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STUDY QUESTION: Do long non-coding RNA (lncRNA) and messenger RNA (mRNA) profiles in follicular fluid from mature and imma-
ture ovarian follicles differ between healthy women and women with polycystic ovary syndrome (PCOS)?

SUMMARY ANSWER: lncRNA and mRNA profiles in follicular fluid from both mature and immature ovarian follicles differed significantly
between healthy women and PCOS patients.

WHAT IS KNOWN ALREADY: Unlike microRNAs, which have been extensively studied, lncRNAs present in follicular fluid have never
been sequenced and the biological associations of lncRNAs in healthy follicles and follicles in women who develop PCOS remain largely
unknown.

STUDY DESIGN, SIZE, DURATION: A total of 18 subjects (8 controls and 10 PCOS patients) were recruited to participate in this
study. Recruitment took place from May 2016 to September 2016.

PARTICIPANTS/MATERIALS, SETTING, METHODS: The follicular fluid donors underwent their first round of in-vitro fertilization
treatment. Follicle size was determined based on the average follicular diameter, and follicular fluid samples were collected from mature folli-
cles (17–22 mm) and matched-immature follicles (8–13 mm). RNA sequencing was performed on follicular fluids from mature and immature
follicles of healthy women and PCOS patients.

MAIN RESULTS AND THE ROLE OF CHANCE: A total of 1583 novel lncRNAs were identified in 36 human follicular fluid samples
and some were expressed differently in healthy and PCOS women. lncRNAs associated with the metabolic process were highly enriched in
the follicular fluid of mature follicles from the PCOS group versus the healthy group. In the PCOS group, nervous system process lncRNAs
were highly enriched in the follicular fluid of mature versus immature follicles, whereas in the healthy group, lncRNAs associated with junction
adhesion and communication-related processes were highly enriched in the follicular fluid of mature versus immature follicles. In addition, dif-
ferentially expressed mRNAs were principally linked to olfactory transduction pathways. Consistent results from Gene Set Enrichment
Analysis (GSEA) and Gene Ontology (GO) indicated that telomere maintenance and MAPK and Wnt pathways may be conserved processes,
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active in follicular development, and monosaccharide biosynthesis might provide possible pathway markers to distinguish between normal
and PCOS follicles. We constructed gene co-expression networks that identified many co-regulatory relationships among follicular fluid
lncRNAs, mRNAs, and PCOS phenotypes. Weighted Gene Co-expression Network Analysis (WGCNA) revealed lncRNAs and mRNAs
that were core and others associated with the PCOS phenotype.

LIMITATIONS, REASONS FOR CAUTION: It remains unclear whether these differential transcripts contribute directly to follicular
development or the pathogenesis of PCOS, or are merely biomarkers.

WIDER IMPLICATIONS OF THE FINDINGS: It will be important in the future for investigators to ascertain the biologic mechanisms
underlying the development of both normal and PCOS follicles.

STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Natural Science Foundation of China (No.
81671423, No. 81402130 and No. 81501247), the Fok Ying Tung Education Foundation (No. 151039), and Distinguished Talent Program of
Shengjing Hospital (No. ME76). No competing interests declared.
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Introduction
Polycystic ovary syndrome (PCOS) is characterized by hyperandro-
genism, chronic anovulation, and polycystic ovaries, and it affects
between 5% and 20% of women of reproductive age (Azziz et al.,
2016). Accumulating evidence indicates that an intrinsic abnormal-
ity of early follicle development (Stubbs et al., 2007) and arrested
follicular growth (Ambekar et al., 2015) are critical factors in the
pathogenesis of PCOS.
Although the initial stages of follicle development proceed slowly,

small antral follicles grow rapidly due to granulosa cell proliferation,
expansion of the follicular basal lamina, and the formation of follicu-
lar fluid (Fortune, 1994). Follicular fluid is a complex biologic fluid
that plays a critical role in oocyte growth, follicular maturation, and
germ cell–somatic cell interactions (Zamah et al., 2015). Recent
studies indicate that follicular fluid contains proteins, metabolites,
various ionic compounds, and microRNAs (miRNAs) that are
widely involved in follicle development (Sang et al., 2013). Long
non-coding RNAs (lncRNAs) are a type of non-coding RNAs with a
length exceeding 200 nucleotides. These lncRNAs contribute
to transcriptional and post-transcriptional functions, and can be
broadly classified as signaling molecules, decoy molecules, guide
molecules or scaffold molecules (Wang and Chang, 2011; Lorenzen
and Thum, 2016). Unlike miRNAs (which have been extensively
studied), lncRNAs present in follicular fluid have never been
sequenced. We therefore hypothesized that human follicular fluid
contains lncRNAs that are involved in the development of both nor-
mal ovarian follicles and follicles in women with PCOS. Thus, the
present study was aimed at describing the features of lncRNAs and
messenger RNAs (mRNAs) in follicular fluid from mature and
immature follicles of healthy women and PCOS patients using RNA
sequencing and linking the characteristic lncRNAs and mRNAs to
PCOS phenotypes.

Materials andMethods

Ethical statement
This study was conducted in accordance with ethical standards and the
Helsinki Declaration of 1975.

Patients and follicular fluid samples
This study was approved by the Institutional Review Board at China
Medical University. A total of 18 subjects (8 controls and 10 PCOS
patients) were recruited to participate, and recruitment took place from
May 2016 to September 2016. Follicular fluid donors underwent their first
round of in-vitro fertilization treatment, and all of the patients gave
informed consent. Control and PCOS patient ovaries were stimulated
with recombinant follicle-stimulating hormone (FSH) (Merck-Serono,
Switzerland) after pretreatment with gonadotropin-releasing hormone
agonist (Diphereline, Ipsen Pharma Biotech, France). FSH stimulation was
started when down-regulation was confirmed by vaginal ultrasonography
and by measurements of serum estradiol and luteinizing hormone.
Ultrasonography was used to evaluate follicular development from Day 5
of stimulation until the day of follicular maturation. When at least one fol-
licle grew to 18 mm in diameter, 250 μg of recombinant hCG (Ovidrel,
Merck-Serono, Switzerland) was administered, and oocyte retrieval was
performed 34–36 h later. Follicle size was determined based upon the
average follicular diameter, and follicular fluid samples from mature follicles
(17–22 mm) and matched-immature follicles (8–13 mm) were stored sep-
arately. The follicular fluid samples were centrifuged at 12,000g for 10 min
to remove blood, and the remaining fluid was used in subsequent studies.
PCOS was diagnosed according to the 2003 Rotterdam criteria
(Rotterdam, 2004). The subjects’ characteristics are provided in Table I.

RNA isolation, quantification and
qualification
Total RNA was isolated using TRIzol (Invitrogen, CA, USA), and RNA deg-
radation was detected by 1% agarose gels. RNA purity and integrity were
assessed using a NanoPhotometer® spectrophotometer (IMPLEN, CA,
USA) and RNA Nano 6000 Assay Kit (Agilent Technologies, CA, USA),
respectively. RNA concentration was measured using the Qubit® RNA
Assay Kit (Life Technologies, CA, USA).

Library preparation for lncRNA andmRNA
sequencing
Three micrograms of RNA was used as input material. Ribosomal RNA
was completely removed using the Epicentre Ribo-zero™ rRNA Removal
Kit (Epicentre, Madison, USA), and then sequencing libraries were gener-
ated with the NEBNext® Ultra™ Directional RNA Library Prep Kit for
Illumina® (NEB, Ispawich, USA). First-strand cDNA was synthesized using
M-MuLV Reverse Transcriptase and random hexamer primers, and
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second-strand cDNA was synthesized using RNase H and DNA polymer-
ase I. After adenylation of the 3′ ends of DNA fragments, NEBNext
Adaptors were ligated to prepare for hybridization. The library fragments
were purified for selecting cDNA fragments (150–200 bp in length).
Finally, the products were purified with a AMPure XP system (Beckman
Coulter, Beverly, USA). The libraries were sequenced on an Illumina Hiseq
2500 platform, and 100-bp paired-end reads were generated. Sequencing
data were deposited with the NCBI Sequence Read Archive (SRA) under
accession number PRJNA415272.

Data analysis
Raw reads were first processed with Perl scripts, and the clean reads were
obtained after removing the contained adapter or ploy-N reads and low-quality
reads. All of the analyses were based on the clean data. Reference genome
and annotation files were downloaded directly from the publicly available web-
site (ftp://ftp.ensembl.org/pub/release-88/). An index of the reference gen-
ome was built using Bowtie v2.0.6, and TopHat v2.0.9 was used for aligning
the paired-end clean reads to the reference genome. The mapped reads were
assembled using Scripture (beta2) (Guttman et al., 2010) and Cufflinks (v2.1.1)
(Trapnell et al., 2009) in a reference-based approach.

Principal component analysis
Principal component analysis (PCA) was performed to detect and visualize
the variation of lncRNA and mRNA expression data in follicular fluid from
mature and immature follicles within and between woman by R packages:

ggplot2, pca3d and rgl. It is used to explain the variance–covariance struc-
ture of a set of variables through linear combinations. We plot 2D and 3D
graphs by two and three main principal components. The results show
that each group has high similarity and low variation among its samples
(Supplementary Fig. S1A and B).

Coding potential analysis
CNCI, CPC, PFAM and phyloCSF were used to assess the coding
potential of transcripts. CNCI, by adjoining nucleotide triplets, can
effectively distinguish coding and non-coding transcripts (Sun et al.,
2013), whereas CPC mainly assesses the quality and extent of the open
reading frame in a transcript and searches sequences within a known
protein sequence database to clarify the coding and non-coding tran-
scripts (Kong et al., 2007). We translated each transcript for three pos-
sible frames and then used PfamScan (v1.3) to identify the occurrence
of documented protein family domains (release 27; both Pfam A and
Pfam B were used) (Punta et al., 2012). The phyloCSF method was
applied to assess the evolutionary signature characteristics of align-
ments with conserved coding regions so as to distinguish coding and
non-coding transcripts (Lin et al., 2011). A flowchart depicting screen-
ing strategy was designed and presented in Fig. 1A–C. For these novel
transcripts, if at least one was predicted to possess coding potential, it
was added to our candidate set of TUCPs (transcripts of uncertain cod-
ing potential). Those transcripts without coding potential were added
to our candidate set of novel lncRNAs.

.............................................................................................................................................................................................

Table I Description of the study participants.

Control PCOS P-value

Age (year) 30.0 ± 4.21 30.6 ± 3.86 NS

Height (cm) 164.0 ± 5.53 166.1 ± 3.38 NS

Weight (kg) 66.5 ± 11.67 70.9 ± 9.49 NS

BMI (kg/m2) 24.7 ± 3.69 25.9 ± 3.14 NS

Waist-to-hip ratio 0.9 ± 0.60 0.9 ± 0.50 NS

Total testosterone (nM) 1.0 ± 0.13 1.7 ± 0.12 P ≤ 0.001a

Free testosterone (nM) 0.007 ± 0.0006 0.012 ± 0.0015 P ≤ 0.001a

SHBG (nM) 48.5 ± 10.47 27.3 ± 11.58 P ≤ 0.01a

Androstenedione (nM) 8.6 (2.51) 11.4 (6.05) P ≤ 0.05b

DHEAS (nM) 6193 ± 363.8 6975 ± 1085.1 NS

FSH (IU/l) 6.1 ± 0.54 5.9 ± 2.47 NS

LH (IU/l) 5.7 ± 2.07 9.6 ± 7.12 NS

Estradiol (nM) 0.16 ± 0.029 0.17 ± 0.059 NS

Prolactin (ng/ml) 11.4 ± 4.38 8.1 ± 3.54 NS

TSH (μIU/ml) 1.7 (0.91) 1.7 (1.33) NS

FPG (mM) 4.9 ± 0.34 5.3 ± 0.77 NS

FI (mIU/l) 9.5 ± 4.31 22.9 ± 16.35 P ≤ 0.05a

TC (mM) 4.7 ± 0.26 5.0 ± 0.80 NS

LDL-C (mM) 2.9 ± 0.38 3.0 ± 0.64 NS

HDL-C (mM) 1.3 ± 0.28 1.2 ± 0.29 NS

Triglycerides (mM) 0.9 ± 0.36 1.6 ± 0.98 NS

Abbreviations: SHBG, sex hormone-binding protein; DHEAS, dehydroepiandrosterone sulfate; TSH, thyroid-stimulating hormone; FPG, fasting plasma glucose; FI, fasting serum insulin;
TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; NS, not significant. Mean ± SD or median (interquartile range) are shown.
aSignificant difference between PCOS patients and controls after independent-sample t-test.
bSignificant difference between PCOS patients and controls after Mann–Whitney U-test.
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Figure 1 Characterization of human follicular fluid long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), and transcripts of unknown cod-
ing potential (TUCP)s. (A, B) The five steps of novel lncRNA screening. (C) Coding potential analysis via CPC, PFAM, phyloCSF and CNCI. Those
sequences simultaneously shared by the above four tools were selected as candidate lncRNAs. (D) The classification of identified lncRNAs. (E, F)
Conservative analysis of annotated lncRNAs, novel lncRNAs, mRNAs and TUCPs. (G–I) Box plot, violin plot and density distribution diagram showing
the expression features of lncRNAs, mRNAs and TUCPs in human follicular fluid. (J–L) Box plot, violin plot, and density distribution diagram showing
the expression features of follicular fluid from mature and immature follicles in normal ovaries and ovaries from women with polycystic ovary syndrome
(PCOS), respectively. M, mature; IM, immature. FPKM, fragments per kilobase million.

1738 Jiao et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/article/33/9/1735/5059393 by guest on 11 April 2024



Conservation analysis
Phast (v1.3) contains many of the statistical programs that are often used
in phylogenetic analysis, and we used phastCons to identify conserved ele-
ments as follows. First, phyloFit was used to compute phylogenetic mod-
els, and then we set the model and HMM transition parameters for
phastCons to compute the conservation scores of lncRNAs and coding
genes.

Quantification of gene expression levels and
differential expression analysis
The Cuffdiff (v2.1.1) algorithm was used to quantify fragments per kilobase
of exon per million fragments mapped (FPKMs) for lncRNAs and coding
genes (Trapnell et al., 2010). In each gene group, FPKMs were obtained by
summing the FPKMs of transcripts, and calculated based on the fragments
length and reads count mapped to a particular fragment. Cuffdiff is suitable
for determining the differential gene expression in digital transcripts, which
uses a model based on the negative binomial distribution (Trapnell et al.,
2010). Transcripts with a P-adjust (q value) <0.05 were assigned as differ-
entially expressed. The inf data were ignored.

STRING, Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes
enrichment analysis
STRING (https://www.string-db.org) was used to find interactions, and
the minimal required interaction score was set at medium confidence
(greater or equal to 0.400) (Szklarczyk et al., 2017). Gene Ontology (GO)
analysis of the differentially expressed genes or lncRNAs and transcripts of
uncertain coding potential (TUCP) target genes was assessed using the
GOseq R package. GO terms with a corrected P < 0.05 were considered
to be significantly enriched. We used KOBAS 3.0 (http://kobas.cbi.pku.
edu.cn) software to test the statistical enrichment of differentially expressed
genes or lncRNAs and TUCP target genes in Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways (Xie et al., 2011).

Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GSEA) was performed on the identified
clusters to reveal mRNA functions in follicular fluid from mature and imma-
ture follicles in normal ovaries and ovaries from PCOS patients. The GSEA
was performed using GSEA software version 3.0, which uses pre-defined
gene sets from the Molecular Signatures Database version 6.0. GSEA-GO
analysis was performed using GSEA against c5.all.v6.1. symbol.gmt. The
normalized enrichment score is the primary statistic for examining gene set
enrichment results. Using a permutation test 1000 times, the cut-off of the
significance level P-value was selected as 0.05 for the significant GO terms
in the comparison of follicular fluid from mature and immature follicles in
normal ovaries and ovaries from PCOS patients (Subramanian et al.,
2005). After we classified significantly enriched gene sets of GO into sev-
eral clusters, we performed leading-edge analysis with each cluster (cut-off
nominal, P < 1%) in GSEA. Leading Edge Analysis helped us visualize the
overlap between the selected leading-edge subsets. All of these overlap-
ping genes in each cluster were retrieved for data visualization by using the
RCircos package.

Weighted Gene Co-expression Network
Analysis
Weighted Gene Co-expression Network Analysis (WGCNA) was per-
formed to identify candidate causal mRNAs and lncRNAs underlying
PCOS phenotypes, and potential co-regulatory relationships among

lncRNAs, mRNAs and PCOS phenotypes in follicular fluid. As described
by Langfelder and Horvath (2008), WGCNA was used for finding clusters
of highly correlated mRNAs, lncRNAs, and mRNAs/lncRNAs; for sum-
marizing such clusters using the module eigengene or intramodular hub
mRNAs and lncRNAs; for relating modules to one another and to external
sample traits (using eigengene network methodology); and for calculating
module Gene Significance (GS) and Module Membership (MM) measures
to identify significant modules. The WGCNA R package was downloaded
from Bioconductor (https://bioconductor.org/) and installed separately in
R 3.4.1 (https://www.r-project.org/). The network visualization was per-
formed with Cytoscape 3.4.0 software (http://www.cytoscape.org/)
(Shannon et al., 2003).

Statistical analyses
Descriptive results of study participants are expressed as means ± SD or
median (interquartile range). Comparisons between PCOS patients and
controls were performed using independent-sample t test or Mann–
Whitney U-test (Table I). P < 0.05 was considered to indicate statistically
significant differences.

Results

RNA sequencing identifies the features of
lncRNAs, TUCPs and mRNAs in human
follicular fluid
We analyzed RNA sequencing data from 36 human follicular fluid sam-
ples, and obtained 1563,368 assembled transcripts. After screening
using rigorous criteria (Fig. 1A and B), four analytical tools (CPC,
PFAM, phyloCSF, and CNCI) were used to remove potential coding
transcripts; and a total of 1583 novel lncRNAs were identified (Fig. 1C).
These novel lncRNAs consisted of 95.2% long intergenic non-coding
RNAs (lincRNAs) and 4.8% antisense lncRNAs; virtually no intronic
lncRNAs were detected (Fig. 1D). Also, some studies have suggested
that lncRNAs are shorter in length and less conserved than coding tran-
scripts (Trapnell et al., 2012); and our data agree, showing that in com-
parison to mRNAs, the human follicular fluid lncRNAs were less
conserved (Fig. 1E and F), shorter in total length (Supplementary
Fig. S1C) and in the length of the open reading frame (Supplementary
Fig. S1D), and possessed fewer exons (Supplementary Fig. S1E). TUCP
levels were significantly higher than levels of lncRNAs or mRNAs in the
human follicular fluid samples (Fig. 1G–I), but there was no significant dif-
ference in transcript levels in follicular fluids from mature or immature
follicles in either normal or PCOS ovaries (Fig. 1J–L).

Differences in gene expression patterns of
lncRNAs, TUCPs and mRNAs in human
follicular fluid
To further confirm the potential molecular diversity of mature and imma-
ture follicles in normal and PCOS ovaries (Fig. 2A), the expression pat-
terns of lncRNAs, TUCPs and mRNAs were respectively analyzed. The
results indicated four main findings. First, four lncRNAs, two TUCPs, and
19 mRNAs differed in their expression between follicular fluids from nor-
mal mature and immature follicles; and 2 of the lncRNAs* and both
TUCPs* were identified as novel transcripts (Fig. 2B and Supplementary
Table S1). Second, 44 lncRNAs, five TUCPs, and 63 mRNAs differed in
their expression between follicular fluids from PCOS and normal mature
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follicles; 10 of these lncRNAs* and all five TUCPs* were identified as
novel transcripts (Fig. 2C and Supplementary Table SII). Third, 48
lncRNAs, 15 TUCPs, and 78 mRNAs differed in their expression
between follicular fluids from mature and immature follicles of PCOS
patients; 20 of these lncRNAs* and all 15 TUCPs* were identified as novel
transcripts (Fig. 2D and Supplementary Table SIII). Finally, 13 lncRNAs, six
TUCPs and 26 mRNAs differed in their expression between follicular
fluids from PCOS and normal immature follicles; nine of these lncRNAs*
and all six TUCPs* were identified as novel transcripts (Fig. 2E and
Supplementary Table SIV). Notably, differentially expressed TIMM17A,
OR4F29, NPR1 and KRTAP4-6 were observed between follicular fluids
of PCOS and normal follicles, regardless of whether they were mature or
immature (Supplementary Fig. S2A). KRTAP4-6 also differed in its expres-
sion between follicular fluids from mature and immature follicles, regard-
less of whether follicles were normal or from women with PCOS
(Supplementary Fig. S2B).

Systematic functional analysis of differentially
expressed lncRNAs, TUCPs and mRNAs in
follicular fluid from healthy women and
women with PCOS
To elucidate the possible functional significance of the observed
changes in lncRNA and TUCP levels between follicular fluids from
mature and immature follicles in normal and PCOS ovaries, respect-
ively, GO and KEGG analysis were performed. The differentially
expressed lncRNAs were significantly associated with single-organism
processes and various developmental processes in every case group
(Fig. 3A–D). In addition, the metabolic process was highly enriched in
follicular fluid from mature follicles of PCOS patients relative to fluid
from normal mature follicles (Fig. 3B). Within the healthy patient
group, the junction adhesion and communication-related processes
were highly enriched in follicular fluid from mature versus immature
follicles (Fig. 3A). Within the PCOS group, the nervous system process
was highly enriched in follicular fluids from mature versus immature fol-
licles (Fig. 3C).
It is noteworthy that the differentially expressed mRNAs were primarily

linked to olfactory transduction pathways in every case group (Fig. 3E–H).
In addition, GO and STRING analysis indicated that the biological process
term ‘plasma membrane proteins’, the molecular function term ‘olfactory
receptor activity’, and the cellular component term ‘sensory perception
of smell’ were mainly enriched (Supplementary Fig. S3Ai–Di); and sug-
gested that GNB1, GNAL and GNGT1 were the most important nodes
in the olfactory transduction network (Supplementary Fig. S3Aii–Dii).
The differentially expressed TUCPs were also significantly associated

with various developmental processes in every case group (Supplementary
Fig. S4A–D). The single-organism process was significantly enriched in every
case group, except for the comparison between mature follicular fluids
from PCOS patients and healthy women (Supplementary Fig. S4B). The
junction adhesion and communication-related processes were highly
enriched in follicular fluids from mature versus immature follicles in the
healthy group, as well as in the PCOS group relative to fluid from immature
follicles in the healthy group (Supplementary Fig. S4A and D). Nervous sys-
tem process was highly enriched in follicular fluid from mature follicles in
PCOS patients versus normal mature follicles, as well as in mature versus
immature subsets within the PCOS group (Supplementary Fig. S4B and C).
Metabolic process was the most frequent term when comparing fluids

from mature and immature follicles within the PCOS group (Supplementary
Fig. S4C). No significant enrichment of lncRNAs and TUCPs was
observed using KEGG analysis (Supplementary Fig. S5 and S6).
To further explore our findings, GSEA was performed using the

ranked-ordered gene list. GSEA is predicated on the choice of a pre-
defined collection of sets, but not pre-selected differentially expressed
genes. Notably, telomere maintenance, mitogen-activated protein
kinase (MAPK) pathway, and Wnt signaling pathway were co-enriched
in follicular fluid from mature and immature follicles, regardless of
whether follicles were normal or from women with PCOS (Fig. 4Ai
and Aii). The monosaccharide biosynthetic process was co-enriched in
normal and PCOS follicles, regardless of whether the follicles were
mature or immature (Fig. 4Bi and Bii). In addition, all overlapping genes
in each key pathway were retrieved by leading-edge analysis and visua-
lized with the RCircos package, suggesting that there is a wide range of
interactions among these pathway genes (Fig. 4C and D).

Identification in follicular fluid of candidate
causal genes underlying PCOS phenotypes
We constructed co-expression networks through WGCNA and identi-
fied 31 independent transcriptional modules for lncRNAs (Fig. 5A and B),
and 37 independent transcriptional module for mRNAs (Fig. 6A and B)
and lncRNAs/mRNAs (Supplementary Fig. S7); each transcriptional mod-
ule was assigned a color.
Using the GS and MM measures as described in the WGCNA meth-

od (Langfelder and Horvath, 2008), we identified the genes that
showed a high significance for weight and interesting modules. We
then created scatterplots of GS versus MM in selected significant mod-
ules (Supplementary Fig. S8, correlation >0.6). Transcriptional co-
expression of genes might, however, have similar regulatory effects in
the same modules. Therefore, based on the results of GS versus MM
mentioned above, we identified many potential co-regulatory relation-
ships among lncRNAs, mRNAs and PCOS phenotypes in follicular
fluid. For example, (i) RP11-2N1.2, CTC-338M12.6, RP11-547D23.1
and RP11-834C11.4 were most relevant to androstenedione (Fig. 5C);
(ii) CTD-2034I21.1, LINC01448, AC005614.5, B4GALT1-AS1 and
FLJ33581 were most relevant to LH (Fig. 5D); (iii) RP11-510N19.5
and AC019172.2 was most relevant to TSH (Fig. 5E). In this analysis,
we also identified in follicular fluid that (i) PLEKHA2 and DSCC1 were
most relevant to DHEAS and estradiol (Fig. 6C); (ii) ZNF346,
BMPR1B, and GPR160 were most relevant to androstenedione
(Fig. 6D); (iii) UNC5B and MYC were most relevant to LH (Fig. 6E);
and (iv) FAM3C and EIF5 were most relevant to TSH (Fig. 6F).
After analyzing the co-expression relationships between lncRNAs/

mRNAs and PCOS phenotypes (Supplementary Fig. S7), we used
Cytoscape to visualize the network among the most connected lncRNAs
and mRNAs in significant modules of co-expressed genes, based on the
results of GS versus MM mentioned above (Supplementary Fig. S8). The
lncRNAs and mRNAs had higher GS, which represented a higher correl-
ation between the gene and the trait (Supplementary Fig. S8). Our analysis
also provided some causal candidates, some of which were core and rele-
vant to clinical traits in the lncRNA and mRNA interaction network. For
example, (i) MYO5A, UNC119 genes and lncRNA RP11-510N19.5
were relevant to TSH & FSH phenotypes (Fig. 7A); (ii) MYC, MRPL24,
SNU13, UNC5B and MEF2A genes were relevant to LH phenotypes
(Fig. 7B); (iii) DDX3X, DNAJA4, PLEKHA2, TSHZ1, C7orf43 genes and
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Figure 4 Gene Set Enrichment Analysis–Gene Ontology (GSEA-GO) enrichment in follicular fluid from mature and immature follicles in normal
ovaries and ovaries from women with polycystic ovary syndrome (PCOS). (Ai) GSEA-GO enrichment of follicular fluid in mature and immature normal
follicles or PCOS follicles.(Aii), The number of genes in each GSEA-GO category is shown according to the nominal P-value and normalized enrichment
score. (Bi), GSEA-GO enrichment of follicular fluid in PCOS and normal mature or immature follicles. (Bii), The number of genes in each GSEA-GO category
is shown according to the nominal P-value and normalized enrichment score. (C andD) RCircos package and GSEA-STRING analysis displaying chromosomal
localization, heatmaps of gene expression, and the interactions of the co-expression of genes (STRING) in A and B, respectively. NES, normalized enrichment
score; M, mature; IM, immature.
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Discussion
In the current study, we used RNA sequencing to provide the first
descriptions of lncRNA and mRNA profiles in human follicular fluid
samples, and to further confirm the molecular diversity of mature and
immature follicles in both normal and PCOS ovaries. In addition, we
performed a multi-level analysis to investigate how lncRNA and
mRNA networks contribute to PCOS phenotypes.
First, we identified many co-regulatory relationships among lncRNAs,

mRNAs, and PCOS phenotypes. For example, hyperandrogenism is a
core feature of PCOS (Azziz et al., 2016), and WGCNA of the co-
expression/regulatory networks indicated that 4 lncRNAs (RP11-

2N1.2, CTC-338M12.6, RP11-547D23.1, and RP11-834C11.4), and 3
mRNAs (ZNF346, BMPR1B and GPR160) were most relevant to serum
androstenedione levels. In addition, BMPR1B and ZNF346 are key dri-
ver genes in the androstenedione-related lncRNA–mRNA interactive
network. Also, 5 lncRNAs (CTD-2034I21.1, LINC01448, AC005614.5,
B4GALT1-AS1 and FLJ33581) and 2 mRNAs (UNC5B and MYC) were
most relevant to serum LH levels, and UNC5B and MYC are key driver
genes in the LH-related lncRNA–mRNA interactive network. Notably,
several of our observations are already well supported by others. For
example, BMPs can potentially regulate thecal androgen synthesis
(Glister et al., 2010) as LH levels were increased in the Bmyc knockout
mouse (Turunen et al., 2012).
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Figure 5 Identification of long non-coding RNA (lncRNA) co-expression modules and networks associated with polycystic ovary syndrome (PCOS)
phenotypes. (A) Topological overlap matrix (TOM)-based lncRNA co-expression network. The darker color shows more significant co-regulation.
lncRNA modules are identified by hierarchical clustering. (B) Identification of modules (rows) is significantly related to selected phenotypes (columns).
The significant modules are marked (P < 0.05 and correlation coefficient <−0.4 or >0.4). (C–E) Circles represent lncRNAs and squares represent
phenotypic categories. The size of the circle reflects a positive correlation between lncRNA and selected phenotypes. Circles are colored according to
lncRNA co-expression modules. SHBG, sex hormone-binding protein; DHEAS, dehydroepiandrosterone sulfate; TSH, thyroid-stimulating hormone;
FPG, fasting plasma glucose; FI, fasting serum insulin; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipopro-
tein cholesterol.
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GSEA-GO enrichment indicated that telomere maintenance and
MAPK and Wnt signaling pathways were co-enriched in the follicular
fluid from mature and immature follicles, regardless of whether the fol-
licles were normal or from women with PCOS. The monosaccharide
biosynthetic process was co-enriched in the follicular fluid from normal
and PCOS follicles regardless of whether the follicles were mature or
immature. This suggests that telomere maintenance and MAPK and
Wnt pathways may be conservative and active processes in follicular
development from the early antral to antral and preovulatory stages.
Recent research suggests that granulosa cell telomerase activity and
telomere length are relevant to PCOS and primary ovarian insuffi-
ciency (Li et al., 2017; Xu et al., 2017), and that MAPK and WNT sig-
naling pathways also play significant physiologic roles in ovarian and
follicular development (Abedini et al., 2015; Prasasya and Mayo,
2018). Although monosaccharide biosynthesis may be a possible path-
way marker to distinguish between normal and PCOS follicles, there is

currently little known about the role of monosaccharides in the devel-
opment of both normal and PCOS follicles.
Our integrative analysis also yielded some unexpected results. For

instance, the differentially expressed transcripts within human follicular
fluid were closely linked to olfactory transduction pathways in every
case group. In fact, there are presently no known specific functions of
olfactory-related molecules and pathways in the development of follicles,
nor are there any known relationships among olfactory system dysfunc-
tion, the oocyte maturation environment, or in occurrence of long-term
diseases. It is worth noting that although olfactory dysfunction is common,
less than 25% of individuals are aware of a dysfunction in their ability to
sense odors until they are formally evaluated (Doty, 2017). Similarly,
a recent report indicated that PCOS patients showed significantly
impaired olfactory function and depressive disorders (Koseoglu et al.,
2016). Interestingly, olfactory dysfunction is closely related to neuro-
degenerative diseases (Doty, 2017). The question then arises as to
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whether the olfactory loss precedes the onset of neuropathologic
lesions or whether it is simply caused by neuropathology. We also
considered whether loss of olfaction may be caused by exposure
of the oocyte to a dysfunctional olfactory microenvironment.

Consistent with this hypothesis, the differentially expressed transcripts
in our study were significantly associated with nervous system develop-
ment, neurogenesis, neuron projection morphogenesis, neuron devel-
opment and differentiation. This information opens new avenues
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toward our understanding of the pathogenesis of neurodegenerative
diseases and other metabolic diseases from the aspect of creating an
abnormal environment for oocyte maturation.
Overall, the results of this study showed for the first time the differ-

ences between lncRNA and mRNA profiles in the follicular fluid of
mature and immature follicles from healthy women and PCOS
patients. Moreover, molecular interaction networks were linked to the
diverse PCOS phenotypes. It remains unclear, however, whether
these differential transcripts contribute directly to follicular develop-
ment and pathogenesis of PCOS or are merely biomarkers.
Nevertheless, these molecular indices will be important for future
investigations of the biologic mechanisms underlying follicle develop-
ment in both healthy women and in women with PCOS.
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