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Macrophages are multifunctional cells that play key roles in the immune response and are abundant throughout

female reproductive tissues. Macrophages are identi®ed in tissues by their expression of cell surface receptors and

can execute diverse functional activities, including phagocytosis and degradation of foreign antigens, matrix

dissolution and tissue remodelling, and production and secretion of cytokines, chemokines and growth factors.

Their speci®c localization and variations in distribution in the ovary during different stages of the cycle, as well as

their presence in peri-ovulatory human follicular ¯uid, suggest that macrophages play diverse roles in intra-ovarian

events including folliculogenesis, tissue restructuring at ovulation and corpus luteum formation and regression. This

review presents the existing evidence for the regulation of ovarian function by macrophages and macrophage-

derived products, highlighting the implications of these cells in ovarian diseases, particularly polycystic ovary

syndrome, endometriosis and premature ovarian failure.
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Introduction

Macrophages are ubiquitous immune cells that play key roles in

both innate and acquired immunity. However, in addition to

protecting the body from foreign organisms and antigens, they

maintain homeostasis in many tissues through their cytokine

production and remodelling capabilities. With regard to female

reproduction, macrophages contribute to the regulation of the

pituitary±gonadal axis and are found throughout female repro-

ductive tissues including the ovary, uterus, oviduct and mammary

gland. In the ovary, macrophages have been detected in ¯uctuating

numbers at various stages of the menstrual cycle (Brannstrom

et al., 1993a, 1994b), and have had many different functions

ascribed to them. The purpose of this review is to present the

existing evidence for the regulation of ovarian function by

macrophages and macrophage-derived products, highlighting the

implications of these cells in ovarian diseases.

General characteristics and functions of macrophages

Macrophages are immune cells derived from bone-marrow

precursors, which when mature, enter the bloodstream as

monocytes. The adhesion of immune cells to endothelial cells

and their subsequent migration into tissue is a three-step process

(Butcher, 1992). Initial tethering via interactions between selectins

on leukocytes (L-selectin) and endothelial cells (E- and P-

selectins) mediates the slow rolling of leukocytes on endothelial

cells. Exposure to cytokines and chemokines during this time

activates the monocytes and stimulates the production of cell

surface b2 integrins, such as Mac-1 and LFA-1. Interactions

between these leukocyte integrins and endothelial cell adhesion

molecules, particularly those in the ICAM family, mediate ®rm

adhesion of the monocytes and enable their migration between

endothelial cells into tissues. Within tissues, differentiation of

monocytes into macrophages occurs in response to the surrounding

microenvironmental context, which directs the acquisition of

tissue-speci®c phenotypes. For example, the initial cytokine

exposure received by in®ltrating monocytes can determine the

functional phenotype of the maturing macrophage (Erwig et al.,

1998) while the structure of the extracellular matrix (ECM) in vitro

can also modulate macrophage function (Newman and Tucci,

1990; Gudewicz et al., 1994).

Within most organs, macrophages are involved in tissue

homeostasis via their ability to execute diverse functional

activities, including (i) phagocytosis and degradation of foreign

antigens, (ii) matrix dissolution and tissue remodelling, and (iii)

production and secretion of growth factors, cytokines and

chemokines (Gordon, 1999a). These effector functions allow the

macrophage to regulate local immune and in¯ammatory responses

as well as in¯uence normal tissue function. Each of these major

macrophage effector functions and the various phases of the

ovarian cycle that they are thought to impact are shown
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schematically in Figure 1 and will be described in greater detail

below.

Identi®cation of ovarian macrophages using macrophage-speci®c

markers

Macrophages are identi®ed in tissues by their expression of

speci®c protein markers (Table I), which are predominantly cell

surface receptors. The proteins considered most exclusively

restricted to macrophages are F4/80 (the human homologue is

EMR-1) and CD68 (also known as macrosialin in humans).

F4/80, although its function is not fully understood, has been used

extensively as a marker to identify macrophages in many tissues.

In mouse ovaries, F4/80 positive cells exhibit marked changes

in their distribution from neonatal to postpartum development

Figure 1. Macrophage involvement in ovarian function. As summarized in the text and cited references, macrophages: (1) are phagocytic and involved in the
removal of apoptotic cellular debris; (2) present peptide antigens and activate T cells; (3) release cytokines and growth factors that are known to regulate many
functional aspects of granulosa and theca cells; (4) release chemokines that attract and activate additional monocytes, neutrophils and T cells into the ovary
from circulation; (5) secrete an array of proteases that degrade matrix as well as release/alter matrix- or membrane-bound proteins. Thus, the tissue speci®c
localization and diverse functions of macrophages enable them to potentially impact multiple aspects of ovarian function.

Table I. Localization and function of macrophage-speci®c markers

Marker Location Understood functions

F4/80 (EMR-1)a Pan murine macrophage marker Cell±cell adhesion following adhesion to the

extracellular matrix as well as some signalling capacity

Macrosialin (CD68)a Predominantly intracellular in tissue

macrophages.

Binds oxidized lipoprotein

Complement receptor 3

(CD11b/Mac-1)a

Transmembrane Binds complement, participates in phagocytosis of

particles, and mediates leukocyte migration out of

vasculature

Class II MHC (Ia)a Found on antigen-presenting macrophages,

i.e. dendritic cells

Binds exogenously derived peptides for recognition

by T cells

Fc receptors (CD16/CD32/CD23) Transmembrane/soluble Binds constant portion of IgG molecule initiating either

transport of IgG across the epithelial cell surface or the

initiation of an immune response

Mannose receptor (CD206) Type I transmembrane molecule, found on

mature tissue macrophages

Binds bacterial and fungal glycoproteins and mediates

uptake during host defence

Scavenger receptors (CD204) Transmembrane glycoprotein on mature

tissue macrophages

Binds lipoproteins and participates in uptake of apoptotic

cells and pathogens

Sialoadhesin (SER-4/3D6) Transmembrane on stromal macrophages

in bone marrow, and lymphoid organs

Adhesion molecule which mediates the binding but not

uptake of attached cells

Lipopolysaccharide receptor (CD14)a Glycosylphosphatidylinositol-linked plasma-

membrane glycoprotein, on all macrophages

Binds bacterial lipopolysaccharide, triggers in¯ammatory

responses

aIndicates markers which have been detected in the ovary. (Compiled from Austyn and Gordon, 1981; Ross et al., 1985; Lachapelle et al., 1996; McKnight
et al., 1996; Daeron, 1997; Devitt et al., 1998; McKnight and Gordon, 1998; Linehan et al., 1999; Platt et al., 1999.)
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(Li et al., 1998) and are found in the thecal, stromal (Van der Hoek

et al., 2000) and luteal (Li et al., 1998) regions. CD68 is a well-

established intracellular marker for macrophages, and has

been widely used in immunohistochemical studies in both

mouse (Van der Hoek et al., 2000) and human ovaries (Duncan

et al., 1998; Gaytan et al., 1998a). CD68 positive cells are

localized in human ovaries primarily to the vascular connective

tissue and theca-lutein areas of the corpus luteum, although

some are found in the granulosa-lutein cell layer (Gaytan et al.,

1998b). Another widely used marker is class II MHC which

is involved in antigen presentation by macrophages. Class II

MHC positive macrophages have been identi®ed in the ovary

during the periovulatory period (Jasper et al., 2000), particularly

in corpora lutea (Petrovska et al., 1992; Bukovsky et al., 1995;

Lawler et al., 1999). Receptors that are involved in phagocytosis

are also used as macrophage markers and include Fc receptors,

complement receptors, mannose receptor, sialoadhesin, and

scavenger receptors (reviewed by Aderem and Underhill,

1999; Gordon, 1999b). Among them, complement receptor 3

(Mac-1/CD11b) is involved in cell±cell and cell±matrix adhesion

and CD11b positive cells have been shown in the mouse ovary

within the theca layer and stroma immediately after ovulation and

within the corpus luteum (Simon et al., 1994a; Tamura et al.,

1998).

It is important to consider that the marker used to identify

macrophages reveals speci®c information about the changing

functional characteristics of the cells; for instance, in the rabbit,

luteolysis was associated with an initial increase in scavenger

receptor positive macrophages followed by recruitment of CD68

positive macrophages (Krusche et al., 2002). Table I highlights

that multiple markers are used to identify macrophages in the

ovary, as well as give insight into the various functions these

macrophages may be exerting during the ovarian cycle.

Phagocytosis and antigen presentation

Macrophages are considered `professional phagocytes' and can

internalize particles much more rapidly and ef®ciently than other

cells due to their expression of speci®c cell surface receptors (see

Table I). Phagocytosis is a complex process involving recognition

of an antigen by macrophage cell surface receptors, which initiates

actin polymerization and internalization of the foreign molecule or

organism into a phagosome (Allen and Aderem, 1996).

Phagocytosis is followed by fusion of the phagosome with

enzyme-containing lysosomes and degradation of the particle.

Macrophages phagocytose endogenous and exogenous substances,

such as cell debris, bacteria and viruses (Miller et al., 1983; Wei

et al., 1988) and in culture will even phagocytose latex beads

(Kirsch et al., 1981). When administration of exogenous particles

was used to visualize phagocytosis, however, ovarian macro-

phages were reported to be less phagocytic than macrophages from

other tissues (Itoh et al., 1999). Therefore ovarian macrophages

may use phagocytosis primarily to remove apoptotic cells during

speci®c phases of tissue remodelling as opposed to removal of

foreign debris. Macrophages in vivo recognize and internalize

apoptotic and necrotic cells, bringing about their ef®cient removal,

and it has been shown that ovarian macrophages phagocytose

atretic granulosa cells and apoptotic luteal cells in guinea-pigs,

mice and humans (Paavola, 1979; Kuryszko and Adamski, 1987;

Kasuya, 1997) thereby contributing to follicular atresia and

luteolysis.

Following the phagocytosis of a foreign antigen, the macro-

phage is capable of intracellular degradation and presentation of

the peptide fragments on the cell surface in association with the

class II MHC. These class II MHC±antigen complexes are

recognized by helper T cells via the T cell receptors CD3 and

CD4. This results in the activation of both the T cell and the

antigen-presenting macrophage and the initiation of a rapid

immune response. Class II MHC-positive cells have been iden-

ti®ed in the rat and human ovary (Hill et al., 1990; Bowen and

Keyes, 2000) and equine corpora lutea (Lawler et al., 1999). In the

human corpus luteum, abundant class II MHC positive cells within

the granulosa-luteal layer, as well as helper and suppressor T cells

within the thecal trabeculae, suggest a possible role for these

immune cells in the ovary (Petrovska et al., 1992). Interestingly,

granulosa-lutein cells exhibit increased staining for class II MHC

antigens during the late luteal phase, concurrent with T cell

invasion (Bukovsky et al., 1995).

Secretion of cytokines, chemokines and growth factors

Macrophages are major secretory cells capable of releasing

cytokines, chemokines and growth factors that function in normal,

in¯ammatory and disease processes of most tissues. A selection of

macrophage products and their established functions is given in

Figure 2. In general, the production and release of these secretory

proteins is tightly regulated in temporal and tissue-speci®c

manners by paracrine and autocrine regulatory mechanisms.

Cytokines are small proteins (15±60 kDa) that act locally

through speci®c cell surface receptors to coordinate interactions of

the immune system and surrounding tissues. Macrophages secrete

a diverse repertoire of cytokines, including interleukin (IL)-1, -6, -

10, and -12, interferon a (IFNa), tumour necrosis factor a
(TNFa), and granulocyte macrophage-colony stimulating factor

(GM-CSF). These cytokines have been identi®ed in the ovary of

many species and are known to impact many aspects of ovarian

function (reviewed by Brannstrom and Norman, 1993; Terranova

and Rice, 1997; Bukulmez and Arici, 2000) including follicle

growth and differentiation, ovulation, and corpus luteum forma-

tion and function, as detailed in subsequent sections.

Macrophages also produce and secrete chemokines, small (60±

70 amino acids) chemotactic cytokines containing conserved

cysteine residues, which are important mediators of leukocyte

recruitment and activation. Chemokines consist of two families:

the C-C family, potent chemoattractants for monocytes/macro-

phages, includes monocyte chemoattractant protein (MCP)-1 and

MCP-3, and RANTES (regulated upon activation, normal T cell

expressed and secreted), and the C-X-C family, which selectively

recruits neutrophils, includes IL-8, epithelial-derived neutrophil

attractant-78 (ENA-78), and growth-regulated oncogene a
(GROa). Several chemokines have been identi®ed in the rat

ovary (Wong et al., 2002), some of which are hormonally

regulated.

Growth factors secreted from macrophages include epidermal

growth factor (EGF), insulin-like growth factor (IGF), vascular

endothelial growth factor (VEGF), and transforming growth factor

(TGF) a and b, each of which is important for normal ovarian

function. These growth factors are also expressed by granulosa and

theca cells, but macrophages have been largely neglected as

Macrophage contributions to ovarian function
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another potential source in the ovary. In the rat ovary, however,

EGF was detected in macrophages surrounding developing

follicles (Katabuchi et al., 1996) and TGFb was detected in

macrophages within functional corpora lutea (Matsuyama and

Takahashi, 1995), indicating that during speci®c phases of the

ovarian cycle macrophage-derived growth factors are likely to

in¯uence neighbouring cells in a paracrine manner. In the case of

IGF-I, although it is produced by some macrophages (Nagaoka

et al., 1990; Sunderkotter et al., 1994), it has not yet been localized

to these cells in the ovary. However, since IGF has been found to

modulate monocyte proliferation (Long et al., 1998) and

macrophage cytokine production in vitro (Renier et al., 1996),

IGF (as well as other growth factors) produced by granulosa and

theca cells are likely to reciprocally regulate macrophage effector

functions.

De®nitive experiments identifying which cytokines and growth

factors derived from macrophages are important for ovarian

function are greatly lacking, due to the ubiquitous production of

many of these factors by multiple ovarian cell types: granulosa

cells, theca cells and macrophages. This knowledge gap, however,

can be resolved by emerging techniques that speci®cally isolate

ovarian macrophages, in order to better characterize their patterns

of gene expression and protein production. For example, ongoing

experiments from our own group have revealed that in isolated

ovarian macrophages, the mRNA and protein expression of several

cytokines is hormonally controlled (K.H.Van der Hoek, unpub-

lished data), providing evidence that macrophage-derived factors

are in¯uencing follicular function at precise stages in the ovarian

cycle.

Secretion of proteolytic enzymes

Macrophages have the capacity to produce and release a highly

diverse group of proteolytic enzymes (Owen and Campbell,

1999a) which are able to degrade ECM, and activate or inhibit

Figure 2. Macrophage products and functions. *Macrophage products which have been detected in the ovary. (Compiled from Nathan, 1987; Sprugel et al.,
1987; Rappolee et al., 1988; Sunderkotter et al., 1994; Krakowski et al., 2002; Junttila et al., 2003.)

R.Wu et al.
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downstream protease cascades, as well as alter bioactive proteins

such as leukocyte adhesion molecules, matrix-bound growth

factors and membrane-bound cytokines (Owen and Campbell,

1999b; Bauvois, 2001). Highlighted here will be proteases that can

be produced by macrophages and that have also been shown to be

relevant in the ovary.

The cysteine proteases, cathepsins S, L, B, H and D are

produced by and localized to the lysosomes of most cells,

including macrophages and some macrophages also have the

specialized ability to secrete these enzymes for pericellular matrix

degradation (Owen and Campbell, 1999b). Each of these

cathepsins has been detected in the mouse ovary and exhibits

distinct patterns of cellular localization and hormonal regulation

(Oksjoki et al., 2001). Although not de®nitively attributable to

macrophages, some cathepsin proteins are preferentially expressed

in macrophage-rich regions of the ovary such as the theca layer,

corpus luteum and atretic follicles (Dhanasekaran and Moudgal,

1986; Oksjoki et al., 2001).

Serine proteases produced by macrophages include human

leukocyte elastase, proteinase 3, and cathepsin G. Another

member, urokinase-type plasminogen activator (uPA), cleaves

plasminogen to proteolytically active plasmin and has been

extensively studied in macrophages (Saksela et al., 1985;

Dewerchin et al., 1996) as well as the ovary (reviewed by Ny

et al., 2002). In the mouse ovary, in response to ovulatory

gonadotrophin (LH/hCG), there is induced expression of uPA, as

well as tissue-type plasminogen activator (tPA) in cells throughout

the ovarian stroma which are reminiscent of ovarian macrophages,

in addition to the high levels in granulosa cells (Hagglund et al.,

1996).

Macrophages primarily produce matrix metalloproteinases

(MMP), including: MMP-1 (collagenase); MMP-2 and MMP-9

(gelatinases); MMP-3, MMP-10 and MMP-11 (stromelysins); and

MMP-7 (matrilysin) (Owen and Campbell, 1999a). Each of these

MMP has also been detected in the ovary of several species

(Hagglund et al., 1999; Ricke et al., 2002) and in general MMP are

thought to regulate multiple aspects of ovarian function (reviewed

by Curry and Osteen, 2001). Although studies have not speci®cally

addressed production by ovarian macrophages, many MMP are

expressed in the macrophage-rich regions of the ovary. MMP-2,

MMP-9 and MMP-1 (MMP-13 in the rodent), for example, are

expressed and active in the theca cell layers concurrent with

ovulation (Hagglund et al., 1999; Curry and Osteen, 2001; Curry

et al., 2001). Both MMP-14 [also known as membrane-type

(MT)1-MMP] and MMP-19 are also rapidly expressed in response

to ovulatory LH/hCG in scattered cells surrounding preovulatory

follicles (a macrophage-like pattern) prior to expression in

granulosa cells (Hagglund et al., 1999). MMP-3, MMP-7 and

MMP-11 are up-regulated in ovarian regions undergoing apopto-

sis, concurrent with macrophage in®ltration into these sites

(Hagglund et al., 2001; Ricke et al., 2002). Also of interest,

there are a number of MMP that are targeted for transmembrane

expression on the cell surface, allowing for even greater control of

protease localization within tissues (Bauvois, 2001). These

proteases include members of the ADAM (a disintegrin and

metalloprotease) family, such as TACE (TNFa convertase), and

members of the MT-MMP family whose expression in the ovary is

only beginning to be addressed.

Remodelling of ECM and release/activation of bound effector

molecules occurs during many phases of ovarian function and

requires precise regulation and appropriate localization of

proteolytic enzymes. Thus, by virtue of their ability to be

speci®cally recruited into particular ovarian regions, macrophages

represent a possible mechanism by which to tightly control ovarian

proteolysis.

Cumulatively, the above studies demonstrate that macrophages

can be identi®ed using multiple marker proteins and are present in

the ovary of many species. Macrophages are able to: (i)

phagocytose cellular debris and present antigens, (ii) secrete

cytokines, chemokines and growth factors, and (iii) produce

proteases that mediate matrix dissolution; thereby enabling them

to in¯uence multiple aspects of ovarian function (Figure 1). The

following sections will focus on stages of ovarian follicle and

corpus luteum development and describe the functional contribu-

tions of macrophages to each phase.

Roles of macrophages and macrophage-derived molecules
in ovarian function

The ovary is composed of growing and atretic follicles, developing

and regressing corpora lutea, and stromal/interstitial tissue. All

components are present simultaneously in the adult ovary, with

varying proportions of each dependent on the ovarian cycle stage.

Interactions between the ovarian steroid hormones and the

gonadotrophins from the pituitary are primary regulators of the

ovarian cycle; however, many data suggest that macrophages,

through their trophic functions in reproductive tissues, are

essential accessory cells for optimal fertility (Norman and

Brannstrom, 1994; Cohen et al., 1999).

The presence of macrophages in the ovary has been established

for many years. Their identi®cation was the result of studies

carried out in 1964 examining the distribution of the macrophage

enzymes alkaline phosphatase, esterase and b-glucuronidase in the

rat ovary (Bulmer, 1964). Their speci®cally localized distribution

and temporal variations during the cycle (Figure 3) suggest that

macrophages play multiple roles in intraovarian events. Their

ability to regulate ovarian cellular proliferation, in¯ammation and

steroidogenesis further implicate these cells as regulators of

ovarian function.

Regulation of follicular growth and atresia

Follicle growth occurs when small follicles are recruited to

undergo granulosa and theca cell proliferation and antrum

formation in response to FSH, estrogens and other locally

produced factors. Only a fraction of growing follicles, however,

reach the preovulatory stage and ultimately ovulate. The majority

succumb to follicular atresia whereby granulosa cells undergo

apoptosis and the follicle regresses and is resorbed by the ovary.

Direct interactions between macrophages and primordial fol-

licles have not been observed, thus the earliest phases of follicle

growth appear to be independent of macrophage in¯uences.

During follicle growth, however, the distribution of ovarian

macrophages changes and they increase in number and localize to

the theca cell layer of healthy follicles (see Figure 3B and C).

Two interesting rodent models exhibit reduced numbers of

ovarian macrophages as well as reduced follicle growth and

impaired fertility. The ®rst, osteopetrotic (op/op) mice, have
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severely reduced numbers of mature macrophages due to a natural

mutation in the CSF-1 gene. These mice have a hypothalamic

lesion that impacts estrus cyclicity (Cohen et al., 2002) but also

exhibit reduced numbers of ovarian macrophages, which may be

either a cause or effect of the decreased follicle growth. Secondly,

feed restriction in rats also reduces the numbers of macrophages

surrounding preovulatory follicles (Duggal et al., 2002), providing

an interesting link between nutrition and ovarian macrophage

populations.

The activation status of ovarian macrophages is also likely to be

regulated during follicle growth. During early stages of rodent

follicular development, CSF-1 both increases the number of

ovarian macrophages and up-regulates macrophage scavenger

receptor activity (Nishimura et al., 1995). Also concurrent with

follicle growth, there is increased synthesis and release of the

cytokine GM-CSF from ovarian macrophages, as well as theca-

interstitial cells (Tamura et al., 1998).

It is thought that macrophages located in the theca of growing

follicles, by secreting growth factors and/or cytokines, play a

synergistic role in stimulating cellular proliferation and follicle

growth, and in suppressing follicular apoptosis. Indeed, co-culture

of rat granulosa cells with peritoneal macrophages results in

proliferation of the granulosa cells (Fukumatsu et al., 1992). Some

of the macrophage-derived factors that are known to impact

follicular growth are hepatocyte growth factor (HGF), basic

®broblast growth factor (bFGF), EGF, TGFa/b, and IGF. There

are many studies that demonstrate the in¯uences of these factors

on ovarian cell types (reviewed by Geva and Jaffe, 2000; Monget

and Bondy, 2000; Ingman and Robertson, 2002; Richards et al.,

2002) with a subset of examples detailed below. Although

macrophages are not the only source of these factors in the

ovary, their localization to speci®c follicle types makes it likely

that they exert paracrine in¯uences. HGF can be produced by

activated macrophages (Kodelja et al., 1997), receptors for this

factor can be found in growing follicles (Yang and Park, 1995) and

HGF stimulates granulosa cell proliferation and prevents granu-

losa cell apoptosis in vitro (Parrott et al., 1994). bFGF is a major

regulator of angiogenesis that is also produced by macrophages

(Sunderkotter et al., 1994). bFGF plays a role in the regulation of

granulosa cell mitosis and differentiation, thecal cell differenti-

ation and can prevent the spontaneous apoptosis of granulosa cells

that occurs in culture (Oury et al., 1992; Tilly et al., 1992). EGF

and TGFa have been demonstrated to be present in cells of the

thecal layer in the rat (Kudlow et al., 1987; Skinner et al., 1987),

bovine (Skinner and Coffey, 1988) and human (Scurry et al., 1994)

ovary. EGF stimulates follicle DNA synthesis to a degree

equivalent to that of FSH in the hamster (Roy and Greenwald,

1991), and in gonadotrophin-primed immature rats can stimulate

granulosa cell proliferation and modulate follicular development

through a paracrine mechanism (Fukumatsu et al., 1995;

Katabuchi et al., 1996). TGFb is also well known to potentiate

the effects of FSH on granulosa cell DNA synthesis and follicle

growth (Ingman and Robertson, 2002). Similarly, IGF amplify

gonadotrophin-stimulated proliferation and steroidogenesis in

ovarian cell types (Monget et al., 1996).

Macrophages are only found in the granulosa cell layer at

advanced stages of atresia (Petrovska et al., 1996) and because

they are known to phagocytose apoptotic cells it is thought that

they participate in the removal of cell debris created during

granulosa cell apoptosis (Takaya et al., 1997; Gaytan et al.,

1998a). However, they may also have an active role in the

production of factors promoting follicular atresia. Cytokines

produced by macrophages in vitro, particularly TNFa (Kaipia

et al., 1996), induce apoptosis in ovarian cell types and follicles,

Figure 3. Immunohistochemical localization of MHC class II positive macrophages (arrowheads) in the murine ovary (provided by K.H.Van der Hoek).
Macrophages are present in many areas of the ovary including stroma surrounding primary follicles (A), the thecal layers of preantral follicles (B), the
interstitium and thecal layers of preovulatory follicles (C), and the corpus luteum (D). Magni®cations: A, B and C, 3800; D, 3400.
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which supports this theory. In contrast, in vitro experiments show

that both EGF and TGFa can prevent spontaneous apoptosis of

follicles or isolated granulosa cells (Tilly et al., 1992). Thus

whether macrophages are strictly involved in removal of apoptotic

cells or whether they are involved in the initiation of apoptosis and

atresia is not clear and must be addressed in future studies.

In short, macrophages and/or macrophage-derived products are

important mediators of follicle development via regulating the

balance between cellular proliferation and apoptosis, as well as

angiogenesis and steroidogenesis. Thereby, they have the ability to

in¯uence processes that either commit or rescue follicles from

atresia.

Presence in human follicular ¯uid

A study examining periovulatory human follicular ¯uid from IVF

cycles found considerable numbers of macrophages and mono-

cytes in this ¯uid, and documented their presence in normal human

ovary tissue sections (Loukides et al., 1990). Although granulosa-

luteal cells predominate in follicular ¯uid aspirates, it was found

that 5±15% of the cells are macrophages and monocytes. Baranao

et al. (1995) evaluated macrophage and HLA positive cells in the

follicular ¯uid and found that human follicular ¯uid contained

~10% macrophages but that only 7.85% were ovarian-derived and

the rest attributed to contamination with peripheral blood

monocytes.

Because macrophages are a signi®cant component of the

intrafollicular compartment, many studies have been undertaken

to evaluate whether macrophage-derived cytokines are also

present in human follicular ¯uid. Levels of IL-1b, IL-6, IL-10

and GM-CSF in follicular ¯uids have been measured in multiple

studies (Wang and Norman, 1992; Calogero et al., 1998). IVF

patients with infertility due to immunological causes had higher

levels of TNFa and IL-6 and lower concentrations of GM-CSF in

their periovulatory follicular ¯uid compared to patients with tubal

factor infertility (Cianci et al., 1996; Calogero et al., 1998).

Follicular ¯uid-derived cells express IL-1b mRNA which may be a

product of macrophages, granulosa cells, or both (Loukides et al.,

1990; Baranao et al., 1995). Moreover, co-culture of follicular

¯uid-derived macrophages and granulosa cells from ovulatory

follicles resulted in increased numbers of IL-1b-producing

granulosa cells (Machelon et al., 1995).

Macrophages are a prevalent cell type in human follicular ¯uid

aspirates and represent an important source of follicular ¯uid

cytokines that are likely to be involved in follicle growth and

ovulation. Much work is necessary, however, to determine how

alterations in macrophage numbers, activation status or cytokine

production correlate with follicular dysfunction in infertile women

from whom the follicular ¯uid is obtained.

Roles in ovulation

Ovulation involves the rupture of preovulatory follicles at the

surface of the ovary and extrusion of the oocyte into the oviduct.

The hypothesis that mammalian ovulation is comparable to an

in¯ammatory reaction, sharing the characteristics of edema,

vasodilation, heat and pain, was ®rst proposed by Espey (1980).

In gonadotrophin-primed immature rats, there is an increase in

ovarian blood volume, edema due to vasodilation and increased

vascular permeability within a few hours of hCG treatment, which

persists to the time of follicular rupture (Tanaka et al., 1989).

In¯ammatory mediators such as prostaglandins, leukotrienes,

bradykinin, histamine, PAF and multiple cytokines have been

found to be associated with the ovulatory process. The increased

vascular permeability and edema are temporally associated with

dissolution of thecal collagen and ECM, which culminates in

follicular rupture (Bjersing and Cajander, 1974; Abisogun et al.,

1988).

Immediately prior to ovulation, there is increased macrophage

migration into the thecal layers of preovulatory follicles (see

Figure 3C) as described in the rat (Brannstrom et al., 1993a) and

human (Brannstrom et al., 1994b). This periovulatory increase in

macrophage recruitment is likely to be a response to local

modulation of chemokine production; for instance, LH/hCG

induces MCP-1 mRNA in the rat ovary (Wong et al., 2002) and

in cultured human granulosa lutein cells (Arici et al., 1997).

This pronounced increase in macrophage number occurs

speci®cally in the theca of healthy preovulatory follicles

(Brannstrom et al., 1994b) and macrophages have been shown to

be essential potentiators of the ovulation process (Van der Hoek

et al., 2000; Brannstrom and Enskog, 2002). Supplementing the

media of a perfused preovulatory rat ovary with blood leukocytes

increases the numbers of oocytes released following the admin-

istration of LH (Hellberg et al., 1991), suggesting that immune

cells have a role in the complex ovulatory cascade. More

speci®cally, in the mouse, we have shown that depletion of

ovarian macrophages by intrabursal clodronate liposome treatment

decreases ovulation rate, as well as delays progression through

the subsequent estrous cycle (Figure 4) (Van der Hoek et al.,

2000).

Figure 4. The effect of ovarian macrophage depletion in the mouse by
intrabursal injection of clodronate liposomes. Macrophage depletion of each
ovary with clodronate (black bars) resulted in a reduction in ovulation rate
(a) and extension of the estrous cycle (b), particularly in the metestrous-2/
diestrous stage, compared to saline treated ovaries (white bars). Bars with
the same letter are signi®cantly different from each other (P < 0.05).
(Adapted from Van der Hoek et al., 2000.)
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Macrophages have the capacity to release numerous cytokines

demonstrated to be important in the ovulatory process, particularly

IL-1b (Adashi, 1998) and TNFa (Brannstrom et al., 1995). IL-1b
levels increase in the ovary as ovulation approaches (Brannstrom

et al., 1994a), addition of IL-1b to the media of in vitro-perfused

ovaries stimulates ovulation in the rat (Brannstrom et al., 1993c)

and rabbit (Takehara et al., 1994), and injection of the IL-1

receptor antagonist (IL-1RA) inhibits ovulation in vivo (Peterson

et al., 1993; Simon et al., 1994b). Furthermore, nitric oxide (NO),

an important mediator of the pro-in¯ammatory actions of IL-1b, is

essential for optimal ovulation rate as demonstrated by mutant

mouse models (reviewed by Dixit and Parvizi, 2001), and

suppression of NO production with the pharmacological inhibitor

L-NAME reduces both the number of ovarian leukocytes and the

IL-1b-stimulated ovulation rate (Bonello et al., 1996). Expression

of TNFa mRNA and protein has been localized to macrophage-

like cells within the ovarian interstitium (as well as other ovarian

cell types) (Chen et al., 1993) and this cytokine has also been

shown to stimulate LH-induced ovulation in the perfused rat ovary

(Brannstrom et al., 1995) as well as induce production of ovulatory

mediators in pre-ovulatory rat follicles cultured in vitro

(Brannstrom et al., 1993b). It has also been proposed that the

release of TNFa by cells within the thecal layer stimulates local

cellular apoptosis, thus facilitating follicular rupture (Murdoch

et al., 1997).

The production of proteinases at the apex of the preovulatory

follicle is essential for degradation of the basement membrane and

the follicular wall at ovulation. Inhibition of collagenase/

proteinase activity results in the inhibition of ovulation

(Brannstrom et al., 1988; Butler et al., 1991); however, the

identity of the critical ovulatory protease(s) has not yet been

elucidated. As described above, macrophages and monocytes

produce a diverse array of proteinases cumulatively capable of

degrading all types of matrix proteins (Werb et al., 1980; Owen

and Campbell, 1999a). It has therefore been proposed that

macrophages in the theca of the preovulatory follicle produce

proteolytic factors under the in¯uence of locally produced

paracrine or autocrine regulators. For instance, macrophages are

known to produce plasminogen activator which, when perfused

into the rabbit ovary, rapidly triggers ovulation (Yoshimura et al.,

1987). Also, mice which are doubly de®cient in the plasminogen

activators tPA and uPA exhibit impaired ovulation (Leonardsson

et al., 1995). The protease proprotein convertase 4 (PC4) has been

localized to macrophage-like cells in the mouse ovary and shown

to regulate cytokine production by these cells (Tadros et al., 2001).

Interestingly, mice null for PC4 protease exhibit decreased ovarian

weight, decreased progesterone production and decreased litter

size (Mbikay et al., 1997), providing a compelling link between

ovarian macrophage proteases and female fertility.

Macrophages have been shown to be important potentiators of

ovulation, but the essential secondary messengers remain to be

conclusively identi®ed. To date, proteases and cytokines are the

most likely candidates for the macrophage-derived products that

facilitate ovulation.

Regulation of corpus luteum formation and regression

After ovulation, a complete reorganization of the ruptured follicle

is required to produce a corpus luteum. This is characterized by

terminal differentiation (luteinization) of granulosa cells, migra-

tion of leukocytes, including macrophages, into the luteinizing

follicle and neo-vascularization of the developing corpus luteum.

Class II MHC positive macrophages are the most prominent

immune cells within the human corpus luteum throughout its

lifespan (Petrovska et al., 1992; see also Figure 3D). Several

studies have analysed macrophages during corpus luteum lifespan,

but the utilization of different macrophage markers has compli-

cated interpretation of the results. Macrophages have been

described predominantly in the theca-lutein layer (Lei et al.,

1991; Wang et al., 1992) at a maximum in the late luteal phase

(Duncan et al., 1998). Another study found that in the human

ovary the number of CD68 positive macrophages increased up to

the end of the early luteal phase, remained relatively unchanged

during the midluteal phase, and decreased at the late luteal phase

(Gaytan et al., 1998b), paralleling the functional activity of the

corpus luteum. Another study, however, found that the proportion

of macrophages in the human corpora lutea did not differ between

different stages of the luteal phase (Castro et al., 1998).

The activation status of macrophages is likely to be important

for their effector functions within the corpus luteum. Macrophages

showed round or elongated cytoplasm during the early and late

luteal phases and displayed dendritic features in the mid-luteal

phase, morphological changes typically related to their activation

state (Gaytan et al., 1998b). Takaya et al. (1997) also reported both

round and spindle-shaped macrophages within the corpus luteum

depending on the luteal stage (Takaya et al., 1997). GM-CSF

regulates many aspects of macrophage differentiation and acti-

vation (Inaba et al., 1992) and ovarian macrophages from mice

lacking GM-CSF exhibit decreased expression of activation

markers, including class II MHC and CD11b/Mac-1 (Jasper

et al., 2000). These mice also have decreased ovarian weight and

decreased progesterone production at day 4 of pregnancy,

indicating that GM-CSF has a role in modulating the activation

status of ovarian macrophages, which has consequences for

appropriate progesterone production (Jasper et al., 2000).

Macrophages may facilitate the establishment of the vasculature

in the corpus luteum via secretion of VEGF, EGF and bFGF,

which would in¯uence aspects of angiogenesis (Sunderkotter et al.,

1994). VEGF, for instance, stimulates proliferation in vitro of

microvascular endothelial cells obtained from the primate corpus

luteum (Christenson and Stouffer, 1996). Macrophages may also

increase progesterone production in the forming corpus luteum.

The culture of peritoneal macrophages with luteinizing granulosa

cells resulted in increased levels of progesterone production (Chen

et al., 1992), and several macrophage-derived factors such as IL-

1b, EGF and TNFa (Serta and Seibel, 1993; Yan et al., 1993; Chen

et al., 2000) have also been shown to stimulate progesterone

production. In contrast, there are also reports that progesterone

secretion is markedly inhibited in co-cultures of granulosa cells

with peritoneal macrophages. Here the degree of inhibition was

dependent on both the number and activation status of the co-

cultured macrophages (Shakil and Whitehead, 1994).

The number of macrophages in the corpus luteum is highest

during regression, implicating these cells in luteolysis (Paavola

and Boyd, 1979; Lei et al., 1991; Brannstrom et al., 1994b;

Hameed et al., 1995; Best et al., 1996; Senturk et al., 1999).

In¯ammatory cell in®ltration begins in the theca lutein and

gradually invades the granulosa lutein, but this in®ltration can be

prevented by inhibition of luteolysis with hCG to mimic
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pregnancy (Duncan et al., 1998). In the human, the progressive

in®ltration of lymphocytes and macrophages during luteal regres-

sion may occur in response to MCP-1 expression in blood vessels

within the corpus luteum (Hameed et al., 1995). In the rat,

increased endothelial cell expression of the intercellular adhesion

molecule (ICAM)-1 occurs concurrently with macrophage in®l-

tration, suggesting that ICAM-1 mediates macrophage migration

into the regressing corpus luteum (Olson et al., 2001). The in¯ux

of macrophages also coincides with increased MMP activity in

luteal cells (Duncan, 2000) and increased macrophage phagocy-

tosis (Takaya et al., 1997), both of which are thought to be

important for ingestion of cellular remnants that result from luteal

cell apoptosis (Pate and Landis Keyes, 2001).

The process of luteolysis and regression is known to involve

increased synthesis of prostaglandin F2a (PGF2a), decreased

progesterone production and luteal cell apoptosis, and macro-

phages may impact each of these stages. Macrophages may be one

source of PGF2a or, via TNFa secretion, may stimulate PGF2a

production by luteal cells (Benyo and Pate, 1992; Wang et al.,

1992). Macrophages may also inhibit progesterone production

directly, since removal of leukocytes from luteal cell cultures has

been shown to increase progesterone levels (Kohen et al., 1999).

TNFa has also been shown to inhibit progesterone secretion by

mouse luteal cells (Adashi et al., 1990) and TNFa and IL-1b both

decrease progesterone production and inhibit survival of bovine

luteal cells (Benyo and Pate, 1992). Macrophages also have the

capacity to secrete factors that may stimulate apoptosis in the

corpus luteum, such as reactive oxygen intermediates, and

particularly TNFa. TNFa mRNA has been observed in the corpus

luteum of the mouse (Chen et al., 1993), human (Kondo et al.,

1995) and rat (Marcinkiewicz et al., 1994), and in the rabbit, where

it was associated with macrophage numbers (Bagavandoss et al.,

1988; Bagavandoss et al., 1990). In the bovine corpus luteum,

TNFa induces apoptosis, via the TNFa receptor type I, speci®c-

ally in endothelial but not steroidogenic cells (Friedman et al.,

2000). In the porcine corpus luteum, macrophages appear to be the

primary source of TNFa (Zhao et al., 1998).

In summary, there are multiple aspects of luteal function that are

in¯uenced by ovarian macrophages and/or their secreted products:

progesterone secretion, vascularization, prostaglandin production,

and apoptosis. In addition, there is evidence that T cell-mediated

responses are involved in luteal regression (Pate and Landis

Keyes, 2001; Komatsu et al., 2003). Thus macrophage activation

of T cells may be an additional, indirect means of in¯uencing

luteal regression that needs to be investigated in greater detail.

Macrophages in ovarian dysfunction and disease

Many diseases have an immune component, demonstrating that

leukocytes exert important effects on tissues which, when mis-

regulated, can lead to dysfunction and pathology. Macrophage

effector functions are precisely regulated by temporal and tissue-

speci®c mechanisms. Furthermore, macrophage-mediated effects

on ovarian function are complex: they impact multiple aspects of

ovarian function and are precisely regulated by hormone, cytokine

and matrix signals. There is emerging evidence that macrophages

and macrophage-derived products are involved in some ovarian

dysfunctions, particularly polycystic ovary syndrome (PCOS),

endometriosis and premature ovarian failure (POF).

Polycystic ovary syndrome

PCOS is the most common hormonal disorder of young women,

estimated to affect 5±10% of women through and beyond their

reproductive years. The prevalence of affected individuals and the

wide range of related phenotypes are thought to be due to both

genetic and environmental factors (Crosignani and Nicolosi,

2001). PCOS results in anovulation and therefore impaired

fertility, but is a multisystem disorder which is also associated

with hyperinsulinaemia, hyperlipidaemia, diabetes mellitus, obes-

ity, hyperandrogenemia, hirsuitism, acne and increased incidence

of endometrial cancer (Norman and McVeigh, 1999; Norman,

2001). It has also been reported that PCOS patients exhibit chronic

low-grade in¯ammation, manifested as elevated levels of C-

reactive protein (Kelly et al., 2001). The fact that immune-

modulating treatments, such as dexamethasone, are often used to

alleviate PCOS symptoms provides further evidence of the

involvement of leukocytes in this syndrome. Another treatment

option for PCOS is laparoscopic laser drilling which involves

piercing the ovarian surface. This method is thought to work by

inducing a pro-in¯ammatory response in the ovary which would

facilitate ovulation; indeed studies in the sheep have shown that

laser drilling results in the in¯ux of macrophages and lymphocytes

(Tozawa et al., 1995). More recently, however, the literature has

focused on experiments and clinical trials involving the treatment

of PCOS-associated obesity and insulin-resistance. Interestingly,

the most effective agents used in the treatment of PCOS are anti-

diabetic drugs metformin and troglitazone (an agonist of the

PPARg receptor). PPARg ligands are well studied for their insulin-

sensitising abilities in adipocytes; however, they also exert potent

anti-in¯ammatory effects in macrophages (Tontonoz and Nagy,

1999; Lee and Evans, 2002). In PCOS patients these pathways

may be causally linked as metformin treatment not only improves

insulin sensitivity in PCOS patients but also reduces in¯ammation,

measured as C-reactive protein levels (Morin-Papunen et al.,

2003). Future studies are therefore likely to show an important link

between macrophage activation status, obesity/insulin resistance

and severity of PCOS symptoms.

Proper follicle development is dependent on the appropriate

cytokine and growth factor milieu, as detailed above, and

macrophages represent an important source of these factors.

Numerous studies have therefore compared serum and follicular

¯uid cytokine levels in PCOS patients to non-PCOS patients, with

con¯icting results such that no clear picture has emerged. In a

group of PCOS patients that had received no ovarian stimulation,

TNFa in follicular ¯uid was reported to be no different than

normal levels (nor were IL-1b levels different) (Jasper and

Norman, 1995). Yet, in a study of non-obese/non-diabetic PCOS

patients treated with gonadotrophins, serum and follicular ¯uid

TNFa and IL-6 levels were elevated compared to normal controls

(Amato et al., 2003). In a group of obese PCOS patients,

dexamethasone treatment was seen to alter follicular ¯uid cytokine

levels indicating that immune cells are likely to be at least partially

involved in the production of follicular ¯uid cytokines. In this

study IL-6 levels were unchanged but CSF-1 levels were

increased, and TNFa levels were reduced and associated with

increased follicular estradiol compared to untreated PCOS patients

(Zolti et al., 1992). Cumulatively these reports suggest that in at

least some instances women with PCOS exhibit elevated follicular
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and/or serum cytokine levels which are likely to be involved in the

observed alterations in follicular maturation and ovarian function.

Studies in sheep and rhesus monkey models have shown that

when pregnant animals are administered testosterone, the female

offspring exhibit PCOS-like ovaries with characteristic cysts. In

these models it is thought that elevated prenatal androgens

developmentally program LH hypersecretion and ovarian steroid

production, which can further augment androgen action (Abbott

et al., 2002). Studies in mice have also shown that neonatal

exposure to estradiol results in cystic ovaries that produce elevated

levels of TNFa and IL-6, similar to many cases of PCOS.

Interestingly, peritoneal macrophages from these mice also

produce elevated levels of TNFa and IL-6, indicating that

cytokine production by macrophages is altered systemically

(Deshpande et al., 2000). Although these animal models have

made some inroads into our understanding of immune involve-

ment in PCOS, more work is clearly necessary. In particular,

genetically targeted mouse models that exhibit PCOS-like ovaries

are lacking and represent an important goal for future research that

would begin to shed light on the molecular mechanisms of this

complicated disease.

Endometriosis

Endometriosis, a condition that is characterized by the presence

and growth of endometrial cells outside the uterus, is estimated to

affect 3±10% of women of reproductive age and 25±35% of

infertile women (Olive and Schwartz, 1993). Endometriosis is

frequently found in the ovaries as well as the anterior and posterior

cul-de-sac, the uterosacral ligaments and broad ligament of the

uterus, and is often associated with pelvic pain and infertility.

Although the pathogenesis of endometriosis and the mechanism of

endometriosis-associated infertility remains unclear, endometrio-

sis has been implicated as a factor in disordered and/or retarded

follicle growth and ovulatory dysfunction as con®rmed by

ultrasonograghy, as well as in luteal phase defects (Doody et al.,

1988).

Recent evidence suggests that leukocytes, including ovarian

macrophages and their numerous products, may be involved in the

onset and development of this disease (Vinatier et al., 1996).

Macrophages in®ltrating endometriotic stromal cells exhibit

intense immunostaining and are a major source of soluble factors,

particularly TGFb, and may therefore be important regulators of

cell proliferation in endometriotic cysts through their paracrine

and autocrine actions (Tamura et al., 1999). Flow cytometric

evaluation of leukocyte subpopulations present in follicular ¯uid

of infertile women undergoing IVF has shown that the number of

CD14 positive cells (macrophages/monocytes) is signi®cantly

increased in patients with endometriosis compared to those with

tubal factor or idiopathic infertility, and it is suggested that they

may adversely affect folliculogenesis or oocyte maturation

(Lachapelle et al., 1996). It is suggested that CD14+ cells may

affect folliculogenesis or oocyte maturation and that their

dysregulation in the ovary could be one of the factors impacting

fertility.

Positive immunostaining for IL-6, a macrophage-derived

cytokine, has been shown in the theca of antral follicles and in

corpora lutea, areas coincident with the main locations of

macrophages (Loret de Mola et al., 1996). Endometriotic stromal

cells from `chocolate cyst linings' of the ovary produced increased

amounts of IL-6 compared with normal endometrial stromal cells

(Tsudo et al., 2000). Other studies have shown that the follicular

¯uid of patients with endometriosis contains increased IL-6, which

may be related to the inhibition of follicular development (Pellicer

et al., 1998; Garrido et al., 2000; Pellicer et al., 2000). These data

suggest that altered gene expression and protein secretion of IL-6,

possibly by in®ltrating macrophages in the ovarian endometriotic

tissue, may contribute to the pathogenesis of this disease and/or to

endometriosis-associated infertility (Tsudo et al., 2000). Bergqvist

et al. (2001) showed that ovarian endometriotic tissue produces

signi®cantly higher concentrations of IL-6 and IL-1b than

endometrium from healthy controls (Bergqvist et al., 2001).

Another study, however, reported that IL-1b levels in follicular

¯uid were no different in these patients compared to normal

controls, but con®rmed increased levels of IL-6 (Pellicer et al.,

1998).

VEGF and IL-8 concentrations were also found to be higher in

the ¯uids of the ovarian endometriomas than in those of the

follicular cysts of controls, indicating that angiogenesis could play

an important role in the progression and maintenance of the

ovarian endometriomas (Fasciani et al., 2000). VEGF concentra-

tions in the follicular ¯uid from patients with endometriosis were

lower than in the controls, but elevated VEGF levels have been

correlated in IVF with good follicular vascularization and the

health of the follicle (Van Blerkom et al., 1997).

The expression of IGF-I and its receptor has been detected in the

stroma and epithelium in human ovarian endometriotic tissues.

The expression of mRNA and immunohistochemical staining for

TGFb1 has also been detected in the epithelial lining and cellular

stroma of ovarian endometriomas, which indicates that TGFb1,

IGF-I and their receptors might play an important role in the

pathogenesis of endometriosis (Loverro et al., 2001). Tamura et al.

(1999) con®rmed the expression of TGFb isoforms and receptors

in endometriotic cysts, especially in the epithelial cells, in the

human ovary (Tamura et al., 1999). A study of the localization of

matrix metalloproteinases in ovarian endometriomas has shown

that MMP-3 is mainly expressed in macrophages, which suggests

that the destruction of the surrounding matrix by endometriosis

might be caused by macrophage-derived MMP (Mizumoto et al.,

2002).

The data reviewed here indicate that endometriosis is associated

with altered levels of several speci®c cytokines and chemokines,

many of which are known products and/or activators of

macrophages. This, along with increased in®ltration of leukocytes,

is likely to contribute signi®cantly to the pathology observed in

this disease.

Premature ovarian failure

POF is de®ned as a syndrome characterized by cessation of

ovarian function and menopause before the age of 40 years and is

estimated to affect ~1% of the female population (Coulam et al.,

1986). POF patients suffer from hypoestrogenism, anovulation

and, in some cases, a variety of cellular immunity defects (Mignot

et al., 1989). In particular, several autoimmune aetiologies have

been identi®ed. Using HLA class I molecules as markers for

macrophages, some patients with autoantibodies were identi®ed as

having evidence of a defect in self-antigen presentation similar to

that of type I diabetics (Hoek et al., 1997). In addition, there were

signi®cantly increased numbers of CD8 positive T cells in
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autoimmune POF patients. Hill et al. (1990) found that while in

normal human ovaries only occasional cells of macrophage

morphology were class II MHC positive and granulosa cells

were negative, class II MHC antigen expression was prevalent on

granulosa cells from POF patients, suggesting that POF might be

associated with inappropriate expression of class II MHC antigen

expression by granulosa cells, a phenomenon that can be

mimicked by the in vitro culture of granulosa cells with the

cytokine IFNg (Hill et al., 1990). The cumulative data demon-

strating autoimmune aetiologies and abnormal expression of

leukocyte cell surface markers may assist in the development of

tests which could result in early diagnosis, prior to complete

ovarian failure (Yan et al., 2000).

The precise function of macrophages and their secretory

products in ovarian disorders is still unclear, and more research

is required to characterize the speci®c functions of ovarian

macrophages, de®ne their roles in vivo and determine how they

may be dysregulated in disease.

Summary

Ovarian macrophages are important regulators of the complex

communication between the immune and reproductive systems.

They exhibit changes in numbers and phenotype depending on the

stage of the estrus cycle, and, via secretion of a number of

bioactive molecules, impact many ovarian processes.

Macrophages are able to regulate cellular proliferation, differen-

tiation and apoptosis, as well as in¯uence steroid production,

vascularization and tissue remodelling during follicle growth,

ovulation and luteinization. It is hypothesized that alterations in

the macrophage-mediated regulation of some of these processes

contribute to the pathogenesis of ovarian disorders. Importantly,

further studies on ovarian macrophages and their secretory

products are needed in order to generate diagnostics, and

eventually therapeutics, for ovarian diseases such as PCOS,

endometriosis and POF.
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