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STUDY QUESTION: Does the expansion of genome-wide association studies (GWAS) to a broader range of ancestries improve the
ability to identify and generalise variants associated with age at menarche (AAM) in European populations to a wider range of world
populations?

SUMMARY ANSWER: By including women with diverse and predominantly non-European ancestry in a large-scale meta-analysis of
AAM with half of the women being of African ancestry, we identified a new locus associated with AAM in African-ancestry participants,
and generalised loci from GWAS of European ancestry individuals.
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WHAT IS KNOWN ALREADY: AAM is a highly polygenic puberty trait associated with various diseases later in life. Both AAM and
diseases associated with puberty timing vary by race or ethnicity. The majority of GWAS of AAM have been performed in European
ancestry women.

STUDY DESIGN, SIZE, DURATION: We analysed a total of 38 546 women who did not have predominantly European ancestry back-
grounds: 25 149 women from seven studies from the ReproGen Consortium and 13 397 women from the UK Biobank. In addition, we
used an independent sample of 5148 African-ancestry women from the Southern Community Cohort Study (SCCS) for replication.

PARTICIPANTS/MATERIALS, SETTING, METHODS: Each AAM GWAS was performed by study and ancestry or ethnic group
using linear regression models adjusted for birth year and study-specific covariates. ReproGen and UK Biobank results were meta-analysed
using an inverse variance-weighted average method. A trans-ethnic meta-analysis was also carried out to assess heterogeneity due to
different ancestry.

MAIN RESULTS AND THE ROLE OF CHANCE: We observed consistent direction and effect sizes between our meta-analysis
and the largest GWAS conducted in European or Asian ancestry women. We validated four AAM loci (1p31, 6q16, 6q22 and 9q31) with
common genetic variants at P< 5� 10�7. We detected one new association (10p15) at P< 5� 10�8 with a low-frequency genetic variant
lying in AKR1C4, which was replicated in an independent sample. This gene belongs to a family of enzymes that regulate the metabolism of
steroid hormones and have been implicated in the pathophysiology of uterine diseases. The genetic variant in the new locus is more fre-
quent in African-ancestry participants, and has a very low frequency in Asian or European-ancestry individuals.

LARGE SCALE DATA: N/A

LIMITATIONS, REASONS FOR CAUTION: Extreme AAM (<9 years or >18 years) were excluded from analysis. Women may not
fully recall their AAM as most of the studies were conducted many years later. Further studies in women with diverse and predominantly
non-European ancestry are needed to confirm and extend these findings, but the availability of such replication samples is limited.

WIDER IMPLICATIONS OF THE FINDINGS: Expanding association studies to a broader range of ancestries or ethnicities may
improve the identification of new genetic variants associated with complex diseases or traits and the generalisation of variants from
European-ancestry studies to a wider range of world populations.

STUDY FUNDING/COMPETING INTEREST(S): Funding was provided by CHARGE Consortium grant R01HL105756-07:
Gene Discovery For CVD and Aging Phenotypes and by the NIH grant U24AG051129 awarded by the National Institute on Aging (NIA).
The authors have no conflict of interest to declare.
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Introduction
The timing of menarche (age at menarche, AAM) is a highly polygenic
trait (twin study heritability >50%) (Anderson et al., 2007; Morris
et al., 2011) associated for women with various diseases later in life
(Day et al., 2015). Early menarche (defined as puberty timing before
9 years old) is associated with a wide range of later health outcomes,
including increased risk of breast cancer (Kotsopoulos et al., 2005;
Collaborative Group on Hormonal Factors in Breast Cancer, 2012),
obesity (Freedman et al., 2003) and type 2 diabetes (Lakshman et al.,
2008; Elks et al., 2013). Late menarche (defined as a puberty timing
age after 18 years old) is also associated with later life outcomes, in-
cluding lower fertility (Komura et al., 1992; Weghofer et al., 2013) and
osteoporosis. In a large prospective study of UK women, both early
and late menarche were associated with increased vascular disease
risk (Canoy et al., 2015).

AAM and diseases associated with puberty timing both vary by race
or ethnicity. For example, African-American (AA) girls have an earlier
AAM compared to European-American girls (Wu et al., 2002;
Anderson et al., 2003; Chumlea et al., 2003). African-American
women tend to have twice the prevalence of chronic diseases (known
to be related to early AAM, such as obesity and type 2 diabetes), as
well as higher prevalence of hypertension, compared to non-Hispanic
White women (Virani et al., 2020).

The largest genome-wide association study (GWAS) of AAM,
performed in up to �370 000 women of European ancestry (EA)
from the ReproGen Consortium, 23andMe, the UK Biobank (UKBB)
and deCODE, identified 389 independent signals (Day et al., 2017).
In this study, the total-chip captured heritability, calculated in the
UKBB only, was 32%.

Few GWAS or genetic studies have been performed for AAM in
multi-ethnic populations or in women of diverse ancestries or ethnici-
ties including Hispanic/Latina women and women of African ancestry
(Carty et al., 2013; Demerath et al., 2013; Spencer et al., 2013;
Fernandez-Rhodes et al., 2018; Horikoshi et al., 2018). A GWAS of
AAM performed in 18 089 African-American (AA) women provided
the first evidence of cross-ancestry generalisation of menarche loci
identified in European GWAS (60%) (Demerath et al., 2013). This
study used SNP arrays designed to capture genetic variants that are
common in European populations. Thus, a substantial fraction of ge-
netic variants that are more common in African populations is likely to
have been missed or imprecisely tagged using imputation with the
Hapmap reference panel. A later study that included 42 251 women
of diverse ancestries replicated the 6q16 and 9q31 AAM regions
reported in European descent populations and compared their effect
sizes across differing ancestral populations (Carty et al., 2013).
Another trans-ethnic study of AAM using 45 364 women of diverse
ancestries and the Metabochip array (Voight et al., 2012) supported
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.
the transferability of loci discovered in European women to women of
other ancestries and identified new trans-ethnic associations at novel
and at established loci (Fernandez-Rhodes et al., 2018). A recent study
from the Biobank Japan (BBJ) conducted in up to 67 029 women of
Japanese ancestry reported 10 loci associated with puberty timing and
showed large differences in allele frequencies and effect estimates be-
tween variants reported in Japanese and European GWAS (Horikoshi
et al., 2018). The genotyping array-based heritability estimated in this
study for AAM was 13%. The lack of ancestral diversity of these ge-
netic studies (with very few South Asian women included) and/or the
use of low genome-wide coverage arrays have limited their ability to
explore lower frequency genetic variation. The two mentioned AAM
GWAS or meta-analysis of AAM GWAS (Demerath et al. and
Horikoshi et al.) were conducted in only one population group
(African-American and East Asian, respectively). No large meta-analy-
sis of GWAS has been performed to date for AAM in multi-ethnic
populations or in women of diverse ancestries or ethnicities. Large-
scale trans-ethnic approaches for AAM conducted in women with di-
verse ancestries may help to better understand ethnic differences in
pubertal timing and its associated chronic diseases.

In this study, we performed a large-scale trans-ethnic GWAS meta-
analysis of AAM in women with diverse and predominantly
non-European ancestry or ethnicity (African, Hispanic/Latina, East
Asian and South Asian) from the ReproGen Consortium and the
UKBB to identify novel associations that may be ancestry-specific, and
to generalise GWAS regions reported by European studies to a wider
range of world populations.

Materials and methods

Populations and participants
We included in our trans-ethnic meta-analysis women who did not
have predominantly European ancestry backgrounds from seven stud-
ies from the ReproGen Consortium (ARIC: The Atherosclerosis Risk
in Communities Study (Anonymous, 1989); BMDCS: The Bone
Mineral Density in Childhood Study (Zemel et al., 2011); BWHS: Black
Women’s Health Study (Palmer et al., 2013); CHOP: Children’s
Hospital of Philadelphia; JHS: The Jackson Heart Study (JHS)
(Carpenter et al., 2004; Fuqua et al., 2005; Keku et al., 2005; Taylor
et al., 2005; Wilson et al., 2005); HCHS/SOL: Hispanic Community
Health Study/The Study of Latinos (Laurie et al., 2010; Sorlie et al.,
2010); and WHI: The Women’s Health Initiative (Anonymous, 1998))
and from the UKBB (O’Connell et al., 2014; Galinsky et al., 2016;
Bycroft et al., 2018; Zhou et al., 2018). A description of each study is
included in Supplementary Table SI. Details about the association anal-
yses performed in the UKBB are included in the Supplementary Text.
AAM was self-reported, recorded in whole years and analysed as a
quantitative trait. AAM younger than 9 or older than 18 were ex-
cluded from analysis.

Genotyping and imputation
Studies used the most dense imputation reference panel available to
them at the time of analyses, either 1000 Genomes (1 kG) or the
Haplotype Reference Consortium (HRC). Three ReproGen studies

provided results for chromosome X (BWHS, JHS and HCHS/SOL).
A description of the reference panel used by each study is provided
in Supplementary Table SII.

Genome-wide association study
Each study evaluated the association of single nucleotide genetic var-
iants with AAM under an additive model. Covariates included birth
year and additional study specific covariates to control for population
structure (principal components). Studies with multiple distinct ances-
tries analysed each ancestry separately. The minimum sample size for
each ancestry/phenotype combination for inclusion in this study was
fixed to 100.

Quality control (QC) of GWAS results
QC for each study was performed using EasyQC (Winkler et al.,
2014). Study-specific GWAS results were filtered based on an imputa-
tion quality score greater or equal to 0.30 and an effective number of
minor alleles (minor allele count � imputation quality score) greater
or equal to 20.

Trans-ethnic meta-analysis
GWAS results across all studies from the ReproGen diverse ancestry
sample were meta-analysed using METAL (Willer et al., 2010) using an
inverse variance-weighted average method. Results for which at least
two studies contributed were then meta-analysed with the UKBB di-
verse ancestry sample GWAS using METAL. Genomic control correc-
tion was applied to all studies included in the meta-analyses. Variants
with a minor allele frequency (MAF) less than 0.005 in the final meta-
analysis were excluded. To investigate heterogeneity due to different
ancestry at associated loci, we additionally performed a trans-ethnic
meta-analysis using MR-MEGA and ancestry-stratified GWAS results
(Magi et al., 2017).

Replication
For the novel loci identified, we sought replication in an independent
sample of 5148 African-ancestry women from the Southern
Community Cohort Study (SCCS) (Signorello et al., 2005; Kowalski
et al., 2019). A description of this study is provided in Supplementary
Table SI and a description of the association analysis is included in the
Supplementary Text.

Results

Populations and participants
We included in our trans-ethnic meta-analysis a total of 38 546
women (Table I): 25 149 women from seven studies from
the ReproGen diverse ancestry sample and 13 397 women from the
UKBB diverse ancestry samples, representing four major ancestry or
ethnic groups (African: N¼ 19 028, Hispanic/Latina: N¼ 10 661, East
Asian: N¼ 2095 and South Asian: N¼ 3205). A description of each
study is included in Supplementary Table SI. Principal Component
(PC) plots generated using output from MR-MEGA are presented in
Supplementary Fig. S1.

Trans-ethnic meta-analysis of age at menarche 2001
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..Main results
Quantile-Quantile and Manhattan plots are presented in
Supplementary Figs. S2 and S3. We detected one new association
with a low-frequency (MAF¼ 0.008) genetic variant (10p15) and vali-
dated three known AAM loci for associated common genetic variants
(6q16, 6q22, and 9q31) at the genome-wide threshold (P< 5� 10�8).
We did not observe heterogeneity (due to different ancestry or resid-
ual) between ReproGen and UKBB effect sizes for our main findings
and observed consistent effect sizes and direction of effects between
the two diverse ancestry samples for the most significantly associated
signal in each locus (Table II and Supplementary Table SIII). We also
extracted the results for the lead genetic variants at the four main ge-
netic loci in the Pan-UKBB publicly-available ancestry-specific AAM
GWAS results and did not observe significant heterogeneity in effect
size (Supplementary Table SIV).

Except at the 9q31 locus, the sentinel variant differed between
our trans-ethnic meta-analysis and the Day et al. (2017) EA GWAS
(N�252k) (Day et al., 2017). The sentinel signal at 6q16 was
rs2095812-G (MAF¼ 0.29, beta¼ 0.09, P¼ 9.1� 10�11), at 6q22 it
was rs9401883-G (MAF¼ 0.44, beta¼�0.08, P¼ 2.4� 10�8), and
at 9q31 it was rs7852169-G (MAF¼ 0.21, beta¼ 0.09,
P¼ 1.3� 10�8). The 6q16 lead variant (rs2095812) was in high
(r2� 0.98) linkage disequilibrium (LD) with the known GWAS vari-
ant (rs395962) in European, African or Asian ancestry individuals.
The 6q22 lead variant (rs9401883) was in high LD (r2> 0.75) with
the known GWAS variant (rs4897178) in European and Asian indi-
viduals but not in African individuals (r2� 0.40). LD estimated in the
1000 G Phase 3 v5 reference panel or in the UKBB is available in
Supplementary Tables SV and SVI by ancestry. Regional association

plots in 6q16, 6q22 and 9q31 are presented in Supplementary
Figs. S4, S5, and S6.

The new and low MAF signal at 10p15, rs182498797-A
(MAF¼ 0.008, beta¼ 0.53, P¼ 1.7� 10�8), was only observed in
African-ancestry studies. The variant is monomorphic in other popula-
tions from the 1000 Genomes Project data. The frequency of the mi-
nor A allele was similar in ReproGen African-American or African-
ancestry women and in UKBB African-ancestry women (MAF�1%),
whereas the allele was extremely rare in UKBB European ancestry
women (MAF¼ 4� 10�6). The variant was monomorphic in UKBB
East and South Asian women. We found a consistent effect in the
same direction for rs182498797-A (MAF¼ 0.02) in an independent
sample of African-ancestry women from SCCS (one-sided test
P¼ 0.03; meta-analysis result: beta¼ 0.51, P¼ 3.2� 10�9). Regional
association and forest plots at 10p15 are provided in Supplementary
Fig. S7 and Fig. 1. The rs182498797 genetic variant lies in AKR1C4, a
gene that belongs to the aldo-keto reductase family 1 (AKR1). We
found associations for genetic variants lying in the cluster of AKR1
genes at 10p15 (AKR1C1-4) and in AKR1D1 in our AAM meta-analysis
and in the published AAM GWAS (the Day et al., 2017 EA (N�252k)
and in the Horikoshi et al., 2018 Biobank Japan). The most associated
genetic variants at these loci are presented in Supplementary Table
SVII. We were not able to look-up rs182498797-A (or genetic variants
in LD) in GTEx as this variant is extremely rare in non-African ancestry
individuals, and availability of eQTL data in African-ancestry popula-
tions is limited. In addition, we saw evidence at the sub-genome-wide
suggestive threshold (P< 5� 10�7) for one additional known GWAS
AAM locus driven by common genetic variants (1p31), and we
detected two new loci, driven by a common variant (8p11) or a low
frequency variant (Xq21) (Supplementary Table SVIII). The 1p31 lead

............................................................................................................................................................................................................................

Table I Description of the 38 546 women included in the meta-analysis of genome-wide association studies of age at menar-
che from the diverse ancestry sample of the ReproGen Consortium and the UK Biobank (UKBB).

Studiesa N Age at Menarche, mean
(SD) or median [25–75%]

UKBB (N 5 13 197) ALL 13 397 13.09 (1.70)

Diverse ancestry sample African (N¼ 4540) 4540 13.15 (1.74)

South Asian (N¼ 3205) 3205 13.22 (1.69)

East Asian (N¼ 2095) 2095 12.96 (1.61)

ReproGen (N 5 25 149) African American or African-ancestry (N¼ 14 488) ARIC 1780 12.90 (1.70)

Diverse ancestry sample BMDCS 146 12.13 [10.11-16.47]

BWHS 2448 13.30 (1.60)

CHOP 620 11.86 [9-18]

WHI 8239 12.60 (1.60)

JHS 1255 12.74 (1.73)

Hispanic/Latina (N¼ 10 661) WHI 3494 12.50 (1.60)

HCHS/SOL 7167 12.60 (1.80)

ReproGen 1 UKBB

Diverse ancestry sample 38 546

aARIC, The Atherosclerosis Risk in Communities Study; BMDCS, The Bone Mineral Density in Childhood Study; BWHS, Black Women’s Health Study; CHOP, Children’s Hospital of
Philadelphia; JHS, The Jackson Heart Study (JHS); HCHS/SOL, Hispanic Community Health Study/The Study of Latinos; WHI, The Women’s Health Initiative; UKBB, The UK
Biobank.
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..variant (rs7526762) was in high LD (r2� 0.98) with the known GWAS
variant (rs11210476) in European, African or Asian ancestry individuals
(Supplementary Tables SV and SVI). A regional association plot at
1p31 is provided in Supplementary Fig. S8. Regional association and
forest plots at Xq21 and 8p11 are provided in Supplementary Figs. S9,
S10, S11, S12, and S13. We observed consistent direction and magni-
tude of effects between ReproGen and UKBB for the most associated
signal at each locus (Supplementary Table SVIII).

The novel signal at Xq21 (rs112344779-T) was detected in UKBB
only. The variant was present in both BWHS and JHS ReproGen stud-
ies but did not pass our filtering criteria (effective number of minor
alleles � 20) in JHS to be included in the ReproGen meta-analysis.
However, the direction of effect was consistent between UKBB and
ReproGen (Supplementary Fig. S11). The minor allele T was more fre-
quent in African-ancestry women (MAF� 1%) than in East Asian,
South Asian and European women (MAF� 6� 10�5). We identified
in the UKBB a second distinct signal in this locus (rs139960405-T,
Pcond¼1.8� 10�6) that was more frequent in African-ancestry women
(MAF� 1%) than in East Asian, South Asian and European women
(MAF� 0.002). This association did not replicate in SCCS. However,
the variant was only available in a subset of participants with whole ge-
nome sequence data (N¼ 671) and the estimates could be unstable.

Evaluation of previously published AAM
GWAS signals
We superimposed the known GWAS variants reported in previous
AAM GWAS (the Day et al., 2017 EA (N�252k) and the Horikoshi
et al., 2018 Biobank Japan) on our Manhattan plot (Supplementary
Figs. S14 and S15). We also looked-up our main signals in the Day
et al., 2017 EA (N�252k) and in the Horikoshi et al., 2018 Biobank
Japan AAM GWAS (Supplementary Tables SIX and SX) and observed
consistent direction and size of effects. Among the 24 172 variants (at
�200 loci) that were genome-wide significant in either our meta-analy-
sis or in the Day et al., 2017 EA AAM GWAS, we found that 82% of
the variants had consistent direction of effects. Among the 362 variants
that were genome-wide significant in either our meta-analysis or in the
Horikoshi et al. (2018) Biobank Japan AAM GWAS, we found that

90% of the signals had consistent direction of effects. Comparison of
effect sizes between our meta-analysis and the published AAM GWAS
for the genetic variants passing the genome-wide threshold in at least
one analysis is provided in Fig. 2.

The majority of discordant variants were common (MAF> 0.01) for
both the Day et al., 2017 EA (N�252k) and the Horikoshi et al., 2018
Biobank Japan AAM GWAS, but the proportion of low-frequency or
rare variants among the discordant variants was significantly higher
than among concordant variants for the Day et al., 2017 EA
(N�252k) AAM GWAS (1% vs. 0.4%; P¼ 4.2� 10�9).

The effect size estimate of the novel signal at 8p11 (rs10096592)
was similar in the Day et al., 2017 EA (N�252k) GWAS, although the
variant was much less frequent and not significantly associated with
AAM in the Day study (Supplementary Table SX). The minor allele T
was more frequent in African-ancestry women (MAF¼ 17%), than in
East Asian, South Asian, Hispanic and European women (MAF� 2%).
This association did not replicate in SCCS. However, the frequency of
the minor allele T was much higher in SCCS (38%) compared to
ReproGen or UKBB (18%).

Discussion
In this paper, we performed a large-scale trans-ethnic meta-analysis of
AAM in 38 546 women from the diverse ancestry sample of the
ReproGen Consortium and the UKBB. We were able to identify one
novel association (10p15) with a genetic variant that was more com-
mon in African-ancestry participants and had very low frequencies in
European or Asian ancestry individuals and to validate and generalise
the association of common genetic variants in four known AAM
GWAS loci (1p31, 6q16, 6q22 and 9q31) originally discovered in
Europeans.

We checked the ranking of these four AAM GWAS loci among the
389 lead variants reported by the largest European AAM GWAS (Day
et al., 2017). Except at the 6q16 locus that was ranked first, the three
other regions were not ranked as the top associated loci in the
European AAM GWAS. This suggests that different regions may ex-
plain more of the AAM variance in the diverse ancestry sample of

............................................................................................................................................................................................................................

Table II Main association results (P < 5 3 1028) from the fixed-effects meta-analysis of genome-wide association studies of
age at menarche in 38 546 women from the diverse ancestry samples of the ReproGen Consortium and the UK Biobank
(UKBB).

ReproGen1UKBB
diverse ancestry

meta-analysis
(N 5 38 546)

ReproGen diverse
ancestry

meta-analysis
(N 5 25 149)

UKBB diverse
ancestry GWAS

(N 5 13 197)

Locus Known/
Novel

rsid Chr Build 37
Position

ALT/REFa Nearest
Gene

EAF Betab SE P-value EAF Beta SE P-value EAF Beta SE P-value

6q16 Known rs2095812 6 105 383 978 C/G LIN28B 0.71 �0.09 0.01 9.1E�11 0.71 �0.10 0.02 1.2E�08 0.70 �0.08 0.02 9.0E�04

6q22 Known rs9401883 6 126 797 111 A/G CENPW 0.56 0.08 0.01 2.4E�08 0.59 0.07 0.02 3.0E�05 0.50 0.10 0.03 5.9E�05

9q31 Known rs7852169 9 114 318 394 C/G PTGR1 0.79 �0.09 0.02 1.3E�08 0.77 �0.08 0.02 1.2E�05 0.81 �0.11 0.03 1.0E�04

10p15 Novel rs182498797 10 5 257 282 A/G AKR1C4 0.008 0.53 0.09 1.7E�08 0.01 0.52 0.11 1.8E�06 0.004 0.56 0.18 1.5E�03

aALT/REF: alternate/reference alleles; EAF: effect (ALT) allele frequency.
bThe effect estimates (betas) are per year of age at menarche.
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..ReproGen and UKBB than in European populations, and/or could be
the result of different LD patterns in Europeans compared with other
population groups such as at the 6q22 locus.

The novel genome-wide significant signal identified at 10p15,
rs182498797-A (MAF¼ 0.008, P¼ 1.7� 10�8), lies in the intron 7 of
the aldo-keto reductase Family 1, member C4 (AKR1C4) gene. This
gene encodes a member of the aldo/keto reductase (AKR) super-
family. The AKR1C subfamily includes four human enzymes

(AKR1C1-AKR1C4), which share high percentages of amino-acid
identities (84–98%). AKR1C enzymes are expressed in different tis-
sues, while AKR1C4 is mainly liver specific. Human AKRs
(AKR1C1–AKR1C4 and AKR1D1) play essential roles in the metab-
olism of all steroid hormones (Rizner and Penning, 2014). Indeed,
these enzymes regulate the activity/metabolism of androgens, oes-
trogens and progesterone, and the occupancy and transactivation of
the corresponding receptors (Penning et al., 2000). Genetic variants

Figure 1. Forest-plot displaying the study-specific results for the new variant passing the genome-wide threshold (rs182498797-
A) at 10p15, which was more common in African-ancestry participants. ARIC, The Atherosclerosis Risk in Communities Study; BWHS,
Black Women’s Health Study; JHS, The Jackson Heart Study; WHI, The Women’s Health Initiative; UKBB, The UK Biobank; SCCS, Southern
Community Cohort Study (one-sided test, P ¼ 0.03.).
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.
in AKR1C4 have been reported to be associated with blood metabo-
lite ratios (Shin et al., 2014), triglycerides levels (Willer et al., 2013;
Spracklen et al., 2017; Hoffmann et al., 2018; Ripatti et al., 2020)
and haemoglobin levels (Oskarsson et al., 2020) in European-ances-
try or trans-ethnic GWAS.

The products of AKR activity have been implicated in prostate dis-
ease (Stanbrough et al., 2006), breast cancer (Lewis et al., 2004; Lord
et al., 2005), obesity (Blouin et al., 2005), polycystic ovary disease
(Qin et al., 2006) and delayed onset of puberty in humans (Rittner
et al., 1997). Altered expression of individual AKR1C genes is related
to the development of prostate, breast, endometrial and cervical can-
cers as well as endometriosis. AKR1C enzymes (AKR1C1-AKR1C3)
are involved in processes (disturbed prostaglandins, oestrogen and ret-
inoid metabolism and actions) that are implicated in the pathophysiol-
ogy of uterine diseases (endometrial and cervical cancers, uterine
myoma and endometriosis) (Rizner, 2012). One recent GWAS identi-
fied AKR1C3 as a novel epithelial ovarian cancer locus in women of
African ancestry (Manichaikul et al., 2020). A recent and large UKBB
GWAS of testosterone levels and related sex hormone traits reported
several genetic variants in the region of AKR1C4 (rs79717793 and
rs7475279) associated with testosterone and sex hormone-binding
globulin measurement (Ruth et al., 2020).

Quantitative trait loci (QTL) for important pig reproductive traits
(age of puberty, nipple number and ovulation rate and plasma follicle-
stimulating hormone) have been identified on pig chromosome 10q
near the telomere, which is homologous to human chromosome
10p15 and contains an AKR gene cluster (Nonneman and Rohrer,
2003). One study of pigs found that two genetic variants in AKR1C4
were significantly associated with nipple number and another was pos-
sibly associated with age at puberty (Nonneman et al., 2006).

We identified suggestive associations that were more common in
participants of African ancestry at 8p11 and Xq21. The Xq21 lead var-
iants that were identified in the UKBB lie at 840 kb and 14 kb respec-
tively from and tag the DIAPH2 gene (Supplementary Figs. S9 and S10),
which plays a role in the development and normal function of the ova-
ries. Defects in DIAPH2 have been linked to premature ovarian Failure
2 (Genesio et al., 2015). DIAPH2 has been reported to have a critical
role in pubertal and reproductive deficiencies in humans (Jedidi et al.,
2019). The lead variant at 8p11 lies at 18 kb from and tags the
ADAM2 gene (Supplementary Fig. 12). The encoded protein is a subu-
nit of an integral sperm membrane glycoprotein called fertilin, which
plays an important role in sperm-oocyte interactions (Sabetian et al.,
2014; Sun et al., 2019). This gene has also been associated with fertility
phenotypes in mice (Cho et al., 1998; Nishimura et al., 2001).

The strengths of our study are the large sample size and the ances-
tral diversity of participants, with approximately 50% of participants of
African ancestry, the population with broadest diversity. Limitations in-
clude the fact that we analysed only single nucleotide variants and re-
stricted our analyses to variants with a MAF greater or equal to 0.5%
and to participants with an AAM ranging between 9 and 18 years.
Additionally, women may not fully recall their AAM as most of the
studies were conducted many years later. Further studies with whole
genome sequence data or using newer multi-ancestry imputation pan-
els such as TOPMed (Taliun et al., 2021) will have the potential in the
future to identify rare variation influencing AAM. Finally, by pooling all
population groups in the UKBB to maximise the sample size, we may
have missed some ancestry-specific signals that are more common in

all population groups. Further studies in women with diverse and pre-
dominantly non-European ancestry are needed to confirm and extend
our findings. However, the availability of such replication samples with
AAM information is limited.

In conclusion, our large-scale trans-ethnic meta-analysis of AAM in
women of diverse and predominantly non-European ancestry identified
a new locus associated with AAM in African-ancestry participants.
AKR1C4 is a strong candidate gene for puberty timing and related dis-
orders. We also generalised the associations in four known GWAS
loci. These findings demonstrate that expanding GWAS studies to a
broader range of ancestries may improve the ability to identify new ge-
netic variants associated with complex diseases or traits and to gener-
alise variants from European-ancestry studies to a wider range of
world populations.

Supplementary data
Supplementary data are available at Human Reproduction online.
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findings of this study are available from the corresponding author upon
reasonable request.
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