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The review covers current options for ovarian tissue cryopreservation and transplantation and provides a systematic
review of the existing literature from the last 10 years, taking into account all previously published reviews on the
subject. The different cryopreservation options available for fertility preservation in cancer patients are embryo
cryopreservation, oocyte cryopreservation and ovarian tissue cryopreservation. The choice depends on various para-
meters: the type and timing of chemotherapy, the type of cancer, the patient’s age and the partner status. The differ-
ent options and their results are discussed, as well as their putative indications and efficacy. The review concludes
that advances in reproductive technology have made fertility preservation techniques a real possibility for patients
whose gonadal function is threatened by premature menopause, or by treatments such as radiotherapy, chemotherapy
or surgical castration.
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Introduction

In 2006, 1 399 790 new cancer cases are expected in the United
States, of which 679 540 will be women (Jemal et al., 2006).
According to previous reports, 8% of these women will be under
the age of 40. By 2010, it is estimated that one in every 250 people
in the adult population will be childhood cancer survivors (Blatt,
1999). Advances in the diagnosis and treatment of childhood, ado-
lescent and adult cancer have greatly increased the life expectancy
of premenopausal women with cancer but have resulted in a grow-
ing population of adolescent and adult long-term survivors of
childhood malignancies (Blatt, 1999), who may experience infer-
tility problems due to induced premature ovarian failure (POF).

Aggressive chemotherapy and radiotherapy, and bone marrow
transplantation (BMT), can cure >90% of girls and young women
affected by such disorders (Ries et al., 1999). However, the ovaries
are very sensitive to cytotoxic treatment, especially to alkylating
agents, which are classified as high risk for gonadal dysfunction
(e.g. cyclophosphamide, busulfan, melphalan, chlorambucil,
dacarbazine, procarbazine, ifosfamide, thiotepa and nitrogen mus-
tard) (Warne et al., 1973; Koyama et al., 1977; Fisher et al., 1979;
Viviani et al., 1985; Mackie et al., 1996; Teinturier et al., 1998;
Legault and Bonny, 1999; Meirow et al., 1999; Blumenfeld et al.,
2000; Kenney et al., 2001; Tauchmanova et al., 2002). Doxorubicin
and the alkylating-like agents cisplatin and carboplatin fall into the
medium-risk category (Hortobagyi et al., 1986; Wallace et al., 1989;
Maneschi et al., 1994; Tangir et al., 2003), whereas methotrexate,

bleomycin, 5-fluorouracil, actinomycin-D, mercaptopurine and vin-
cristine are considered as low risk for gonadal dysfunction (Van
Thiel et al., 1970; Shamberger et al., 1981; Stillman et al., 1981;
Sudman et al., 1992; Bines et al., 1996; Bower et al., 1998;
Sonmezer and Oktay, 2004; Wallace et al., 2005a) (Table I). The
type and dose of chemotherapeutic agent influence the progression
to ovarian failure, with alkylating agents increasing the risk of
POF by a factor of 9 (Byrne et al., 1992).

Cyclophosphamide is the agent most commonly implicated in
causing damage to oocytes and granulosa cells in a dose-dependent
manner (Warne et al., 1973; Sanders et al., 1996; Meirow et al.,
1999; Kenney et al., 2001). Since Meirow et al. (1999) demon-
strated primordial follicular depletion in mice treated with cyclo-
phosphamide, tremendous progress has been made towards
elucidating the cellular and molecular mechanisms responsible for
mediating oocyte death and follicular depletion under normal and
pathological conditions. Perez et al. (2000) demonstrated that dox-
orubicin induces apoptosis in pregranulosa cells, and Takai et al.
(2003) showed that bax and caspase-2 and caspase-3 are function-
ally important mediators of vinylcyclohexene diepoxide-induced
ootoxicity in mice.

This follicular destruction generally results in the loss of both
endocrine and reproductive functions, depending on the dose and
the age of the patient. Indeed, Larsen et al. (2003) reported a four-
fold increased risk of POF in teenagers treated for cancer, and a
risk increased by a factor of 27 in women between 21 and 25 years
of age. Complete amenorrhoea was reported after a dose of 5 g of
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cyclophosphamide in women over 40 years of age, and after doses
of 9 and 20 g in women of 30–40 and 20–30 years of age, respec-
tively (Shalet, 1980). A combination of various chemotherapeutic
agents further increases gonadal toxicity. After chemotherapy with
MOPP/ABV (chlorethamine, vincristine, procarbazine, prednisone,
doxorubicin, bleomycin, vinblastine) hybrid chemotherapy,
Schilsky et al. (1981) found that amenorrhoea developed in 89 and
20% of patients >25 and <25 years of age at the time of treatment,
respectively. The median age of patients who became amenor-
rhoeic after therapy was significantly higher than that of patients
who maintained normal menses (26 versus 20 years; P = 0.008).

Abdominal ionizing radiation associated with alkylating agents
often induces POF, rendering patients infertile in almost 100% of
cases. Indeed, for radiotherapy, it has been stated that a dose of
5–20 Gy administered to the ovary is sufficient to completely
impair gonadal function (Wallace et al., 2005b), whatever the age
of the patient. The dose of radiation required to destroy 50% of the
oocyte reserve has been found to be <2 Gy (Wallace et al., 2003).
Moreover, uterine irradiation at a young age reduces adult uterine

volume (Larsen et al., 2004). Radiation doses between 14 and 30 Gy
have been reported to result in uterine dysfunction (Critchley et al.,
1992; Bath et al., 1999; Critchley and Wallace, 2005). The practi-
tioner should be aware of this effect of radiotherapy on the uterus,
which could interfere with the implantation capacity of embryos.

In the field of oncological indications for ovarian tissue cryop-
reservation, there have been no major modifications since our
review published in 1998 (Donnez and Bassil, 1998) (Table II). In
countries where surrogacy is not legal, a conservative fertility
approach in case of gynaecological malignancy is only valuable if
the uterus can be spared during surgery. This includes cases of
early cervical carcinoma (Dargent et al., 2000; Burnett et al.,
2003; Tanguay et al., 2004), early vaginal carcinoma (Hicks and
Piver, 1992), early endometrial adenocarcinoma (Jadoul and Donnez,
2003), ovarian tumours of low malignancy (Donnez et al., 2003;
Boran et al., 2005; Fauvet et al., 2005; Tinelli et al., 2005) and
some selected cases of unilateral ovarian carcinoma (stage IA)
(Donnez and Bassil, 1998; Kleine, 1996). The choice of a possible
conservative surgical approach in these patients and the question
of implementing such treatment alone remain controversial, as
all the published results were obtained on the basis of retros-
pective studies and/or case reports. The fertility outcome is con-
ditioned by the adjuvant therapy, i.e. local radiotherapy and/or
chemotherapy.

Intensive chemotherapy and/or total body irradiation required
before BMT constitute the treatment combination presenting the
greatest risk of POF. Indeed, such high doses of chemotherapy
(commonly using the highly cytotoxic cyclophosphamide/busulfan
regimen) and/or radiotherapy lead to subsequent ovarian failure in
almost all cases, children and adults alike (Sanders et al., 1996;
Meirow and Nugent, 2001; Lobo, 2005). The risk of POF was esti-
mated to be 92% in the study by Meirow and Nugent (2001), while

Table I. Cytotoxic agents according to the degree of gonadotoxicity

High risk Intermediate risk Low/no risk

Cyclophosphamide Doxorubicin Methotrexate
Busulfan Cisplatin Bleomycin
Melphalan Carboplatin 5-Fluorouracil
Chlorambucil Actinomycin-D
Dacarbazine Mercaptopurine
Procarbazine Vincristine
Ifosfamide
Thiotepa
Nitrogen mustard

Table II. Indications for ovarian tissue cryopreservation in case of malignant and non-malignant diseases

Malignant Non-malignant

Extrapelvic diseases Uni/bilateral oophorectomy
Bone cancer (osteosarcoma—Ewing’s sarcoma) Benign ovarian tumours
Breast cancer Severe and recurrent endometriosis
Melanoma BRCA-1 or BRCA-2 mutation carriers
Neuroblastoma
Bowel malignancy

Pelvic diseases Risk of premature menopause
Non-gynaecological malignancy Turner’s syndrome

Pelvic sarcoma Family history
Rhabdomyosarcoma
Sacral tumours
Rectosigmoid tumours

Benign diseases requiring chemotherapy: autoimmune diseases 
(systemic lupus erythematosus, rheumatoid arthritis, Behçet’s disease and Wegener’s disease)

Gynaecological malignancy
Early cervical carcinoma
Early vaginal carcinoma
Early vulvar carcinoma
Selected cases of ovarian carcinoma (stage IA)
Ovarian borderline tumours

Systemic diseases Bone marrow transplantation
Hodgkin’s disease Benign haematological diseases: sickle cell anaemia, thalassaemia major and aplastic anaemia
Non-Hodgkin’s lymphoma Autoimmune diseases unresponsive to immunosuppressive therapy
Leukaemia
Medulloblastoma
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Teinturier et al. (1998) actually reported 0% of ovarian recovery
after busulfan treatment before BMT. A large retrospective survey
of pregnancy outcomes after haematopoietic stem cell transplanta-
tion (HSCT) (peripheral blood or BMT) involving 37 362 patients
revealed that only 0.6% of patients conceived after autologous or
allogenic SCT (Salooja et al., 2001; Lutchman Singh et al., 2005).
It is thus obvious that high doses of alkylating agents, irradiation
and advancing age increase the risk of gonadal damage.

Cryopreservation should not be reserved solely for women with
malignant disease (Donnez et al., 2006). Indeed, HSCT has been
increasingly used in recent decades for non-cancerous diseases,
such as benign haematological disease (sickle cell anaemia, thalas-
saemia major and aplastic anaemia) and autoimmune diseases pre-
viously unresponsive to immunosuppressive therapy (systemic
lupus erythematosus and autoimmune thrombocytopenia) (Slavin
et al., 2001; Mattle et al., 2005; Wolner-Hanssen et al., 2005;
Donnez et al., 2006). Other benign diseases, such as recurrent
ovarian endometriosis or recurrent ovarian mucinous cysts, are
also indications for ovarian cryopreservation. Patients undergoing
oophorectomy for prophylaxis may potentially benefit from ovar-
ian cryopreservation too. The indications for cryopreservation of
ovarian tissue in case of non-malignant disease are summarized in
Table II.

Fertility preservation in cancer patients: different 
cryopreservation options

Several options are currently available to preserve fertility in cancer
patients and give them the opportunity to become mothers when
they have overcome their disease: embryo cryopreservation, oocyte
cryopreservation or ovarian tissue cryopreservation (Gosden et al.,
1997; Donnez and Bassil, 1998; Oktay et al., 1998a, 2004;
Donnez et al., 2000, 2005; Oktay and Karlikaya, 2000; Meirow
and Nugent, 2001; Torrents et al., 2003; Sonmezer and Oktay, 2004;
Gosden, 2005; Lobo, 2005; Meirow et al., 2005; Kim, 2006). The
choice of the most suitable strategy for preserving fertility depends
on different parameters: the type and timing of chemotherapy, the
type of cancer, the patient’s age and the partner status.

The only established method of fertility preservation is embryo
cryopreservation, according to the Ethics Committee of the American
Society for Reproductive Medicine (2005), but this option requires
the patient to be of pubertal age, have a partner or use donor
sperm, and be able to undergo a cycle of ovarian stimulation, which
is not possible when the chemotherapy has to be initiated immedi-
ately or when stimulation is contraindicated according to the type
of cancer.

Cryopreservation of oocytes can be performed in single women
who can undergo a stimulation cycle, although the effectiveness of
this technique is very low, with pregnancy and delivery rates rang-
ing from 1 to 5% per frozen oocyte (Stachecki and Cohen, 2004;
Borini et al., 2006; Levi Setti et al., 2006).

Cryopreservation of ovarian tissue is the only option available
for prepubertal girls, and for woman who cannot delay the start of
chemotherapy. Ovarian tissue can theoretically be frozen using
three different approaches: as fragments of ovarian cortex, as
entire ovary with its vascular pedicle or as isolated follicles. Human
ovarian cryopreservation and transplantation procedures have so
far been almost exclusively limited to avascular cortical fragments,
both in experimental and in clinical studies, and, for now, this is the

only procedure that has yielded live births in humans after autolo-
gous transplantation (Donnez et al., 2004; Meirow et al., 2005).

Embryo cryopreservation

Embryo cryopreservation has become a routine technique in all
IVF centres and has proven its efficacy in terms of pregnancy and
‘take-home-baby’ rates. Although this method has already been
used for young cancer patients (Winkel and Fossum, 1993), there
are significant drawbacks to its use.

First, medical reasons might impede its application (a) if the
beginning of cancer treatment cannot be delayed and there is no
time to complete ovarian stimulation or (b) when the stimulation
procedure may be theoretically harmful to patients with hormone-
sensitive tumours, such as breast cancer. Even if IVF can theoreti-
cally be undertaken on the basis of a spontaneous ovarian cycle
(Brown et al., 1996), the small number of obtainable oocytes (and
subsequently viable embryos for transfer) makes it extremely
unlikely that any live births will be achieved in these conditions.

Ginsburg et al. (2001) showed that women undergoing IVF
after chemotherapy had a poor response to gonadotrophins and,
more recently, Dolmans et al. (2005) clearly demonstrated the
poor results of IVF and embryo cryopreservation, even if the
attempt is carried out after only one or two regimens of chemo-
therapy. Recently, tamoxifen and letrozole were employed to stim-
ulate the ovaries for IVF and embryo cryopreservation with some
success, whilst possibly providing a safe alternative to traditional
ovarian stimulation methods in these patients (Oktay et al., 2005).

The partner status of the patient may also impede embryo cryo-
preservation. If the patient has no partner or is an adolescent, the
only available solution is using donor sperm to ensure fertilization
of her oocytes. Finally, this technique is inappropriate for children,
who have not reached puberty.

In conclusion, embryo cryopreservation is an efficient technique,
but only an option for patients from whom mature oocytes can be
collected and who have a partner (or are willing to use donor sperm).

Oocyte cryopreservation

Oocyte cryopreservation is an alternative option for patients with
the same characteristics as those described above for embryo cryo-
preservation but who are not with a partner and do not wish to use
donated sperm. In this case, IVF of their oocytes to produce
embryos to be frozen for future implantation is not possible. Thus,
the oocytes themselves must be cryopreserved either as mature or
as immature oocytes. Human oocyte cryopreservation has been
rapidly incorporated into clinical practice in several centres (Porcu
et al., 1997, 2004; Fabbri et al., 2001; Porcu, 2005).

Mature oocyte cryopreservation

Mature oocyte freezing appears, at least in theory, to be the
most logical way of storing female germ cells, comparable to
the routinely performed sperm banking. It is an attractive option
for women without a partner, if they have time to complete
ovarian stimulation before cancer therapy. However, ovarian
stimulation and oocyte collection are not applicable for children
(Oktay et al., 1998a; Torrents et al., 2003; Akar and Oktay,
2005).
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Still, this procedure has proved largely disappointing. Since the
first report of a live birth from a frozen oocyte (Chen, 1986), the
results of this procedure worldwide have been variable, with a
reported success rate of <2% per thawed oocyte, despite an
improved success rate when combined with ICSI (Porcu et al.,
1997, 2004; Fabbri et al., 2001; Lutchman Singh et al., 2005;
Porcu, 2005). Techniques developed in recent years to improve
survival rates of mature oocytes after slow-freezing protocols
include increased sucrose concentrations (Fabbri et al., 2001),
longer pre-equilibration and thawing times (Yang et al., 2002) and
the use of sodium-depleted media (Boldt et al., 2003; Stachecki
and Cohen, 2004). Data on frozen-thawed mature oocytes from 21
studies in peer-reviewed journals were examined by Sonmezer
and Oktay (2004), who reported a mean survival rate of 47%, a
mean fertilization rate of 52.5% and a mean pregnancy rate per
thawed oocyte of 1.52%. Very recent data indicate that, although
the combination of slow cooling and high sucrose concentrations
ensures high rates of oocyte survival, it is not sufficient to guaran-
tee a high standard of clinical efficiency (Borini et al., 2006).
Indeed, 18 clinical pregnancies were obtained from 927 oocytes in
Borini’s study. In another very recent study, 2900 oocytes were
cryopreserved, of which 1087 were subsequently thawed. In this
series, 18 pregnancies were also obtained (Levi Setti et al., 2006).
Even in the very latest studies, the mean pregnancy rate per
thawed oocyte does not exceed 1.8% (Borini et al., 2006; Levi
Setti et al., 2006).

The metaphase II (MII) oocyte is a large and highly specialized
cell that is extremely fragile. Oocyte freezing is accompanied by
various types of cell injury, which may explain the low survival
rate (Van der Elst, 2003). There are two main reasons for these
poor results. First, the zona pellucida hardens during the freezing
process, probably as a consequence of premature exocytosis of the
cortical granules. It could then act as a fence, impairing sperm
penetration and normal fertilization, although micromanipulation
techniques (ICSI) can, to a certain extent, bypass this problem
(Porcu et al., 1997; Fabbri et al., 2001; Gook et al., 1993, 1995).
Second, in the mature oocyte, the metaphase chromosomes are
lined up by the meiotic spindle along the equatorial plate, but the
spindle apparatus is easily damaged by intracellular ice formation
during the freezing or thawing process (Pickering et al., 1990) (for
review, see Mandelbaum et al., 2004). The cellular cooling pro-
cess induces depolymerization of the meiotic spindle, which is a
dynamic structure (microtubules being continually assembled at
one of its ends and separated at the other). The cell is thus at risk
of losing chromosomes and suffering aneuploidy.

There are two main steps in the process of cryopreservation: (i)
chilling, i.e. lowering the temperature from the physiological tem-
perature to the point of freezing and (ii) freezing, i.e. further
reducing the temperature to the storage temperature (liquid nitro-
gen at –196°C). Chilling injury can modify the structure of mem-
branes and therefore their integrity (Ghetler et al., 2005). It also
affects oocyte microtubules (Albertini and Eppig, 1995), cytoskel-
etal organization (Overstrom et al., 1990) and the zona pellucida
(Vajta et al., 1998).

Chilling injury is temperature dependent; it is caused by changes
in membrane properties and integrity and is responsible for the
extensive cell damage that occurs during the process of cryopreser-
vation. Inappropriate handling of oocytes at room temperature
appears to pose the greatest threat (Mandelbaum et al., 2004).

In conclusion, mature oocyte banking is still limited by its low
success rate; oocytes are sensitive to chilling, often fail to survive
freeze-thawing processes, and are susceptible to cytoskeletal dam-
age and aneuploidy. Currently, even the most optimistic success
rates offer patients only a slim chance of pregnancy, if few oocytes
are available (Gosden, 2005). Ultrarapid freezing with vitrification
may offer advantages over conventional slow cooling protocols by
improving post-thawing survival rates but needs to be investigated
further. Despite the few promising studies on vitrification (Yoon
et al., 2000; Katayama et al., 2003), even less is known about the
potentially detrimental effects of this process compared with con-
ventional cryopreservation techniques; to date, slow freezing and
rapid thawing is the protocol of choice for freezing human oocytes
(Falcone et al., 2004). Better evaluation of sucrose concentrations
in the freezing medium could lead to improved results in the future
(Porcu, 2005; Borini et al., 2006).

Immature oocyte cryopreservation and in vitro maturation

Oocytes at the diplotene stage of prophase I, or germinal vesicle
(GV) stage, survive the cryopreservation procedure better than
those frozen at the MII stage (Boiso et al., 2002). These cells have
reached full size and complete meiotic competence but have not
yet resumed their maturation process and initiated their second
metaphase. Although the risk of hardening of the zona pellucida or
damage to the cytoskeleton cannot be avoided, it is probable that
the absence of a meiotic spindle and the presence of a nuclear
membrane protecting the chromatin guarantees the absence of
cytogenetic anomalies during further cellular divisions.

Freezing immature oocytes followed by in vitro maturation thus
offers practical and theoretical advantages (Gosden, 2005), but
this method is still suboptimal. Frozen–thawed immature oocytes
have to follow a process of in vitro maturation before they are
ready to be fertilized. Oocyte maturation is considered as the rein-
itiation and completion of the first meiotic division from the GV
stage to the MII stage, and the accompanying cytoplasmic matura-
tion phase for fertilization and early embryonic development (Cha
and Chian, 1998). The co-ordination of nuclear and cytoplasmic
maturation in vitro has proved very difficult to achieve.

Although there are several reports of pregnancies achieved after
in vitro maturation of fresh GV-stage oocytes (Cha et al., 1991;
Trounson et al., 1994), only one live birth has resulted from an imma-
ture oocyte cryopreserved at the GV stage, with subsequent in vitro
maturation (Tucker et al., 1998). Two other teams have described
non-ongoing pregnancies. Kan et al. (2004) reported one pregnancy
from an immature frozen oocyte which ended in a blighted ovum at
12 weeks, and Wu et al. (2001) reported one biochemical pregnancy.
According to a recent review by Kim, the cryopreservation of GV-
stage oocytes will not be a practicable strategy until in vitro matura-
tion of these oocytes becomes more reliable (Kim, 2006).

Ovarian tissue cryopreservation

For patients who need immediate chemotherapy, ovarian tissue
cryopreservation is the only possible alternative (Gosden et al.,
1994; Donnez and Bassil, 1998; Meirow et al., 1998; Oktay et al.,
1998a; Donnez et al., 2000, 2005). The main aim of this strategy is
to reimplant cortical ovarian tissue into the pelvic cavity (ortho-
topic site) or a heterotopic site like the forearm or the abdominal
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wall once treatment is completed and the patient is disease-free
(Donnez and Bassil, 1998; Oktay et al., 1998a, 2004; Oktay and
Karlikaya, 2000; Radford et al., 2001; Donnez et al., 2004, 2005,
2006; Kim et al., 2004a; Meirow et al., 2005; Schmidt et al., 2005;
Demeestere et al., 2006) (Table III).

Other strategies, such as the transplantation of isolated cryopre-
served primordial follicles and the transplantation of cryopreserved
whole ovary, will also be discussed here.

Fragments of cortical ovarian tissue

Lessons learned from auto- and xenografting of cryopreserved 
animal ovarian tissue

To date, ovarian tissue has been successfully cryopreserved and
transplanted into rodents, rabbits, sheep, and marmoset monkeys
(Candy et al., 1995, 2000; Salle et al., 2002; Almodin et al., 2004).
Successful fertilization and pregnancy after oocyte collection from
fresh transplanted ovarian tissue have been described in a primate
(Lee et al., 2004); the grafted tissue functioned without any surgical
connection to major blood vessels.

The generation of live young from xenografted mouse ovarian
tissue into a rat recipient was described by Snow et al. (2002).
Fresh mouse ovarian tissue was xenografted under the kidney cap-
sule of rat recipients. Mature oocytes were produced from the
xenografted tissue and subsequently fertilized; they developed
into fertile adult mice. The authors state that xenotransplantation
may thus prove to be a potentially promising method for the con-
servation of rare and endangered species of animals. The use of
this strategy in human assisted reproduction should be considered
with caution, however (Snow et al., 2002).

In a recent review of their experimental studies, Baird et al.
(2004) observed a significant increase in the proportion of
growing follicles from <20% in ovaries before grafting to
>70% at 7, 30 and 60 days after grafting. According to the
authors, the massive recruitment of primordial follicles, which
also occurs in cultured fragments, suggests the removal of
some inhibitory mechanisms regulating FSH. Following
autotransplantation, the number of antral follicles and the
secretion of inhibin A are reduced, resulting in raised basal lev-
els of FSH, which could account for the massive recruitment,
although the early stage of folliculogenesis can occur in the
absence of FSH and LH.

Experimental studies have indicated that the fall in the number
of primordial follicles in grafted tissue is due to hypoxia and the
delay that occurs before reimplanted cortical tissue becomes
revascularized. The loss of primordial follicles in cryopreserved
ovarian tissue after transplantation is estimated to be 50–65% in
some studies (Baird et al., 1999; Nisolle et al., 2000) and >90% in
one study (Aubard et al., 1999).

A very recent study in mice concluded that the graft site affects
the number and quality of oocytes produced from ovarian grafts
(Yang et al., 2006). The study used a mouse ovarian grafting
model to investigate whether the graft site (bursal cavity, kidney
capsule or site) influences the number, fertilization rate and devel-
opmental potential of oocytes recovered from grafts. Graft
retrieval and the number of oocytes found in each graft were low-
est from the s.c. graft site. The number of 2-cell embryos produced
was significantly higher with oocytes from grafts to the bursa,
compared with the other sites.

In a recent article, Israely et al. (2004) analyzed angiogenic events
following ovary xenotransplantation. Rat ovaries were transplanted
into the muscle of castrated nude mice. The characterization of the
neovasculature by dynamic contrast-enhanced magnetic resonance
imaging (MRI) confirmed that the graft was devoid of any blood
supply. Functional vessels within the graft were detected by MRI
and histology from day 7 onwards. By 2–3 weeks, both the blood
volume fraction and the permeability were measured using albumin-
based MR contrast material and were found to be higher in the
graft than in adjacent muscle. The same team recently demon-
strated that transplantation into angiogenic granulation tissue cre-
ated during wound healing shortened the ischaemic interval
(Israely et al., 2006). This confirms the benefits of the technique
of induced angiogenesis and neovascularization that was used in
the first case of successful orthotopic transplantation of cryopre-
served ovarian tissue (Donnez et al., 2004).

The assessment of tumour oxygenation by electro-paramagnetic
resonance (EPR) was recently reviewed by Gallez et al. (2004). In
this review, different methods were used to estimate the oxygena-
tion of tumours and compare EPR oximetry with nuclear magnetic
resonance and MRI. The evaluation of oximetry in human ovarian
xenografts was initiated to improve the revascularization process,
which remains one of the main limitations of ovarian cortical strip
use (Donnez et al., 2005).

Lessons learned from xenografting cryopreserved human ovarian 
tissue

Human ovarian tissue can be successfully cryopreserved, showing
good survival and function after thawing. Hovatta (2005) arrived
at this conclusion after reviewing all relevant studies since 1996,
when the first case of cryopreservation of human ovarian tissue
was described. In these studies, survival and morphological and
functional recovery of ovarian tissue after thawing were proved by
live/dead assays, organ culture, xenotransplantation to severe
combined immunodeficient (SCID) mice and normal light and
transmission electron microscopy (TEM) analysis.

Adequate penetration of cryoprotectant through the stroma and
granulosa cells to the oocytes is necessary, however, while at the
same time avoiding possible cryoprotectant toxicity. Indeed, Newton
et al. (1996, 1998) demonstrated the importance of the diffusion
rate and the diffusion temperature. Ice crystal formation must
also be minimized by choosing optimal freezing and thawing
rates. The choice of cryoprotectant with maximum permeation
capacity but minimum toxicity and ice crystal formation poten-
tial is specific to each cell and tissue type (Fuller and Paynter,
2004). Thus, in the ovary, it is a compromise between the
stroma, the follicular cells and the oocytes (Hovatta, 2005). On
the basis of current knowledge, the standard method for human
ovarian cryopreservation is slow-programmed freezing, using
human serum albumin-containing medium, and propanediol,
dimethylsulphoxide or ethylene glycol as a cryoprotectant, com-
bined or not with sucrose (Hovatta, 2005).

Kim et al. (2004b) showed that a correlation exists between
ischaemic tissue damage and the duration of ischaemia. It has been
demonstrated that vascular endothelial growth factor does not
accelerate revascularization, either after s.c. (Schnorr et al., 2002)
or peritoneal (Donnez et al., personal data) implantation of ovar-
ian tissue. According to Kim et al. (2004b), the ovarian cortex can
tolerate ischaemia for at least 3 h at 4°C. They also demonstrated
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that an antioxidant (ascorbic acid) reduces apoptosis in ovarian
cortex by up to 24 h in case of incubation in vitro. In their study,
significant ischaemic damage was evidenced by decreased oxygen
consumption and increased apoptosis. Moreover, it appeared that
stromal cells were more vulnerable to ischaemia than primordial
follicles. The apoptosis rate of stromal cells was higher in the fro-
zen-thawed group than in the fresh group, regardless of the dura-
tion of incubation, which may reflect a degree of freeze-thawing
injury to ovarian cortex.

Several immunodeficient animal strains can be used as
xenograft recipients, with SCID and non-obese diabetic-SCID
mice best suited to xenografting to obviate potential rejection
problems, especially if the graft is to be borne for a long period
(Weissman et al., 1999; Aubard, 2003). All reports on human
ovarian tissue grafting to mice (for review, see Aubard, 2003)
that have studied the implantation site have shown peritoneal
transplantation, either under the peritoneum (Nisolle et al.,
2000) or under the kidney capsule (Abir et al., 2003; Hernandez-
Fonseca et al., 2004) to be better than s.c. transplantation in
terms of follicular survival and development. After xenografting
cryopreserved human ovarian tissue into the kidney capsule of
SCID mice, Oktay et al. (1998b) achieved follicular develop-
ment up to the antral stage, and (Gook et al. 2003, 2005)
obtained MII-stage oocytes. The ovulatory capacity of frozen-
thawed human follicles in xenografts was evidenced by the
formation of morphologically normal corpora lutea and elevated
progesterone levels in immunodeficient mice (Kim et al., 2002;
Gook et al., 2003).

Very few data are available on the final maturation of follicles
in xenografts and therefore the quality of oocytes obtained. In a
recent study, Kim et al. (2005) assessed the integrity of human
oocytes obtained after s.c. xenografting of cryopreserved ovarian
tissue into SCID mice and in vitro maturation of retrieved cumu-
lus–oocyte complexes. By immunocytochemical analysis of
microtubules and DNA, some oocytes showed abnormal nuclear
and cytoplasmic maturation. Nevertheless, the authors could not
determine whether these alterations were due to freeze–thawing
injury, the lack of optimal ovarian stimulation protocols, subopti-
mal conditions of animal hosts for the growth of human follicles,
inadequate in vitro maturation techniques or the choice of a s.c.
transplantation site. It has therefore not been established whether
human oocytes matured in a xenograft are ultrastructurally normal
and functionally competent.

Autotransplantation of cryopreserved human ovarian tissue

Reported cases of autotransplantation of cryopreserved ovarian
tissue, either to an orthotopic or to a heterotopic site, are summa-
rized in Table III, detailing in each case the age of the patient
before freezing, whether the patient received chemotherapy before
freezing, the indications for cryopreservation, the graft site and
size, the interval before recovery of ovarian function after grafting
and the outcome of transplantation (Oktay and Karlikaya, 2000;
Callejo et al., 2001; Radford et al., 2001; Kim et al., 2004a; Oktay
et al., 2004; Oktay, 2006; Donnez et al., 2004, 2006; unpublished
data; Meirow et al., 2005; Schmidt et al., 2005; Wolner-Hanssen
et al., 2005; Demeestere et al., 2006).
Orthotopic autotransplantation of cryopreserved human ovarian 
tissue. In theory, natural pregnancy may be achieved via ortho-
topic tissue transplantation if the fallopian tubes remain intact.

In 2000, Oktay and Karlikaya (2000) reported laparoscopic trans-
plantation of frozen–thawed ovarian tissue to the pelvic side wall in
a 29-year-old patient, who had undergone bilateral oophorectomy
for a non-malignant disease. Pieces of cryopreserved ovarian tissue
were thawed and transplanted. The patient was stimulated by gona-
dotrophins once after 15 weeks and then again after 10 months. Fol-
licular development was demonstrated by ultrasonography and
ovulation occurred in response to HCG administration.

Radford et al. (2001) reported a patient with a history of
Hodgkin’s disease treated by chemotherapy, whose ovarian tissue
had been biopsied and cryopreserved 4 years after chemotherapy and
later reimplanted. In this case, histological section of the ovarian cor-
tical tissue revealed only a few primordial follicles because of the
previous chemotherapy. Estradiol (E2) was detected and the FSH and
LH levels decreased 8 months after reimplantation. The patient had
one menstrual period, but 9 months after reimplantation, her LH and
FSH concentrations returned definitively to menopausal levels.

We reported the first successful transplantation of cryopre-
served ovarian tissue (Donnez et al., 2004) resulting in a preg-
nancy and live birth. In 1997, a 25-year-old woman presented with
clinical stage IV Hodgkin’s lymphoma. Ovarian tissue cryopreser-
vation was undertaken before chemotherapy. By laparoscopy, we
took five cortical biopsies, about 12–15 mm long and 5 mm wide,
from the left ovary. The removal of the whole ovary was not an
option because one can never completely exclude recovery of
ovarian function after chemotherapy.

After laparoscopy, the patient received hybrid chemotherapy
from August 1997 to February 1998, followed by supradiaphrag-
matic radiotherapy (38 Gy).

According to Schilsky et al. (1981), the risk of POF after such a
regimen in a woman of 26 years of age is >90%, whereas according
to Wallace et al. (2005a) and Lobo (2005), the risk of subfertility
after Hodgkin’s treatment with alkylating agents is >80%. Indeed,
not only the type of drug and dose but also the age are important
factors when evaluating the risk of POF after chemotherapy.

In 2003, once the patient had been declared completely disease-
free, transplantation went ahead. A large strip and 35 small cubes of
frozen–thawed ovarian tissue were implanted into a furrow created
by the peritoneal window very close to the ovarian vessels and fim-
bria on the right side. Four months after transplantation, a laparos-
copy was carried out to check the viability of the orthotopic graft
and to reimplant the remaining 32 ovarian cortical cubes. A follicu-
lar structure was visible in the area where the tissue had been reim-
planted, clearly outside the native ovary. Biopsy and analysis by
vital fluorescent probe staining and histology revealed the presence
of viable primordial follicles and a follicular structure with inhibin
A-marked cells (Donnez et al., 2004). From 5 to 9 months after
reimplantation, concentrations of FSH, E2 and progesterone showed
the occurrence of ovulatory cycles. At 11 months, the patient
became pregnant and subsequently delivered a healthy baby.

Several lines of evidence lend support to our assertion that the
origin of the pregnancy was indeed the autotransplanted cryopre-
served tissue. The possibility that the egg was derived from the
native ovary is highly unlikely, because vaginal echography dem-
onstrated the development of a follicle of 18 × 22 mm in size out-
side the native ovary during the cycle which led to the pregnancy.
The same day, the E2 level was 156 pg/ml and progesterone 0 ng/ml.
This was extensively explained in the publication itself (Donnez
et al., 2004), as well as in a letter later published by Donnez and
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Dolmans (2004) in response to comments by Oktay and Tilly
(2004). Another of our main arguments was that laparoscopy per-
formed 4½ months after reimplantation proved, by direct visualiza-
tion, the development of a follicle from the grafted tissue and, on
histological examination, the biopsy samples indicated not only the
survival of primordial follicles in the grafted tissue but also the mat-
uration of a follicle (granulosa cells marked by inhibin A). It was the
first histological proof of follicular maturation from reimplanted
cryopreserved ovarian tissue. After delivery, the patient experienced
ovulatory cycles every 5 to 6 weeks. Each time, an increase in FSH
levels was observed (Figure 1). Figure 1 demonstrates that the ovar-
ian graft is still functioning almost 3 years after transplantation.

In 2006, the restoration of ovarian function after orthotopic
(intraovarian and paraovarian) transplantation of cryopreserved
ovarian tissue was reported in a woman treated by BMT for a non-
cancerous disease (sickle cell anaemia) (Donnez et al., 2006).
Thirty-nine small cryopreserved cubes were thawed and grafted
into the ovary itself (24 cubes) and a peritoneal window (15
cubes). Vaginal echography and sequential measurement of FSH,
LH, E2 and progesterone concentrations revealed the onset of an
ovulatory cycle 4½ months after the reimplantation of ovarian tis-
sue, demonstrating the efficacy of orthotopic transplantation and
confirming, once again, the time interval between reimplantation
and the onset of ovulation. The patient experienced 3 cycles in
total, evidenced by the development of a follicle and raised E2 lev-
els. It should be noted that the E2 peaks never exceeded 55 pg/ml
and that FSH rose to 40 mIU/ml between the cycles. However,
after these 3 cycles, LH and FSH concentrations returned to cas-
trated levels. We then decided to reimplant the 30 remaining cubes
into the ovary, the patient being under GnRH agonist to decrease
LH and FSH levels. She experienced a first ovulatory cycle 4
months after reimplantation. The pre-ovulatory E2 level was 120
pg/ml. The follicle measured 20 mm before the LH peak and pro-
gesterone was at 14.7 ng/ml in the mid-luteal phase (Figure 2).

Very recently, we applied a technique, similar to that used by
Silber et al. (2005) for the transplantation of fresh ovarian cortex
between monozygotic twins, in a woman who had also undergone
BMT and two regimens of alkylating agents in 2000 for non-
Hodgkin’s lymphoma (Table III). Ovarian tissue cryopreserva-
tion was carried out 1 year after first-line chemotherapy. One
ovary was removed and biopsies of cortical ovarian tissue
revealed the presence of histologically normal primordial folli-
cles. Six ovarian cortical pieces measuring 10 × 4–5 mm were
then grafted onto the remaining ovary after the cortex of this
ovary had been removed (Figure 3). It was 5 months before a
mature follicle (21 mm) developed and an increase in E2 levels
(194 pg/ml) was noted. The patient experienced an ovulatory
cycle every 5 weeks, the pre-ovulatory E2 level reaching values
between 210 and 356 pg/ml.

The analysis of these cases raises some important points for dis-
cussion. First, in all three cases, it took between 41/2 and 5 months
after reimplantation before a follicle could be seen. The process of
folliculogenesis takes ∼4–6 months, during which time the oocyte
and surrounding somatic cells undergo a series of changes that
eventually result in the development of a large antral follicle,
capable of producing a mature oocyte (Gougeon, 1996). Thus, the
appearance of the first follicle originating from the grafted tissue 5
months after reimplantation, proved by laparoscopy in one case, is
totally consistent with the expected time course. This time interval
between implantation of cortical tissue and the first E2 peak is also
consistent with data obtained from sheep (Baird et al., 1999, 2004)
and human beings (Table III), although some variations may be
observed. Indeed, as summarized in Table III, the delay between
transplantation and follicular development was found varying
from 8 weeks to 8 months. Such a variation could be explained by
a difference in follicular reserve at the time of cryopreservation.

Another very interesting finding is the persistence of relatively
high FSH levels during the follicular phase. FSH levels remained

Figure 1. Post-partum LH (mIU/ml), FSH (mIU/ml) and estradiol (pg/ml) levels in the first case of successful cryopreserved ovarian tissue transplantation,
demonstrating that the graft is still active (pre-pregnancy hormone levels were published in Donnez et al., 2004).
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as high as 25 mIU/ml during the follicular phase until ovulation
and then decreased to <15 mIU/ml during the luteal phase. This
may constitute an argument against the use of gonadotrophin
injections. The relatively high FSH levels may be explained by the
relatively low number of surviving primordial follicles in the graft.
The patient should be considered a poor responder, with reduced
inhibin B secretion. These results are in agreement with those
obtained in sheep by Campbell et al. (2000).

A further significant observation is the return to an FSH level of
>35 mIU/ml immediately after each menstrual bleed, which sup-
ports the theory suggested by Baird et al. (2004) that some inhibi-
tory mechanisms, such as inhibin or anti-Müllerian hormones
(AMH) normally produced by developing follicles in intact human
ovaries, are probably almost non-existent in transplanted tissue.
After transplantation, the patient would have been regarded a poor
responder because, of the 500–1000 primordial follicles that

Figure 2. LH (mIU/ml), FSH (mIU/ml) and estradiol (pg/ml) levels in our second case of cryopreserved ovarian tissue transplantation. Four-and-a-half months
after reimplantation, the patient experienced 3 consecutive ovulatory cycles, evidenced by the development of a follicle and raised estradiol levels (published by
Donnez et al., 2006). Subsequently, FSH returned to castrated levels, and a second reimplantation was carried out. Four months later, the patient experienced a fur-
ther ovulatory cycle (unpublished data).

0

20

40

60

80

100

120

####

03.05.2004

05.07.2004

13.09.2004

15.10.2004

03.12.2004

22.12.2004

05.01.2005

19.01.2005

02.02.2005

09.03.2005

23.03.2005

07.04.2005

11.05.2005

25.05.2005

08.06.2005

29.06.2005

06.07.2005

17.08.2005

13.09.2005

12.10.2005

29.12.2005

11.01.2006

25.01.2006

LH

FSH

Estradiol

2nd transplantation
(13.09.2005)
+ GnRH agonists

GnRH agonists

1st transplantation
(26.08.2005)

December 2002 –
August 2004
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D
ow

nloaded from
 https://academ

ic.oup.com
/hum

upd/article/12/5/519/780996 by guest on 20 April 2024



J.Donnez et al.

528

would have been transplanted, >50% would have been lost owing
to hypoxia (Donnez et al., 2004). This raises the question of the
evaluation of the ovarian reserve. There is a lack of data on the
ovarian reserve in cancer. Qu et al. (2000), Gook et al. (2005) and
Schmidt et al. (2003) have all demonstrated an unequal distribu-
tion of primordial follicles in ovarian cortex.

In 2005, Meirow et al. also published a live birth after ortho-
topic autotransplantation of cryopreserved ovarian tissue in a
patient with POF after chemotherapy. Eight months after ortho-
topic transplantation, the patient spontaneously menstruated. The
rise in AMH and increased inhibin B levels were consistent with
the presence of early growing follicles and ovulation, respectively.
Nine months after transplantation, the patient experienced a
second spontaneous menstrual period. After a modified natural
cycle, a single mature oocyte was retrieved and fertilized. Two
days later, a 4-cell embryo was transferred. The patient became
pregnant from this embryo transfer and delivered a healthy infant
weighing 3000 g. The possibility that the oocyte was derived from
the native ovary is highly unlikely given the consistent evidence of
POF after high-dose chemotherapy in this patient, from whom
ovarian tissue was harvested after administration of a first-line
conventional chemotherapy regimen, before second-line high-
dose chemotherapy.

Schmidt et al. (2005) recently reported the results of three cases
of ovarian tissue transplantation. All three patients with autotrans-
planted ovarian tissue regained ovarian function, as confirmed by
the recovery of menses, follicles visible on ultrasonography and
normal hormone levels. Two embryos were obtained from three
MII oocytes and one GV oocyte, but no pregnancy resulted from
embryo transfer.

Demeestere et al. (2006) very recently reported a pregnancy
after natural conception in a woman who had undergone ortho-
topic and heterotopic transplantation of cryopreserved ovarian
tissue. They observed follicular development in all three trans-
plantation sites: large follicles in the ovarian site, only one domi-
nant follicle in the peritoneal site and follicles <13 mm in size in
the heterotopic site. Detectable HCG levels and ultrasonography
confirmed the presence of a viable intrauterine pregnancy. Unfor-
tunately, this pregnancy, obtained by natural conception, ended in
miscarriage at 7 weeks due to aneuploidy. Interestingly, Demeestere
et al. (2006) observed normal FSH values after orthotopic and with
heterotopic transplantation of cryopreserved ovarian tissue. As
stressed by the authors, this may have been due to the young age
of the patient and the large number of tissue fragments trans-
planted (Demeestere et al., 2006), which could have yielded a rich
follicular reserve in the graft.
Heterotopic autotransplantation of cryopreserved human ovarian 
tissue: a better option than orthotopic transplantation?. There are
only six existing reports on this subject (Table III). Callejo et al.
(2001) evaluated the long-term function of cryopreserved heterotopic
grafts, but no conclusions could be drawn because the patient was
perimenopausal at the time of ovarian biopsy for cryopreservation.

In 2004, Kim et al. (2004a) reported a case of a 37-year-old
woman who underwent heterotopic (rectus and pectoralis muscle)
transplantation of cryopreserved ovarian tissue. By 14 weeks of
transplantation, the restoration of endocrine function was demon-
strated but, ∼28 weeks after transplantation, the cessation of ovar-
ian function was evidenced by very high FSH levels (62–99 IU/l)
and very low E2 levels.

The same year, Oktay et al. (2004) reported transplantation of
frozen–thawed ovarian tissue beneath the skin of the abdomen. A 4-
cell embryo was obtained from 20 oocytes retrieved from an ovarian
graft, but no pregnancy occurred after transfer. Oocyte quality might
have been compromised by transplantation to a heterotopic site.

In 2005, Schmidt et al. reported two cases of mixed (heterotopic
and orthotopic) transplantation, as did Demeestere et al. in 2006.
These cases are discussed in the section on orthotopic transplantation.

Wolner-Hanssen et al. (2005) reported s.c. transplantation of
frozen–thawed tissue to the forearm. Two follicles developed, but
only to a maximum diameter of 12.6 and 6.7 mm, respectively,
and the tissue survived 7 months. The authors suggested that the risk
of graft exposure to suboptimal temperatures or mechanical stress
may depend on transplantation site, and thus tissue transplanted under
the skin of the forearm will probably be exposed to both higher pres-
sure and lower temperature than ovaries in their normal location.

Very recently, Oktay (2006) reported a pregnancy after hetero-
topic transplantation of cryopreserved ovarian tissue, but ovulation
occurred from the native ovary.

Papers describing heterotopic transplantation have all reported
follicular development, but with follicles always <15 mm in size.
As stressed by Wolner-Hanssen et al. (2005) and Oktay et al.
(2004), differences in temperature and pressure could interfere
with follicular development in heterotopic sites.

Isolated primordial follicles

The primordial follicle is resistant to cryoinjury, because the
oocyte it contains has a relatively inactive metabolism, as well as a
lack of meiotic spindle, zona pellucida and cortical granules. The
small size of primordial follicles also greatly facilitates penetra-
tion of cryoprotectant. Oktay et al. (1997) developed an isolation
technique for human primordial follicles using enzymatic diges-
tion and microdissection and obtained high follicular viability
rates with both fresh and frozen ovarian tissues.

Nevertheless, the procedure to isolate primordial follicles
remains difficult (Martinez-Madrid et al., 2004a); to date, it has
not been possible to grow human isolated primordial follicles
in vitro to the mature oocyte stage (Torrents et al., 2003).

Although safe xenotransplantation of ovarian tissue from lym-
phoma patients has been reported in SCID mice (Kim et al., 2001),
the possibility of reintroducing tumour cells into cancer patients by
autografting of ovarian tissue cannot be excluded. To avoid trans-
ferring malignant cells, ovarian tissue culture with in vitro follicle
maturation could be performed. Culturing isolated follicles from
the primordial stage is another particularly attractive proposition
because they represent >90% of the total follicular reserve and
show high cryotolerance (Smitz and Cortvrindt, 2002). However,
isolated primordial follicles do not grow properly in culture
(Hovatta et al., 1999; Abir et al., 2001), and further studies are
clearly needed to identify factors sustaining follicular growth and
maturation in humans (Smitz and Cortvrindt, 2002) and to assess
the contribution of stromal cells to these processes. Encouraging
results were achieved by Hovatta (2004) when human primordial
follicles were grown in organ culture. Follicle isolation, or partial
follicle isolation, severely impairs follicular viability in culture
and, after isolation, primordial and primary follicles degenerate
within the first 24 h of culture (Hovatta et al., 1999; Abir et al.,
2001). Only more advanced, multilaminar pre-antral follicular
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stages can survive in short-term culture, a few reaching the early
antral stage (Roy and Treacy, 1993; Abir et al., 1997).

Another approach could be to transplant a suspension of iso-
lated follicles. As the follicular basal lamina encapsulating the
membrana granulosa excludes capillaries, white blood cells and
nerve processes from the granulosa compartment (Motta et al.,
2003; Rodgers et al., 2003), grafting fully isolated follicles could
be considered safer. Moreover, this would allow the introduction
of a high and known number of follicles into the host, obtaining
faster angiogenesis and minimizing ischaemic and reperfusion
damage (Laschke et al., 2002). The transplantation of frozen–
thawed isolated primordial follicles has indeed been successfully
achieved in mice (Carroll and Gosden, 1993), yielding normal off-
spring. For human primordial follicles, however, mechanical iso-
lation is not possible due to their size (30–40 μm) and their fibrous
and dense ovarian stroma, and therefore enzymatic digestion with
collagenase or Liberase has to be used (Dolmans et al., 2006). To
enhance the chances of follicular survival and reproductive func-
tion restoration, enzymatic digestion procedures for human ovar-
ian tissue need to be optimized and standardized.

As we recently demonstrated (Dolmans et al., 2006), Liberase
treatment allows the isolation of highly viable follicles with an
unaltered morphology and ultrastructure (Figure 4). This purified
endotoxin-free enzyme preparation is a promising alternative to
collagenase preparations for the reproducible isolation of intact
primordial follicles for culture and grafting purposes. Preliminary
results after xenotransplantation of isolated human primordial and
primary follicles are encouraging. Indeed, the survival of grafted
isolated primordial follicles in nude mice was estimated to be
>60%, leading us to consider the possibility of grafting isolated
follicles in the future, if the risk of reintroducing malignant cells
into cancer patients by autografting ovarian cortical fragments
cannot be excluded.

Whole ovary

As previously discussed, the main drawback of ovarian tissue cry-
opreservation followed by avascular transplantation is that the
graft is completely dependent on the establishment of neovascular-
ization and, as a result, a large proportion of follicles are lost during
the initial ischaemia occurring after transplantation (Newton et al.,
1996; Candy et al., 1997; Gunasena et al., 1997; Aubard et al.,
1999; Baird et al., 1999; Nisolle et al., 2000; Liu et al., 2002).
Reducing the ischaemic interval between transplantation and

revascularization is therefore essential to maintaining the follicu-
lar reserve and extending the life span and function of the graft. In
theory, the best way to achieve this is by transplantation of intact
ovary with vascular anastomosis, allowing immediate revasculari-
zation of the transplant.

Ovarian vascular transplantation has already been successfully
performed using intact fresh ovaries in rats (Wang et al., 2002; Yin
et al., 2003), rabbits (Winston and Browne, 1974), sheep (Goding
et al., 1967; Jeremias et al., 2002), dogs (Paldi et al., 1975), mon-
keys (Scott et al., 1981) and humans (Leporrier et al., 1987;
Hilders et al., 2004; Mhatre et al., 2005). In the last few years,
attempts at freezing and grafting whole ovaries in rats (Wang et al.,
2002; Yin et al., 2003), rabbits (Chen et al., 2005) and sheep
(Bedaiwy et al., 2003; Arav et al., 2005; Imhof et al., 2006) have
also yielded encouraging results.

The first case of restoration of fertility after whole frozen ovary
transplantation was described by Wang et al. in 2002. They
described successful vascular transplantation of frozen–thawed rat
ovaries and reproductive tract in four of seven (57%) transplants,
which survived for ≥60 days, were ovulatory and resulted in one
pregnancy. Chen et al. (2005) showed that frozen–thawed rabbit
ovaries remained functional for at least 7 months after microvas-
cular transplantation in 13 of 15 (86.7%) animals.

It appears that, in large mammals and humans, cryopreserving
such a large-sized intact ovary may prove more problematic than
in small animals because of the difficulty of adequate diffusion of
cryoprotective agents into large tissue masses and vascular injury
caused by intravascular ice formation. Nevertheless, Arav et al.
(2005) reported progesterone activity 36 months after vascular
transplantation of frozen–thawed sheep ovaries in three of eight
transplants, and retrieval of six oocytes, resulting in embryonic
development up to the 8-cell stage after parthenogenic activation.
Bedaiwy et al. (2003) reported the restoration of ovarian function
after autotransplantation of intact frozen–thawed sheep ovaries
with microvascular anastomosis, but it should be noted that 8 of
11 ovaries were lost due to thrombotic events in the reanastomo-
sed vascular pedicle. Imhof et al. (2006) recently demonstrated
that the autotransplantation of whole cryopreserved sheep ovaries
with microanastomosis of the ovarian vascular pedicle could lead
to pregnancy and delivery. Moreover, in this study, six of eight
ovaries showed major ovarian vessels to be free of thrombosis,
with the structural integrity of the ovarian stroma largely retained
18–19 months after transplantation.

Recently, Martinez-Madrid et al. described a cryopreservation
protocol for intact human ovary with its vascular pedicle and
proved high survival rates of follicles (75.1%) (Figure 5), small
vessels and stroma, and a normal histological structure in all the
ovarian components after thawing (Martinez-Madrid et al., 2004b).

After freeze–thawing whole human ovaries using this protocol,
no induction of apoptosis was observed in any cell types, assessed
by both the terminal deoxynucleotidyl transferase biotin-dUTP
nick-end labelling (TUNEL) method and immunohistochemistry
for active caspase-3 (Martinez-Madrid et al., 2005). TEM con-
firmed that the majority (96.7%) of primordial follicles were intact
after cryopreservation (Camboni et al., 2005) (Figure 6). Particu-
lar attention was paid to the evaluation of the endothelial cells:
TEM revealed that 96.3% of these cells had a completely normal
ultrastructure, and the percentage of active caspase-3-positive
endothelial cells was <1%.

Figure 4. Enzymatically isolated follicles (between 30 and 110 μm) visible
under an inverted fluorescence microscope after fluorescent viability staining
(calcein-AM and ethidium homodimer-1). Follicles are visible on light micro-
scopy (left) and fluorescence microscopy (right), which show all of them to be
viable. (Original magnification ×400.)
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Our results in humans have led us to seriously consider propos-
ing this option to women in the future, when there is no risk of
transmitting malignant cells via the graft after transplantation. So
far, in our department, three whole ovaries have been cryopre-
served with a view to future reimplantation (grafting) and vascular
anastomosis.

Developing new cryochambers and improving protocols for
whole ovary cryopreservation must therefore be considered as
vital directions in ongoing research to make the transplantation
of an entire ovary a feasible objective (Donnez et al., 2005;
Martinez-Madrid and Donnez, 2005). Research and development
of technology to cryopreserve whole organs, as well as surgical
techniques for the autotransplantation of an entire ovary with its
vascular pedicle, should be encouraged. This could lead to the
transplantation of intact ovaries with microvascular anastomosis
carried out to restore immediate vascularization and minimize
post-transplantation ischaemia, responsible for the reduction in
follicular density.

Safety and ethical issues

The transmission of lymphoma via grafts of ovarian tissue from
diseased donor mice to healthy recipients was reported by Shaw
et al. (1996). This study highlighted the risks of clinical transplan-
tation of ovarian biopsy samples to women recovering from can-
cer, especially a blood-borne cancer (Shaw et al., 1996; Shaw and
Trounson, 1997). However, there are certain circumstances where
the risk of cancerous involvement of the ovary is absent or mini-
mal (Meirow et al., 1998) and where autografting would present
little or no danger (Gosden et al., 1997; Moomjy and Rosenwaks,
1998; Kim et al., 2001). Future experiments should help us
address questions about the relevance of replacing residual malig-
nant cells with grafted tissue in such cases. Screening methods
must be developed to eliminate the risk of cancer cell transmission
with reimplantation. In some diseases, other options must be con-
sidered, such as the transplantation of isolated follicles. Mean-
while, the debate rages on.

The Practice Committee of the American Society for Repro-
ductive Medicine (2004) has summarized some important
points to be taken into consideration, and Dudzinski (2004)
recently underlined the need to develop policies to protect the
patient’s right to self-determination with respect to her gam-
etes. She conducted a normative analysis of ethical issues in
the context of oocyte and ovarian tissue cryopreservation for
adolescent cancer survivors and concluded that more research
is required before adolescents can ethically be enrolled in clini-
cal trials.

We do not fully agree with this conclusion. Indeed, approxi-
mately one-third of young women exposed to chemotherapy develop
ovarian failure. In 2006, we believe it is our ethical responsibility
to propose ovarian tissue cryopreservation under Institutional
Review Board protocols to all adolescents and young women
under having to undergo chemotherapy with alkylating agents.
Indeed, is it ethical to simply accept the existing discrepancy
between males and females with regard to their chances of pre-
serving their fertility following cancer treatments? What do we
then say to young women facing POF following chemotherapy,
knowing that ovarian cryopreservation has been an option for >10
years? It will be too late to say ‘we should have done something—
we should at least have tried’.

This is why, since 1996, we have systematically proposed cryo-
preservation to all women <35 years of age before chemotherapy,
when there is a risk of POF. We accept that ovarian tissue cryop-
reservation is a more innovative and invasive procedure than
sperm cryopreservation and that all possible applications in ado-
lescents are ethically complex. But we wholeheartedly agree with
Revel and Schenker (2004), who contributed to a debate published
in Human Reproduction, arguing that ovarian cortex banking
should be offered before chemotherapy in all cases where emer-
gency IVF is not possible.

One of the most important ethical issues is to ensure that the
intervention does not harm the patient by dangerously delaying
cancer treatment and that no remnant cells are reintroduced by
subsequent transplantation. Taking these points into account,
we agree with Dudzinski (2004) that policies to protect the
patient’s future rights to her gametes should be developed, as
well as policies addressing the disposition of the gametes if the
patient dies.

Figure 5. High survival rate of stromal cells, follicles and vessels in a cryop-
reserved whole ovary (viable cells stained green with calcein-AM and dead
cells stained red with ethidium homodimer-1). (Original magnification ×200.)

Figure 6. Primary follicle in a frozen–thawed whole ovary. The oocyte (O) is
surrounded by a single layer of cuboid follicular cells (Fc) on a continuous
basal membrane (bm). Note the presence of rounded mitochondria (m) with a
pale matrix and peripheral cristae in the oocyte cytoplasm. Follicular cells
show indented nuclei containing peripheral patches of heterochromatin and
numerous rod-shaped mitochondria in the cytoplasm. N, oocyte nucleus.
Original magnification: transmission electron microscopy (×4400).
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Although an adolescent is more vulnerable when consent is
sought in the rush to begin chemotherapy, she must be mature
enough to understand the risks and benefits of the procedure. Con-
sent must then be discussed extensively, the discussion including
both the adolescent patient and her parents to minimize the risk of
conflict of interest or inadvertent caution (Bukovsky, 2005). Res-
pecting the code of good practice, all patients who may become
infertile have the right to receive proper consideration of their
interests for future possibilities in the field of ovarian function
preservation. The selection of cases should be carried out on the
basis of a multidisciplinary staff discussion including oncologists,
gynaecologists, biologists, psychologists and paediatricians.
Counselling should be given and informed consent obtained from
the patient. Cancer treatment takes priority over potential restora-
tion of fertility, but offering the chance to preserve fertility may
greatly enhance the quality of life for cancer survivors.

Conclusion

Advances in reproductive technology have made fertility preser-
vation techniques a real possibility for patients whose gonadal
function is threatened by premature menopause, or by treatments
such as radiotherapy, chemotherapy or surgical castration. Deci-
sion-making in this area is particularly difficult because of the
experimental nature of some of these techniques. With their con-
tinued development and optimization, however, it may one day be
possible to offer an individualized approach to management, be it
through embryo cryopreservation, oocyte cryopreservation or cry-
opreservation of ovarian tissue (isolated follicles, cortical frag-
ments or whole ovary).

Cryopreservation of ovarian tissue should be seriously consid-
ered for any patient undergoing treatment likely to impair future
fertility, the indications being pelvic, extrapelvic and/or systemic
malignant diseases, as well as non-malignant diseases. The age of
the patient should be taken into consideration, because the follicu-
lar reserve of the ovary is age dependent. Because a decline in fer-
tility is now well documented after the age of 38 years, the
procedure should probably be restricted to patients below this
limit. In any case, irradiation and chemotherapy appear to be less
harmful to the gonads of prepubertal than postpubertal patients
(Haie-Meder et al., 1993; Sanders et al., 1996; Meirow and
Nugent, 2001).

It has been demonstrated that cryopreserved primordial follicles
can survive the thawing process. Research must now focus on
investigating current options and new alternatives in the field, to
identify the best way of using tissue after thawing. It is probable
that the answer lies in the use of culture environments adapted to
each stage of follicular development. If autografting is the aim of
cryopreservation of ovarian tissue, testing for malignant cells in
the tissue must be carried out using adequate techniques, espe-
cially in case of haematological malignancies.

In conclusion, live births obtained after transplantation of
frozen-thawed ovarian tissue in humans give hope to young cancer
patients, but there is still much work to be done. Research pro-
grams need to determine whether active angiogenesis can be
induced to accelerate the process of neovascularization in grafted
tissue, if isolated human follicles can be grafted, or indeed if
microvascular reanastomosis of an entire cryopreserved ovary is a
valuable option.
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