass et al., 2005; Salgado
et al., 2009, 2011). All groups except the OVX group were primed for 3 days
with 5 mg of 17-b estradiol (EMD Millipore, Billerica, MA, USA) by subcuta-
neous injection. After 2 days of rest, animals were given 5 mg of estradiol,
500 mg of progesterone, 5 mg of estradiol plus 500 mg of progesterone
(EMD Millipore), or saline by subcutaneous injection for 4 days. Animals
were euthanized, and uterine horns were collected as described above.

RNA and protein extraction
RNA and protein were extracted simultaneously from one uterine horn using
the RNA/Protein Purification Plus kit (Norgen Biotek Corp., Thorold, ON,
Canada). Approximately 30 mg of uterine horn was cut and sonicated in
300 ml lysis buffer on ice for 30 s, three times. RNA was extracted following
the manufacturer’s protocol and quantified by Nanodrop (Thermo Scientific,
Wilmington, DE, USA). cDNA was prepared using the iScript cDNA Synthe-
sis Kit (Bio-Rad, Mississauga, ON, Canada). Protein concentration was
determined by Bio-Rad Protein Assay (Bio-Rad).

Real-time PCR
Real-time PCR primers (Table I) were designed against the coding region
of genes (to capture all isoforms) using sequences from NCBI Nucleotide,
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and Primer3 software (http://biotools.umassmed.edu/bioapps/primer3_
www.cgi). Primers were purchased from IDT Technologies (Coralville, IA,
USA). PCR product was sequenced (Laboratory Services, University of
Guelph, Guelph, ON, Canada), and BLASTed to confirm its identity.
Sequences were submitted to NCBI’s GenBank and are listed in Table I.
Plate-based real-time PCR was performed in duplicate (958C 5 min, denatur-
ation: 958C 10 s; annealing: see Table I 20 s; elongation: 728C 15 s; melting
curve: 65–97 2.58C/s) using the Roche LightCycler 480 (Roche Diagnostics,
Laval, QC, Canada) and the SYBR Green I Master Mix (Roche). Relative
quantification was performed with Gapdh as a reference gene using the
Roche LightCycler software, which calculates an efficiency corrected normal-
ized ratio of target gene to Gapdh using a mathematical algorithm developed
by Roche. Bar graphs represent the group mean plus standard error of meas-
urement (SEM).

For real-time PCR, Gapdh was used as a reference gene. Before relative
quantification, a one-way ANOVA was used to determine if significant
differences existed in crossing points between groups. No significant differ-
ences in Gapdh were observed between estrous cycle phases (P ¼ 0.179)

nor between groups of the mice receiving hormone supplementation
(P ¼ 0.271, data not shown).

Western blot
Total uterine protein (20 mg) was run on a 4–20% gradient gel (Thermo Sci-
entific, Burlington, ON, Canada) under reducing conditions at 150 V for
50 min, and transferred to PVDF (VWR International, Mississauga, ON,
Canada) at 40 V for 90 min. Skim milk/TBS-T (5%) was used to block for
1 h at room temperature. Blots were incubated with primary antibody
(Table II) overnight at 48C. Anti-Rabbit-ECL secondary (GE, Mississauga,
ON, Canada) was applied for 1 h at 1:5000; then blots were incubated
with enhanced chemiluminescence (ECL) substrate (Thermo-Scientific) for
5 min. X-ray film (Thermo-Scientific) was used for imaging; exposure times
are listed in Table II. Blots were stripped using Restore Western Blot stripping
buffer (Thermo-Scientific), and rinsed in TBS prior to incubation with another
primary antibody. Densitometry was performed using ImageJ software (Na-
tional Institutes of Health, Bethesda, MD, USA).b-Tubulin was employed as

Figure1 Experimental design for the ovariectomy and hormone replaced mice. Female mice (n ¼ 30) were ovariectomized, and allowed to recover for 2
weeks. Mice were randomly assigned to one of five treatment groups (O, S, E2, P4, or E2/P4), and received daily subcutaneous injections of 5 mg of 17-b
estradiol (E2), 500 mg of progesterone (P4), 5 mg of estradiol plus 500 mg of progesterone (E2/P4), or saline (S) as a vehicle according to the regimen and
timing outlined. O: ovariectomized control group (no hormone exposure).

.............................................................................................................................................................................................

Table I Real-time PCR primers and information.

Primers Anneal (88888C) Melt Peak (88888C) Cycles Accession number

BDNF F: GCCCAACGAAGAAAACCATA
R: TCAGTTGGCCTTTGGATACC

56 87 55 KF982302

NTRK2 F: CGAGGTTGGAACCTAACAGC
R: TTACCCGTCAGGATCAGGTC

62 82 60 KF982303

NGFR F: GAAGCTGCTCAATGGTGACA
R: CACAGAGATGCTCGGTTCTG

58 90 55 KF982304

SORT1 F: TATGCCCCGAATTCCTAGTG
R: CCACCTCACATGCAATGTTC

56 87 55 KF982305

GAPDH F: TGTTCCTACCCCCAATGTGT
R: ATGTAGGCCATGAGGTCCAC

56 85 55 KF982306
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the reference gene for the western blots. No differences in b-tubulin were
observed in cycling mice (P ¼ 0.086) nor in ovariectomized mice receiving
hormone supplementations (P ¼ 0.327, data not shown).

Immunohistochemistry
One uterine horn was fixed in 10% formaldehyde, processed, and embedded
in paraffin. Uterine cross sections were cut at 4 mm, deparaffinized, and
stained for BDNF (ab9794, Abcam, Cambridge, MA, USA, 1:200), NTRK2
(ab56652, Abcam, 1:200), NGFR (ab8874, Abcam, 1:100), and SORT1
(ab16640, Abcam, 1:500) using 1% BSA in PBS as a diluent. In lieu of
primary antibody, negative sections were incubated with the blocking solu-
tion in the Rabbit Vectastain ABC kit (Vector Labs, Burlington, ON,
Canada). The ABC kit was used as per manufacturer’s protocol, and DAB
was employed as a chromogen (including negative sections). Images were
captured with an Infinity camera (Lumenera Corp., Ottawa, ON, Canada)
and Olympus IX81 microscope (Olympus, Richmond Hill, ON, Canada).

Quantification of NGFR staining
Four random images of uterine cross sections per mouse were obtained from
mice in all cycle phases and treatment groups (n ¼ 3 per phase or group).
Luminal epithelial, glandular epithelial and stromal cells were counted (100
cells per type) and the percent staining positive for NGFR was calculated.

Data and statistical analysis
Within our data, there were values non-detectable by real-time PCR or
western blot. There are several methods to handle non-detectable data
points including: assigning these data a value of 0, the limit of detection for
the assay, the square root of the limit of detection, or a random number
between the limit of detection and zero (Newton and Rudel, 2007; Fievet
and Della Vedova, 2010; Ballenberger et al., 2012; Boyer et al., 2013). We
assigned a random number between the limit of detection for the gene or
protein of interest and zero using the random number generator in the Sigma-
Stat software package (SigmaStat 3.5 Systat Software, Inc., Chicago, IL, USA)
because this method will randomly skew the data toward or away from zero,
rather than always skewing it in the same direction. Statistical outliers in the
data were identified by Grubb’s test (http://graphpad.com/quickcalcs/
Grubbs1.cfm) for N . 6, and the Dixon’s Q test for a single outlier, for
smaller sample sizes (http://contchart.com/outliers.aspx). Outliers were
removed prior to analysis. Any other sample omissions were due to technical
error. The number of non-detects, outliers, and omissions are in Supplemen-
tary Fig. S1. Real-time PCR and western blot datawere compared byone-way
ANOVA (SigmaStat 3.5 Systat Software, Inc., Chicago, IL, USA) and Tukey
post hoc test. Data that were not normally distributed were analyzed by
ANOVA on rank’s and Dunn’s post hoc test performed. A P-value of
,0.05 was considered significant. Bars on the graphs represent the mean

plus the standard error of measurement (SEM). Uterine localization of
NGFR was compared by t-test.

Results

BDNF expression in the cycling mouse uterus
Bdnf transcripts were decreased (P ¼ 0.031) in metestrus compared
with estrus (Fig. 2A). When BDNF expression was assessed by
western blot, four bands (�25, 27, 37, and 40 kDa) were observed in
37 of 39 uteri (Fig. 2B and D). No differences in the 25, 27, 37 or
40 kDa BDNF bands (P ¼ 0.425, 0.263, 0.137, 0.107 respectively;
Fig. 2B and D) were observed over the estrous cycle.

BDNF receptor expression in the cycling
mouse uterus
Ntrk2 transcripts were elevated in diestrus compared with metestrus
(P ¼ 0.017; Fig. 2A). NTRK2 55 kDa protein (Fig. 2B and D), an
isoform we previously demonstrated in the human uterus and mouse
brain using another NTRK2 antibody (Wessels et al., 2014), remained
stable over the estrous cycle (P ¼ 0.691). The long (140 kDa) and trun-
cated (95 kDa) forms of NTRK2 were below the limit of detection, even
after an hour exposure. Ngfr transcripts were unaltered across the
estrous cycle (P ¼ 0.221; Fig. 2A). However NGFR protein decreased
over the estrous cycle with levels at diestrus being significantly lower
(P ¼ 0.005) than those at pro-estrus or estrus (Fig. 2B–D). Transcripts
and protein for SORT1 were unaffected by estrous cycle stage (P ¼
0.104, P ¼ 0.130; Fig. 2A, B and D).

Uterine localization of BDNF and its receptors
in the cycling mouse uterus
BDNF and NTRK2 were co-localized in the luminal epithelium, glandular
epithelium, stroma and smooth muscle in the cycling mouse uterus (rep-
resentative images, Fig. 3). NGFR was also present in all uterine cell types
(Figs 3 and 4), but its expression in the luminal epithelium was dependent
on whether there was a dominance of estrogen (pro-estrus, estrus,
metestrus) or progesterone (diestrus) (Fig. 4A and B). NGFR expression
increased (P , 0.001) in the luminal epithelium at diestrus when com-
pared with other cycle stages (Fig. 4A). NGFR expression was absent
in the internal layer of smooth muscle in the myometrium, but present
in the external layer (Fig. 3). SORT1 remained consistently expressed
in the luminal and glandular epithelium (Fig. 3).

Hormonal regulation of BDNF in the mouse
uterus
Estrogen and progesterone increased Bdnf transcripts above ovariecto-
mized controls, estrogen treated, and progesterone treated alone (P ¼
0.002; Fig. 5A). Treatment with estradiol significantly increased all quan-
tified isoforms of BDNF in the mouse uterus (Fig. 5B–D). The 25 kDa
band increased 6-fold above estrogen primed mice given saline (P ¼
0.013), and the 27 kDa band increased .7-fold (P ¼ 0.003) above
those given saline or progesterone. Estrogen treatment also significantly
increased (P ¼ 0.041) the 37 kDa form of BDNF above mice receiving
saline. Additionally, estrogen treatment enhanced the 40 kDa band
(P ¼ 0.046) when compared with those treated with progesterone only.

........................................................................................

Table II Western blot information.

Primary
antibody
concentration

Source Exposure
length
(minutes)

BDNF 1:1000 Abcam (ab6201) 60

NTRK2 1:200 Abcam (ab18987) 60

NGFR 1:2000 Abcam (ab8874) 2

SORT1 1:2000 Abcam (ab16640) 3

b-tubulin 1:5000 Abcam (ab6046) 1
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Hormonal regulation of BDNF receptors in
the mouse uterus
No significant change in uterine Ntrk2 transcripts was identified (P ¼
0.066, Fig. 5A). The 55 kDa band was not changed by hormonal

treatment (P ¼ 0.788; Fig. 5B and D). The full-length (140 kDa) and trun-
cated (95 kDa) NTRK2 receptors were not quantifiable by western blot,
after a 1 h exposure. No differences in Ngfr transcripts in the uterus were
observed in the ovariectomized mice supplemented with exogenous

Figure2 BDNF and its receptors in the cycling mouse uterus. Quantification of Bdnf (n ¼ 8, 17, 8, 14), Ntrk2 (n ¼ 7, 17, 8, 14), Ngfr (n ¼ 8, 18, 9, 15), and
Sort1 (n ¼ 8, 18, 9, 15) transcripts using Gapdh as a reference gene (A). Densitometry values for BDNF (n ¼ 8, 11, 9, 10), NTRK2 (n ¼ 7, 12, 9, 10), NGFR
(n ¼ 7, 12, 8, 9) and SORT1 (n ¼ 8, 12, 9, 10), expressed as a % loading control usingb-tubulin (B). Graph of the statistically significant differences in NGFR
expression over the estrous cycle (C). Representative western blot images showing immunoreactive bands for BDNF, NTRK2, NGFR, SORT1 and
b-tubulin which was used as the reference gene for densitometry (D). Data are presented as mean+ standard error. Statistically significant differences
are denoted by an asterisk (*) above the graph, or by different superscripts in the table (B). Outliers were not included in statistical analysis, but are
denoted by a dot on the graph if they fell within its range. E: estrus, D: diestrus, M: metestrus, P: pro-estrus.
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hormones (P ¼ 0.131; Fig. 5A). NGFR expression in the uterus was sig-
nificantly increased (P , 0.001) by estradiol treatment when compared
with saline and P4 treated animals (Fig. 5B–D). Estrogen and progester-
one co-treatment increased Sort1 transcripts in the uterus above mice
treated with estrogen alone, or saline (P ¼ 0.007; Fig. 5A). This differ-
ence in SORT1 was not observed at the protein level (P ¼ 0.503;
Fig. 5B and D).

Uterine localization of BDNF and its receptors
in the hormone replacement mouse uterus
BDNF and NTRK2 were located in the luminal epithelium, glandular epi-
thelium, stroma and smooth muscle in the mouse uterus of all treatment
groups (representative images from mice treated with estradiol in Fig. 6).
Mice treated with estradiol had enhanced BDNF expression, particularly
in stromal cells. NGFR was found in all uterine cell types (Figs 4 and 6) but,
as in cycling mice, its localization was dependent on whether mice were
exposed to estrogen or progesterone (representative images from mice
treated with estradiol in Fig. 6). NGFR expression was increased in the
stromal cells of ovariectomized mice given estrogen (P ¼ 0.002) when
compared with mice given progesterone or the ovariectomized controls
(group O), and its expression switched to the luminal (P , 0.001) and
glandular epithelium (P ≤ 0.001) in mice given progesterone (Fig. 4C).
SORT1 was located on the apical side of the glandular epithelium, and
occasionally, the luminal epithelium (representative images from mice
treated with progesterone in Fig. 6).

Discussion
Emerging evidence suggests an important role for BDNF in uterine physi-
ology and pathology. Herein we show that BDNF and its low affinity re-
ceptor NGFR are regulated by estradiol in the uterus. We contrast the
expression of uterine BDNF and its receptors during the 4-day estrous
cycle with expression in response to daily estradiol exposure during
hormone replacement, as summarized in Fig. 7.

Estrogen regulates BDNF expression in the
uterus
In ovariectomized mice, daily estrogen significantly increased all of the
BDNF isoforms quantified. BDNF can be a monomer (13 kDa), dimer
(26 kDa), or pro- (42 kDa) protein, and can undergo post-translational
modifications (Mowla et al., 2001; Teng et al., 2005; Pruunsild et al., 2007;
Matsumoto et al., 2008; Koshimizu et al., 2009). Stability studies
suggest BDNF dimers are stable, even under reducing blot conditions
(Radziejewski et al., 1992; Kolbeck et al., 1994; Pan et al., 1998). Thus,
the 25, 27, 37 and 40 kDa bands are likely dimerized and pro-BDNF,
with and without post-translational modification. Although progester-
one affects BDNF expression in the brain (Kaur et al., 2007; Jodhka
et al., 2009; Meyer et al., 2012; Su et al., 2012; Atif et al., 2013) and
nervous system (Gonzalez et al., 2004, 2005; De Nicola et al., 2006;
Gonzalez Deniselle et al., 2007; Cekic et al., 2012), and BDNF is
expressed in luteinized granulosa cells (Dominguez et al., 2011), proges-
terone did not alter uterine BDNF. Our results concur with Coughlan
et al. (2009) where progesterone did not alter BDNF expression in
response to neuronal injury. As Jodhka et al. (2009) reported that pro-
gesterone was capable of increasing BDNF in the brain but medroxy-
progesterone was not, we speculate that the form of progesterone
employed affects induction of BDNF.

While this is the first report of estrogen-induced BDNF expression
in the uterus, previous studies in the brain support a role for estrogen
in BDNF regulation (Toran-Allerand et al., 1992; Miranda et al., 1993;
Singh et al., 1995; Sohrabji et al., 1995; Gibbs, 1998, 1999; Jezierski
and Sohrabji, 2000, 2001; Berchtold et al., 2001; Liu et al., 2001; Solum
and Handa, 2002; Scharfman and Maclusky, 2005; Pan et al., 2010;
Tang and Wade, 2012). Additionally, circulating levels of BDNF strongly

Figure 3 BDNF and receptor localization in the cycling mouse uterus.
BDNF, and NTRK2 were co-localized in the luminal epithelium, glandu-
lar epithelium, stroma, and smooth muscle in the cycling mouse uterus.
Expression of NGFR was also present in all uterine cell types but its
localization was dependent on whether there was a dominance of
estrogen (pro-estrus) or progesterone (diestrus) (see Fig. 4). SORT1
remained consistentlyexpressed in the luminal and glandular epithelium.
Inset images: negative control sections incubated with blocking serum in
lieu of primary antibody. Original magnification: ×200, ×400. Scale
bar ¼ 50 mm. n ¼ 8 (pro-estrus), 18 (estrus), 9 (metestrus), 15 (dies-
trus). GE: glandular epithelium, LE: luminal epithelium, S: stroma, SM:
smooth muscle. E: estrus, D: diestrus, M: metestrus, P: pro-estrus.
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correlate with estradiol (Pluchino et al., 2009), and fluctuate over the
menstrual cycle in women (Begliuomini et al., 2007), and BDNF can be
induced by estrogen in the rat uterus (Krizsan-Agbas et al., 2003).

Here we have shown that daily estrogen exposure after ovariectomy sig-
nificantly increases uterine BDNF, but the hormonal fluctuations of the
murine estrous cycle do not.

Figure 4 NGFR localization in response to estrogen versus progesterone. In cycling mice, NGFR expression was increased in the luminal epithelium at
diestrus (P , 0.001) compared with the other cycle phases (A, B). In ovariectomized mice, the administration of estradiol increased NGFR expression in
the stromal cells (P , 0.001) when compared with animals given progesterone. The pattern of expression switched to the luminal (P , 0.001) and glandular
epithelium (P ¼ 0.002) when mice were given progesterone (C, D). Data are presented as mean+ standard error. Statistically significant differences are
denoted by different superscripts above the bars. Inset images: negative control sections incubated with blocking serum in lieu of primary antibody. Original
magnification: ×200. Scale bar ¼ 50 mm. n ¼ 3 per group. E: estrus, D: diestrus, M: metestrus, P: pro-estrus. GE: glandular epithelium, LE: luminal epithe-
lium, S: stroma, SM: smooth muscle. O, S, E2, P4, E2/P4: treatment groups according to Fig. 1. N.S.: not statistically significant.
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Figure 5 Hormonal regulation of BDNF and its receptors in the mouse uterus. Ovariectomized mice were assigned to treatment groups as outlined in
Fig. 1. Quantification of Bdnf (n ¼ 5, 6, 6, 5, 6), Ntrk2 (n ¼ 5, 5, 5, 6, 5), Ngfr (n ¼ 5, 6, 6, 6, 6) and Sort1 (n ¼ 4, 6, 6, 6, 6) transcripts using Gapdh as a
reference gene (A). Densitometry values for BDNF (n ¼ 5, 6, 6, 6, 6), NTRK2 (n ¼ 5, 5, 6, 6, 6), NGFR (n ¼ 4, 6, 6, 5, 6) and SORT1 (n ¼ 5, 6, 6, 6,
6), expressed as a % loading control using b-tubulin (B). Graph of the statistically significant differences in BDNF and NGFR expression in response to ex-
ogenous hormones (C). Representative western blot images showing immunoreactive bands for BDNF, NTRK2, NGFR, SORT1 andb-tubulin which was
used as the reference gene for densitometry. Each gene quantified by densitometry was run on the same membrane; the images have been cropped to
reflect the experimental groupings in the graphs (D). Data are presented as mean+ standard error. Statistically significant differences are denoted by
an asterisk (*) above the graph, or by different superscripts in the table (B). Outliers were not included in statistical analysis, but are denoted by a dot
on the graph if they fell within its range. O, S, E2, P4, E2/P4: treatment groups according to Fig. 1. OVX: ovariectomy.
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Estrogen regulates BDNF receptors in the
uterus
The uterine expression of NGFR decreased over the estrous cycle, and
increased in response to estrogen supplementation, while no hormonal

regulation of NTRK2 or SORT1 was observed. We postulate that estro-
gen stabilizes NGFR or increases its half-life, as Ngfr transcripts are not
affected by estradiol. Alternately, estrogen may enhance translation of
transcripts, without increasing their quantity (signal amplification). The
precise mechanism of estradiol action is unclear, but is likely via indirect
regulation of the NGFR protein. Further, NGFR was spatially regulated in
the uterus; expression shifted from stromal to epithelial cells when ovar-
iectomized animals were given estrogen versus progesterone.

Regulation of BDNF receptors by estradiol and progesterone in the
brain, nervous system (Gibbs and Pfaff, 1992; Sohrabji et al., 1994a,b;
Jezierski and Sohrabji, 2001; Brito et al., 2004; Hasan et al., 2005; De
Nicola et al., 2006; Spencer et al., 2008; Anesetti et al., 2009; Pan
et al., 2010; Cekic et al., 2012; Tang and Wade, 2012) and ovary (Lara
et al., 2000) have been reported. Interestingly, in Hasan et al. (2005),
acute estrogen exposure in sympathetic neurons did not affect NGFR ex-
pression, but chronic exposure did. Here we have shown that uterine
NGFR expression decreases over the estrous cycle, and increases in re-
sponse to daily estrogen exposure after ovariectomy, while other BDNF
receptors remain stable. We have also demonstrated the spatial regula-
tion of NGFR in response to ovarian hormones.

BDNF and receptor expression in ovary
intact cycling mice when compared with
ovariectomized and estradiol replaced mice
In mice, the estrous cycle likely occurs too quickly to significantly affect
uterine neurotrophins. Although transcripts for Bdnf and Ntrk2 varied
over the estrouscycle, BDNF, NTRK2, and SORT1 expression remained
stable and NGFR declined from pro-estrus through diestrus. This decline
would increase the local bioavailability of BDNF and signaling through the
BDNF-NTRK2 pathways in the uterus during the latter part of the cycle.
Thus, under physiological conditions the neurotrophic milieu of the
uterus is controlled by NGFR. However, when mice were exposed to
daily high dose estrogen, which models the chronic estrogen present in
endometriotic lesions in women with endometriosis (Noble et al.,
1996; Huhtinen et al., 2012) or other estrogen-dependent diseases,
the exposure had profoundly different effects on the uterine expression
of BDNF and its receptors. Estradiol treatment significantly increased the
uterine expression of mature BDNF (.6-fold), pro-BDNF (.5-fold)
and NGFR (5-fold) when compared with the other treatments. While
neither NTRK2 nor SORT1 were affected by ovarian hormones, contin-
ued daily exposure to estradiol increased mature BDNF which would
lead to the induction of the BDNF-NTRK2 pathways, without affecting
NTRK2 levels.

The neurotrophins are a complex network, and regulation of BDNF
and NGFR by estrogen in the uterus can impact many BDNF pathways
including angiogenesis (Kermani et al., 2005; Nakamura et al., 2006), cel-
lular proliferation (Tervonen et al., 2006; Kawamura et al., 2010), adhe-
sion (Zhou et al., 1997; Douma et al., 2004; Geiger and Peeper, 2007)
and resistance to apoptosis (Douma et al., 2004; Wang et al., 2005;
Geiger and Peeper, 2007; Kawamura et al., 2010; Li et al., 2011).
Here, we also demonstrated the effect of estrogen on pro-BDNF in
the uterus. The precise function of each BDNF isoform is only beginning
to be elucidated, but generally pro-BDNF counteracts the effects of
mature BDNF, providing another level of regulation for the powerful
pathways activated by BDNF. We have shown a temporal effect to the
hormonal regulation of NGFR in the cycling uterus, and highlighted the

Figure 6 BDNF and receptor localization in the hormone replace-
ment mouse uterus. Uterine localization of BDNF and its receptors in
ovariectomized mice given hormone supplementation according to
Fig. 1. BDNF, and NTRK2 were located in the luminal epithelium, glan-
dular epithelium, stroma, and smooth muscle in the mouse uterus of all
treatment groups (representative images from mice treated with estra-
diol). NGFR was found in all uterine cell types, but as in the cycling mice
its localization was dependent on whether mice were exposed to estro-
gen or progesterone (see Fig. 4) (representative images from mice
treated with estradiol). SORT1 was located on the apical side of the
glandular epithelium, and the luminal epithelium in the uteri of mice in
all treatment groups (representative images from mice treated with pro-
gesterone). Inset images: negative control sections incubated with
blocking serum in lieu of primary antibody. Original magnification:
×200, ×400. Scale bar ¼ 50 mm. GE: glandular epithelium, LE:
luminal epithelium, S: stroma, SM: smooth muscle.
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differential spatial localization of NGFR in response to ovarian hormones.
The neurotrophins are involved in reproductive pathologies (Borghese
et al., 2010; Browne et al., 2012; Bao et al., 2013; Barcena de Arellano
et al., 2013), and physiological processes (Kawamura et al., 2009,
2011; Kerr et al., 2009; Dorfman et al., 2011, 2014; Shoae-Hassani
et al., 2011; Non et al., 2012). Although little is knownabout the functions
of BDNF and its receptors within the reproductive system, they are
poised to participate in many aspects of reproductive physiology and
pathology. The results of this study implicate estrogen in the uterine
up-regulation of BDNF and NGFR, and highlight the differing effect of
hormone exposure during the estrous cycle versus estradiol replace-
ment after ovariectomy on neurotrophin expression. Sustained estrogen
exposure, as seen in estrogen-dependent disease, may tip the neurotro-
phin balance and inappropriately activate pathways important in the
disease pathophysiology.
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