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backround: Follicle culture and oocyte in vitro maturation (IVM) are emerging assisted reproductive technologies with potentially im-
portant future applications in the fertility clinic. There is concern that these technologies might interfere at the epigenetic level and, in par-
ticular, with genomic imprinting. The timely acquisition of correct imprinting patterns in oocytes and the maintenance of genomic imprinting
after fertilization are both required for normal embryonic development.

methods: A systematic literature search in Pubmed was performed and all publications reporting on the effects of follicle culture, IVM or
ovarian tissue culture on genomic imprinting were retained.

results: Mouse ovarian tissue culture studies, mouse in vitro follicle culture studies and a single bovine IVM study generally showed
correct imprinted DNA methylation establishment in oocytes. Influences of treatment and suboptimal culture conditions in mouse follicle
culture indicate that imprinting establishment in oocytes is a robust process. This is in contrast with preimplantation embryo culture-
induced epigenetic defects reported in mice. For human IVM, no definitive conclusion on imprinting establishment can be drawn as well-
designed studies are currently not available.

conclusions: Animal models provide reassuring data on imprinting establishment in cultured oocytes, but further studies should assess
the effect of oocyte culture on imprinting maintenance. Optimized IVM procedures should be assessed in well-designed human studies.
Finally, epigenetic analysis should be performed in children born from pregnancies after IVM to draw definitive conclusions on the epigenetic
safety of human IVM.
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Introduction
Follicle culture and oocyte in vitro maturation (IVM) are emerging
assisted reproductive technologies (ART) with potentially important
future applications for fertility preservation and reduction of
hormone pretreatment in well-defined infertility patient groups
(Smitz et al., 2010, 2011).

Follicle culture technology for human clinical applications attracts
much research attention as it represents an alternative to ovarian cor-
tical tissue transplantation (Xu et al., 2009). So far, the complete
in vitro growth of follicles from the primordial or early pre-antral
stages to maturity, and their subsequent fertilization and development
into embryos which grow to term, has only been successful in the
mouse model. In contrast, IVM or the use of in vitro culture systems
for the maturation of collected immature oocytes prior to fertilization
represents routine practice in cattle breeding programs. The technol-
ogy was introduced for human infertility treatment in 1991 (Cha et al.,
1991), and since then over 1000 children have been born. Although
the results of the children’s follow-up are generally reassuring (Basate-
mur and Sutcliffe, 2011), it cannot be denied that in vitro oocyte devel-
opment and maturation is a complex and challenging procedure and
there is concern about the possible interference of these techniques
with epigenetic mechanisms and, in particular, with genomic
imprinting.

Genome imprinting is a phenomenon leading to a parent-of-
origin-specific monoallelic expression of genes in diploid cells. For
most genes, both the paternal and maternal alleles are actively tran-
scribed. In contrast, a small number of so-called ‘imprinted genes’
are expressed from only the paternal or from only the maternal
allele (Surani et al., 1984; Reik and Walter, 2001). To date, around
100 imprinted genes have been identified in mouse and human,
most of them residing in clusters sharing common cis-regulatory
imprinting control regions (ICRs) (for a complete list of known
imprinted genes, see hptt:/www.har.mrc.ac.uk/research/genomic_
imprinting/ and http://igc.otago.ac.nz/home.html).

Imprinting explains why mammalian development requires both a
paternal and maternal genome (McGrath and Solter, 1984; Surani
et al., 1984). A balanced (uniparental) expression of imprinted genes
is indeed essential for normal embryo development, placental differen-
tiation and pre- and post-natal growth, but also for normal neurobe-
havioural processes and metabolism (reviewed in Isles and Holland,
2005; Fowden et al., 2006; Smith et al., 2006). Furthermore, aberrant
imprinting is linked to human imprinting syndromes such as
Beckwith–Wiedemann (BWS), Prader–Willi (PWS) and Angelman
(AS) syndromes and to cancer (reviewed by Lim and Maher, 2010;
Uribe-Lewis et al., 2011).

Imprinted genes are differently marked by epigenetic modifications
in the parental alleles so that only one of the parental alleles is
expressed. DNA methylation is the best characterized epigenetic
modification that controls genomic imprinting (reviewed by Reik and
Walter, 2001; Li, 2002). The ICRs of imprinted genes are usually asso-
ciated with tandem repeat DNA sequence structures and with differ-
entially methylated regions (DMRs). The specific regulation of
imprinted gene expression has been reviewed in detail elsewhere
(Ideraabdullah et al., 2008).

Imprints are erased in primordial germ cells when the bulk of DNA
demethylation occurs (Szabo and Mann, 1995; Kato et al., 1999;

Hajkova et al., 2002; Lee et al., 2002; Szabo et al., 2002) allowing
imprints to be subsequently reset during gametogenesis in a sex-
specific manner (Fig. 1). For most known imprinted genes, DNA
methylation at ICRs is acquired at the maternal allele during oogenesis.
At only four of the known ICRs in the mouse (H19, Rasgrf1, Dlk1/
Dio3, Zdbf2), DNA methylation is acquired during spermatogenesis
(Davis et al., 1999; Li et al., 2004; Kobayashi et al., 2009). The time
of imprinting acquisition is different between the male and the
female germline in mouse. In the male, DNA methylation at DMRs
starts prenatally in prospermatogonia and is completed post-natally
at the pachytene stage of meiosis (Li et al., 2004). In contrast,
imprinted DNA methylation occurs only after the pachytene stage
of meiosis I in the post-natal growing mouse oocyte.

During post-natal mouse oogenesis, imprinting establishment
occurs asynchronously at different imprinted genes (Fig. 2), while
oocytes are arrested at prophase I during the transition from primor-
dial to antral follicle stages (Obata and Kono, 2002; Lucifero et al.,
2004; Hiura et al., 2006), and this acquisition of DNA methylation cor-
relates with an increase in oocyte diameter (Hiura et al., 2006). Bovine
oocytes also acquire DNA methylation imprints during the post-natal
growth period in an oocyte size-dependent manner (Fig. 3, O’Doherty
et al., 2012).

DNA methylation at ICRs in the female germline requires de novo
DNA methyltransferase Dnmt3a and a cofactor without intrinsic
catalytic activity, Dnmt3L (Bourc’his et al., 2001; Hata et al., 2002;
Kaneda et al., 2004). The mechanism that targets the methylation
complex to ICRs is unclear but permissive histone modifications
seem to be necessary and a transcription-based mechanism in the
female germline has been identified for the mouse Gnas locus (Ooi
et al., 2007; Chotalia et al., 2009; Ciccone et al., 2009).

To allow full-term development, the differential DNA methylation
patterns of imprinted genes should not only be accurately estab-
lished during gametogenesis, but also subsequently correctly main-
tained despite genome-wide changes in DNA methylation during
preimplantation. Several oocyte-expressed genes, such as Dnmt1o,
Zfp57, Stella and Mbd3 have been shown to be required for this
imprinting maintenance during preimplantation development
(Howell et al., 2001; Nakamura et al., 2007; Reese et al., 2007; Li
et al., 2008). Thereafter, imprints are faithfully propagated in
somatic cells during cell divisions.

From what is described above, it may be anticipated that the ma-
nipulation of gametes or embryos during ART might interfere with
the establishment and/or maintenance of imprinting. Indeed, in vitro
preimplantation embryo culture has been linked to a failure of imprint-
ing maintenance in animal models (Doherty et al., 2000; Khosla et al.,
2001; Young et al., 2001; Mann et al., 2004; Rivera et al., 2008; Suzuki
et al., 2009; Market-Velker et al., 2010a). Data in human are inconsist-
ent: several studies have suggested a possible link between ART and
rare imprinting syndromes (Cox et al., 2002; DeBaun et al., 2003;
Gicquel et al., 2003; Maher et al., 2003; Ørstavik et al., 2003; Halliday
et al., 2004; Chang et al., 2005; Ludwig et al., 2005; Rossignol et al.,
2006; Sutcliffe et al., 2006; Bowdin et al., 2007; Gomes et al., 2007;
Lim et al., 2009), although other studies have not found an association
(Lidegaard et al., 2005; Doornbos et al., 2007). Strikingly, however,
molecular analysis revealed that nearly all of these BWS cases were
associated with a loss of DNA methylation on the maternal allele at
the ICR regulating the growth-related KCNQ1 domain (KvDMR1),
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whereas this epigenetic abnormality is found in only around 50% of
sporadic BWS patients (Lee et al., 1999; Engel et al., 2000).

Consequently, there is concern that in vitro culture and maturation
might interfere with the acquisition of genome imprinting during

oogenesis and/or might affect the competence of the oocyte for
imprinting maintenance after fertilization.

The aim of this article is to review the current knowledge on the
possible effects of in vitro culture of oocytes on genomic imprinting.

Figure 2 Asynchronous methylation acquisition of maternally methylated imprinted genes: imprinting is established at a specific time during oocyte
growth from the primary to antral follicle stage for Peg3, Igf2 and Mest (also known as Peg1). For Snrpn, the maternally inherited allele acquires methy-
lation before the paternal allele, indicating that another epigenetic mark (in the absence of DNA methylation) may be retained at the DMR that still
allows the parental origin of alleles to be distinguished. Methylation acquisition at the non-imprinted intracisternal A-particles (IAPs) is also depicted.
dpp ¼ days post-partum. Reproduced with permission from Lucifero et al. (2004).

Figure 1 Schematic representation of erasure, establishment and maintenance of genomic imprints in mammalian development: DNA methylation
at ICRs is erased in primordial germ cells of the developing embryo at E11.5–12.5, and subsequently reset in a sex-specific manner during gameto-
genesis. Imprinted DNA methylation is maintained in somatic cells post-fertilization despite genome-wide DNA methylation changes during preim-
plantation development; red bars: maternal imprints; blue bars: paternal imprints.
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Methods

Search criteria
A systematic literature search in Pubmed was performed using the
keywords ‘follicle culture’, ‘in vitro maturation’, ‘IVM’, ‘oocyte culture’,
‘oocyte in vitro’ and ‘imprinting’; and ‘DNA methylation’ in various combi-
nations with no limits applied. All publications reporting on the effects of
follicle culture, IVM or ovarian tissue culture on genome imprinting were
retained.

The bisulphite sequencing method
for DNA methylation analysis
Some caution is necessary when interpreting DNA methylation analysis at
ICRs of imprinted genes in oocytes. The bisulphite sequencing technique is
the widely used ‘gold standard’ technique to study DNA methylation pat-
terns at DMRs of imprinted genes. The principle of the technique is based
on the different sensitivity of cytosine (C) and 5-methylcytosine (5mC) to
deamination by bisulphite: C undergoes a deamination to uracil (U); in
contrast, 5mC does not react with bisulphite. DNA is subsequently amp-
lified by PCR with primers specific for bisulphite-converted DNA. During
PCR all uracils (U), which are bisulphite converted Cs are amplified as
thymine (T) and 5mC is amplified as C.

To determine DNA methylation patterns at a single base pair and at
single molecule resolution, the PCR product is subcloned in a vector
and individual clones are sequenced separately. As an alternative to sub-
cloning and sequencing, pyrosequencing allows a reliable determination
of the percentage of methylation at a limited number of CpGs from the
ratio of T and C at each CpG position.

The bisulphite sequencing technique may be prone to PCR and/or
cloning bias (Warnecke et al., 2002). In most cases, the PCR bias is
towards a preferential amplification of unmethylated DNA strands
because methylated DNA has a higher CpG content after bisulphite conver-
sion, which raises the melting temperature and which may increase second-
ary structure formation possibly resulting in a lower PCR efficiency

(Warnecke et al., 1997). A preferential cloning of either methylated or
unmethylated strands has also been described (Warnecke et al., 2002).
Therefore, the DNA methylation analysis should be validated, e.g. on
somatic cells (containing 50% methylated and 50% unmethylated DNA tem-
plates) to exclude a bias towards unmethylated or methylated DNA strands.

Moreover, the technique is associated with a substantial loss of DNA,
commonly resulting in amplification of only a few alleles when performed
on DNA from pools with limited cell numbers and necessitating sufficient
repeat experiments to detect rare events (Grunau et al., 2001).

To overcome the latter two limitations, the bisulphite sequencing tech-
nique has been successfully applied to single human oocytes imbedded in
agarose beads (Geuns et al., 2003) and an elegant limiting dilution (LD)
technique has been developed (El Hajj et al., 2011).

However, the most critical issue when applying the bisulphite sequen-
cing technique to oocytes is the avoidance of somatic cell contamin-
ation. Extreme care should be taken to completely remove cumulus
cells from oocytes as these will inevitably result in a bias (with paternal
and maternal alleles from somatic cells showing an opposite methylation
pattern and being wrongfully interpreted as aberrant or normal oocyte
imprinting patterns, respectively). Somatic cell contamination events
were found to underlie irreproducible results. Somatic cell or environ-
mental contamination occurring in some reported studies might there-
fore be an explanation for at least some of the discrepant findings of
culture- or ovulation induction-induced effects on imprinting establish-
ment in oocytes.

Results
A summary of literature data on imprinting establishment in in vitro cul-
tured oocytes is presented in Table I.

Animal models for in vitro follicle culture
and oocyte imprint establishment
Mouse in vitro follicle culture
A mouse in vitro follicle culture system (Fig. 4; Cortvrindt and Smitz,
2002) was employed to study the influence of in vitro follicle culture
on imprinting establishment at the maternally methylated genes
Snrpn, Igf2r, Mest (also known as Peg1), Peg3 and the paternally methy-
lated H19 in oocytes. These genes were chosen because of their im-
portance in normal development and post-natal behaviour (Lau et al.,
1994; Lefebvre et al., 1998; Li et al., 1999; Liu et al., 2008; Gabory
et al., 2009). Furthermore, aberrant imprinting of these genes after
ART had been reported in animal models (Doherty et al., 2000;
Khosla et al., 2001; Young et al., 2001; Mann et al., 2004; Rivera
et al., 2008; Suzuki et al., 2009). The follicle culture system allows
the growth of oocytes from isolated early pre-antral follicles from
12 dpp old C57BL/6J x CBA/Ca mice up to fertilization-competent
metaphase II (MII) oocytes in a reproducible way during a 13-day
culture period. Studies in different mouse strains have shown that in
oocytes at the early pre-antral follicle stage, as used for the follicle
culture system, DNA methylation at the DMRs of Snrpn, Peg3, Mest
and Igf2r is not fully established (Lucifero et al., 2004; Hiura et al.,
2006; Anckaert et al., 2009a). The methylation patterns of these
four genes and of the paternally methylated H19 gene, as assessed
by bisulphite sequencing in pools of MII oocytes from in vitro follicle
culture were comparable with those of in vivo grown superovulated
MII oocytes (Anckaert et al., 2009a) and showed the methylation pat-
terns as previously described in in vivo grown mouse oocytes (Fig. 2;

Figure 3 Methylation acquisition of maternally imprinted genes in
bovine oocytes occurring in an oocyte size-dependent manner: the
percentage of CpG Island methylation is depicted in oocytes measur-
ing 101–110 mM (pre-antral stage) and in oocytes measuring 110–
120 mM for SNRPN, PEG10 and PLAGL1 (O’Doherty et al., 2012).
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Table I Overview of literature data on imprinting establishment in in vitro cultured oocytes.

Reference Species/
strain

Age Culture medium Culture conditions Gene DNA
methylation

Shen et al.
(2007)

Mouse, CD-1 Prepub a-MEM with 5% FCS In vitro follicle culture (pre-antral) Igf2r ¼

100 IU/L FSH
20 ml medium droplet under

mineral oil

Kerjean et al.
(2003)

Mouse,
C57BL/
6JxCBA

Prepub a-MEM with 5% FCS In vitro follicle culture (pre-antral) Igf2r �
100 IU/L FSH Mest �
20 ml medium droplet under

mineral oil
H19 �

Anckaert et al.
(2009a)

Mouse,
C57BL/
6JxCBA

Prepub a-MEM with 5% FCS In vitro follicle culture (pre-antral)
75 ml medium without mineral oil
10 IU/L r-FSH Igf2r ¼

Snrpn ¼

H19 ¼

Peg3 ¼

100 IU/L r-FSH Igf2r ¼

Snrpn ¼

H19 ¼

Anckaert et al.
(2009b)

Mouse,
C57BL/
6JxCBA

Prepub a-MEM with 5% FCS In vitro follicle culture (pre-antral) Igf2r ¼

10 IU/L r-FSH Snrpn ¼

Under mineral oil and � NH4 H19 ¼

Anckaert et al.
(2010)

Mouse,
C57BL/
6JxCBA

Prepub a-MEM with 5% FCS In vitro follicle culture (pre-antral)
75 ml medium without mineral oil
10 IU/L r-FSH
Control culture medium (a-MEM) Mest ¼

Methyl donor restriction Igf2r ¼

Snrpn ¼

H19 ¼

Mest �
Trapphoff et al.
(2011)

Mouse,
C57BL/
6JxCBA

Prepub a-MEM with 5% FCS In vitro follicle culture (pre-antral) Igf2r ¼

10 IU/L r-FSH Snrpn ¼

50 ml medium under mineral oil H19 ¼

Barboni et al.
(2011)

Ovine Prepub a-MEM with 2% FCS In vitro follicle culture (pre-antral) H19 ¼

1 mg/ml ovine FSH IGF2R ¼

25 ml medium under mineral oil

Heinzmann
et al. (2011)

Bovine Adult TCM199, 1 mg/ml BSA IVM H19 ¼

10 IU/ml eCG and 5 IU/ml hCG PEG3 ¼

SNRPN ¼

mSOF, 4 mg/ml BSA IVM H19 ¼

10 IU/ml eCG and 5 IU/ml hCG PEG3 ¼

SNRPN ¼

Colosimo et al.
(2009)

Ovine Adult Not specified IVM H19 ¼

IGF2R ¼

Imamura et al.
(2005)

Mouse,
C57BL/
6JxCBA

Adult M16 In vitro aging of MII oocytes (recovered
after eCG/hCG) for 28 h (up to 42 h
post-hCG)

Mest �

Liang et al.
(2008)

Mouse,
Kunming

Adult M16 In vitro aging of MII oocytes (recovered
after eCG/hCG) for 16 h (up to 29 h
post hCG)

Denuded oocytes Mest ¼

Snrpn �
Cumulus cell-enclosed oocytes Mest ¼

Snrpn ¼

Continued
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Lucifero et al., 2002, 2004; Hiura et al., 2006). This demonstrates that
imprints for these genes are correctly established under the in vitro fol-
licle culture conditions (Anckaert et al., 2009a).

These results were later confirmed in a study which combined bisul-
phite sequencing with the so-called LD technique to increase the sen-
sitivity for detection of DNA strands with aberrant methylation
patterns in pooled oocyte samples (Trapphoff et al., 2010). Using
the same mouse strain and relying on the same in vitro follicle
culture system, this group showed that the frequency of abnormal
methylation, overall or at individual CpG sites, was not significantly dif-
ferent for H19, Snrpn and Igf2r in fully grown GV oocytes that had
developed in vitro or had grown in vivo (collected as GV stage
oocytes from large antral follicles in unstimulated cycles). Moreover,

a very recent paper from the same group demonstrated that 2-cell
embryos obtained after in vitro fertilization of oocytes derived from
this in vitro follicle system yielded similar DNA methylation patterns
at H19, Snrpn and Igf2r as in vivo produced controls from unstimulated
mice (El Hajj et al., 2011).

Finally, these results were in accordance with a study of oocytes
obtained after a 12 day in vitro follicle culture from early secondary fol-
licles of 12-day-old CD-1 mice (Shen et al., 2007). The Igf2r DMR ana-
lysis revealed a 92.2% methylation at potential CpG-sites (similar to
96.3% in control oocytes). However, in this study, the DNA methyla-
tion analysis was not the primary aim of the study and consequently,
the conclusions were based on a low number of repeats (Shen et al.,
2007).

Figure 4 Representative overview of the mouse in vitro follicle culture system in defined conditions. Day 1: early pre-antral follicle. The pre-antral
follicle is attached to the bottom of the culture dish (Day 1–4) by the proliferating theca cells; the granulosa cells break through the basal membrane
(Day 4) and proliferate. The granulosa cells differentiate into a follicular wall and a cumulus–corona part (Day 8). A clear antral-like cavity has formed
on Day 12. The hCG/epidermal growth factor stimulus on these follicles provokes the release of a mucified cumulus–corona complex (Day 13) sur-
rounding a MII oocyte. Note that the oocyte diameter increases from 50–55 mm (diameter in early pre-antral follicle) up to 72–75 mm (diameter
before ovulation) (Cortvrindt and Smitz, 2002).

.............................................................................................................................................................................................

Table I Continued

Reference Species/
strain

Age Culture medium Culture conditions Gene DNA
methylation

Borghol et al.
(2006)

Human Medicult supplemented with
FSH, hCG and 10% patient
serum

Rescue IVM of oocytes from stimulated
cycles

H19 �

Khoueiry et al.
(2008)

Human Medicult supplemented with
FSH, hCG and 10% patient
serum

Rescue IVM of oocytes from stimulated
cycles

KCNQ1OT1
(KvDMR1)

�

¼, unchanged; �, increased; �, decreased DNA methylation compared with in vivo grown oocytes.
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Mechanistic studies using mouse in vitro follicle culture
High recombinant FSH levels in culture medium. The mouse follicle
culture system with proved normal imprinting establishment under
defined conditions was subsequently used as a bioassay to study the
influence of several suboptimal culture conditions on imprinting estab-
lishment in oocytes.

Conflicting data have been reported concerning the effect of ovula-
tion induction on imprinting establishment in mouse oocytes. In a first
study, BDF and ICR mice were superovulated with high doses of
equine chorionic gonadotropin (eCG) (7.5 IU eCG for 3 days), fol-
lowed by an injection with 5 IU hCG 24 h later (Sato et al., 2007).
In superovulated mouse oocytes, the authors found no differences
in methylation for Mest, Lit1 and Zac, but for H19 aberrant hyper-
methylated clones were more frequent compared with oocytes
from unstimulated antral follicles (Sato et al., 2007).

However, a recent study found normal imprinted DNA methylation
at Snrpn, Peg3 and H19 in superovulated oocytes from
B6(CAST7p6) × B6 mice, superovulated with a single dose of 6.25
or 10 IU of eCG, followed by the same dose of hCG 46–48 h later
(Denomme et al., 2011). The bisulphite sequencing technique was
applied to single oocytes embedded in agarose beads and an
elegant technique was applied to exclude somatic cell contamination.
In line with the latter study, a recent study based on the LD technique
found no alterations in imprinted DNA methylation for H19, Snprn
and Igf2r in 2-cell embryos derived from superovulated C57BL/6J x
CBA/Ca mice (El Hajj et al., 2011). The contradictory findings
between the latter two studies and the former one might be due to
the fact that higher eCG doses over a longer treatment interval
were applied in Sato’s study or to the fact that different mouse
strains were used. Previous work on in vitro cultured mouse blasto-
cysts has shown that some mouse strains might be more susceptible
to culture-induced imprinting defects than others (Doherty et al.,
2000). Alternatively, somatic cell contamination should always be con-
sidered as an eventual pitfall in case of discordant findings.

A supraphysiological dose of 100 IU/L of r-FSH was used during fol-
licle culture, which exceeds by a factor of 20 the minimal needs for
maximal follicle survival and MII rate (Adriaens et al., 2004).
However, no effects on DNA methylation levels at regulatory
sequences of Snrpn, Igf2r and H19 could be detected in MII oocytes,
suggesting that high doses of FSH do not interfere with normal
imprinting establishment (Anckaert et al., 2009a). These results are
in line with two in vivo studies in mouse showing that ovulation induc-
tion with eCG does not interfere with oocyte imprinting establishment
(Denomme et al., 2011; El Hajj et al., 2011).

High ammonia levels in culture medium and mineral oil overlay. Ammo-
nium accumulates in cell culture medium due to ammonia release
from amino acid metabolism and due to the chemical decomposition
of amino acids in culture medium incubated at 378C (Schneider et al.,
1996). The addition of ammonium to culture medium during mouse
preimplantation embryo culture led to increased expression of the
imprinted H19 gene (Lane and Gardner, 2003).
Oil overlay is widely used in IVM, although it has been associated with
delayed nuclear maturation and reduced developmental capacity in pig
IVM (Shimada et al., 2002) and with delayed meiosis I progression in
mouse oocytes after in vitro follicle culture (Segers et al., 2008). Appli-
cation of mineral oil overlay to the follicle culture system leads to a

reduction of more than 50% in steroid hormone levels (Miller and
Pursel, 1987; Anckaert et al., 2010). Reduced steroid hormone
levels may pose a threat to normal imprinting establishment by in-
creasing the availability of unbound steroid hormone receptors for
xenobiotic compounds. It has been shown that during critical
periods of mammalian development, xenobiotic compounds with es-
trogenic effects, such as bisphenol A, may alter DNA methylation pat-
terns (Ho et al., 2006).

The findings of normal imprinting establishment in oocytes derived
from an in vitro follicle culture system (Anckaert et al., 2009a) were in
contrast with another study, suggesting that in vitro follicle culture can
lead to aberrant imprinting in fully grown GV mouse oocytes (Kerjean
et al., 2003). In Kerjean’s study, follicle culture was performed in small
culture medium volume droplets under a thick mineral oil layer, yield-
ing 10-fold higher ammonia levels in culture medium than the in vitro
follicle culture system allowing normal imprinting establishment
(Anckaert et al., 2009b). However, the addition of ammonium
acetate and a mineral oil overlay in the latter system did not affect fol-
licle survival, MII rate and/or MII oocyte diameter and normal DNA
methylation patterns at Snrpn, Igf2r and H19, demonstrating that am-
monium accumulation and mineral overlay during follicle culture do
not induce aberrant imprinting establishment at the studied regulatory
sequences in MII oocytes (Anckaert et al., 2009b).

Low methyl donor levels in culture medium. The methionine metabolic
pathway plays an important role in DNA methylation processes.
The essential amino-acid methionine is actively transported into
oocytes and converted into S-adenosylmethionine (Menezo et al.,
1989), the sole methyldonor for DNA methylation reactions.
Vitamin B12, folic acid, choline and vitamin B6 may also affect DNA
methylation levels through their involvement in the methionine cycle
(Van den Veyver, 2002).
Several studies in mouse have shown that maternal dietary methyl
donor levels might influence DNA methylation levels in the offspring
(Waterland and Jirtle, 2003; Waterland et al., 2006; Sinclair et al.,
2007). Commercially available embryo culture media feature an im-
portant variation in the levels of these methyl donors (Steele et al.,
2005). Low methyl donor levels during in vitro follicle culture in
mouse led to a dramatic decrease in polar body extrusion rate, but
no alterations in DNA methylation at Snrpn, Igf2r and H19 were
found (Anckaert et al., 2010). However, for Mest DMR, a slight reduc-
tion in DNA methylation was found compared with control follicle
culture conditions. The changes were not due to aberrant methylation
of the entire allele, but were located at specific individual CpG sites in
the affected Mest alleles. The biological significance of single or few
CpG mutations is currently unknown, but the overall density rather
than individual CpG methylation is probably involved in regulating
imprinted gene expression (Sontag et al., 2006). Methionine levels in
culture medium were lowest at the final days of follicle culture
(when Mest acquires DNA methylation, see Fig. 2), probably due to
a consumption of the amino acid with increasing follicle growth; and
this might explain the increased susceptibility of Mest (Anckaert
et al., 2010).

Ovine in vitro follicle culture
There are only limited data on oocyte imprinting establishment during
follicle culture in other animal species. In sheep, a 14-day in vitro pre-

58 Anckaert et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

upd/article/19/1/52/629358 by guest on 11 April 2024



antral follicle culture system (using follicles from prepubertal animals)
was used to demonstrate that oocytes from early antral follicles
yielded similar methylation patterns at H19 and IGF2R as oocytes at
similar stages grown in vivo and collected in stimulated (Barboni
et al., 2011) or unstimulated (Colosimo et al., 2009) cycles.

Ovarian tissue culture in mouse
A few research groups have examined imprinting establishment in
oocytes derived from ovarian tissue culture.

E15.5 embryonic ovary fragments from Swiss TO mice were cul-
tured for 3 weeks in Waymouth medium with serum (Lees-Murdock
et al., 2008). Some oocytes reached full size (70 mM), but no second-
ary follicles were formed, most likely due to the absence of formation
of a theca cell layer. Some DNA methylation occurred for Snrpn and
Igf2r, while no methylation occurred for Mest (which can be explained
by the fact that the latter becomes methylated later than Snrpn and
Igf2r during in vivo oocyte growth). These results suggest that complete
methylation at maternally methylated imprinted genes in oocytes
probably requires progression to the secondary follicle stage. No ab-
errant hypermethylation of H19 occurred in oocytes during the in vitro
culture.

Song et al. (2009) cultured 12.5 dpc fetal Kunming mouse ovaries in
vitro for 28 days. GV stage oocytes were obtained reaching a diameter
of more than 70 mM, but the number of granulosa cells was lower than
in vivo and no antral follicle formation occurred. Oocyte DNA methy-
lation at Igf2r and Peg3 occurred during the in vitro culture, although at
a slower rate than for comparable in vivo stages from unstimulated
mice.

In another study, 12.5 dpc fetal mouse ovaries (C57BL/6J x CBA)
were cultured in vitro for 17 days in Waymouth medium (Obata
et al., 2002). These ovaries contained many secondary follicles that
were isolated and cultured for a further 11 days. Some follicles
showed antrum formation at the end of culture and the oocyte diam-
eter reached 64 mM. DNA methylation patterns at Igf2r at each stage
of culture were similar to these from in vivo grown oocytes of the same
stage. Furthermore, transfer of the nuclei of these cultured oocytes
into enucleated fully grown oocytes from adult mice made them com-
petent to resume meiosis and after serial nuclear transfer and IVF,
normal appearing live offspring could be obtained. DNA methylation
analysis of kidney tissue in the offspring revealed normal imprinted
methylation of Igf2r, Snrpn and Mest. The latter study suggests that
correct imprinting establishment can be obtained in mouse oocytes
derived from a two-step procedure involving fetal ovarian tissue
culture followed by in vitro follicle culture from the pre-antral stage
onwards. However, the DNA methylation analysis of oocytes was
not the primary aim of the study and therefore, the conclusions are
based on a lower number of repeats.

Oocyte IVM and oocyte imprint
establishment in animal models
Bovine and ovine IVM
In large animal models, IVM involves the submission of GV stage
oocytes to 24 h of culture in a maturation environment to obtain fer-
tilizable MII oocytes.

Using the LD bisulphite sequencing technique (on pools containing
10 oocytes) which allowed the amplification of a high number of

alleles, Heinzmann could demonstrate that bovine IVM in either modi-
fied synthetic oviduct fluid or in Tissue Culture Medium 199 did not
significantly alter imprinted DNA methylation at H19, PEG3 and
SNRPN when compared with in vivo matured superovulated oocytes
(Heinzmann et al., 2011).

A recent study in sheep confirmed normal imprinted DNA methy-
lation in IVM oocytes: in a small number of in vitro matured MII
oocytes, only unmethylated alleles for H19 DMR and only hyper-
methylated alleles for IGF2R DMR2 were present, similar to patterns
found in in vivo grown oocytes from medium antral follicles obtained
from unstimulated animals (Colosimo et al., 2009).

Mouse postovulatory oocyte aging in vitro
There are no studies in rodents on imprinting establishment of fully
grown GV stage oocytes matured to the MII stage in culture (IVM),
but two groups have examined the effect of in vitro ageing of mouse
MII oocytes recovered after ovarian stimulation.

Imamura studied DNA methylation at Mest in adult C57BL/6 x
CBA mouse MII oocytes after eCG/hCG ovulation induction and in
vitro culture (Imamura et al., 2005). In MII oocytes collected 14 h
post-hCG, imprinted methylation was not yet fully established. This
was in contrast with another study in a different mouse strain
(CD-1) showing a full methylation at Mest in MII oocytes recovered
after low-dose ovulation induction (Lucifero et al., 2002). The discord-
ant findings between the latter two studies may be due to the fact that
different regions of the Mest DMR were amplified, the use of different
mouse strains or to a somatic cell contamination in Imamura’s study.
After culture of MII oocytes in M16 medium for 8 h (corresponding to
22 h after hCG), only methylated alleles were found, suggesting a pos-
sible de novo methylation at Mest in MII oocytes during in vitro culture.
When MII oocytes were aged in vitro for 28 h (corresponding to 42 h
post-hCG), unmethylated alleles were again observed, implying that
imprinted DNA methylation at the studied region is unstable and
might be affected by oocyte aging during in vitro culture.

In vivo, mouse oocytes are ovulated in the MII stage �12 h after the
LH surge and are expected to be fertilized within 6 h after ovulation
(Braden and Austin, 1954). Outside this window, postovulatory
oocyte aging occurs. However, the in vitro ageing applied in Imamura’s
study was excessively long, considering the fact that already at 16 h
after maturation stimulus, a maximum proportion of in vitro grown
mouse oocytes reach maturation, and that at 21 h post-hCG aging
effects are visible on the spindle apparatus (Segers et al., 2008). Fur-
thermore, the cultured MII oocytes were derived from superovulated
cycles and although two well-designed mouse studies found no evi-
dence of alterations in imprinting establishment in superovulated
oocytes (Denomme et al., 2011; El Hajj et al., 2011), another study
in mice suggested that some imprinted genes might be affected by ovu-
lation induction (Sato et al., 2007).

Another study examined the effect of postovulatory oocyte aging on
imprinted DNA methylation at Snrpn and Mest in mouse oocytes
(Liang et al., 2008). Oocytes were aged in vivo (up to 29 h after
hCG) and in vitro (collected 13 h after hCG and cultured in vitro for
up to 16 h, corresponding to 29 h post-hCG in vivo). In vitro culture
was performed for cumulus–oocyte complexes (COCs) and for
denuded oocytes. For Mest no alterations were found. However, for
Snrpn bisulphite sequencing showed some demethylated clones for
the 29 h post-hCG in vivo aging condition and after in vitro aging
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(29 h post-hCG) but only in the case of denuded oocytes. Possible
limitations of this study were that only two batches of oocytes were
tested and that acid M2 was used for removal of the zona and
attached cumulus cells. The author’s laboratory has the experience
that using acid tyrode to remove the zona with attached cumulus
cells can lead to somatic cell DNA contamination (unpublished
results). Acid tyrode probably lyses the cumulus cells attached to
the zona, releasing DNA that apparently may not be fully removed
despite repeated washing steps.

However, the importance of cumulus cells for oocyte maturation is
well known and therefore the effect of cumulus cells on imprinted
DNA methylation in cultured oocytes should be re-examined in
future studies to allow definitive conclusions.

Human studies: imprint establishment in
in vitro matured oocytes obtained from
stimulated cycles
Only a single research team has studied DNA methylation at two
imprinted genes in human IVM oocytes. However, these studies
have been performed on low-quality oocytes from regular stimulated
cycles for IVF/ICSI, which failed to respond to maturation after the
standard hCG stimulus.

In a first study, DNA methylation at H19 DMR was studied
(Borghol et al., 2006). Immature oocytes from stimulated cycles
were retrieved and in vitro matured for 24 h in Medicult maturing
medium, supplemented with FSH, hCG and 10% patient serum.
Oocytes were examined at the GV stage after retrieval (D0) and at
the GV, MI and MII stage after IVM. For the GV oocytes at D0, all
clones showed an unmethylated pattern as expected in two replicates
tested. After ovarian stimulation followed by IVM, a high frequency of
aberrant methylation was recorded in GV and MI oocytes (6 out of 11
pools), and in MII oocytes abnormalities were found in two out of nine
replicates. These results suggest that ovarian stimulation followed by
IVM might lead to aberrant imprinting at H19 (particularly in
MI-blocked oocytes).

Loss of methylation on the maternal allele of the KCNQ1OT1 gene
(KvDMR1 region) has been associated with BWS after ART concep-
tion (DeBaun et al., 2003; Gicquel et al., 2003; Maher et al., 2003; Hal-
liday et al., 2004; Chang et al., 2005; Rossignol et al., 2006; Sutcliffe
et al., 2006; Bowdin et al., 2007; Gomes et al., 2007). The same
group examined DNA methylation at the maternally methylated
KvDMR1 region in human oocytes after ovarian stimulation and IVM
(Khoueiry et al., 2008). Immature oocytes (GV or MI) and MII
oocytes after standard ovarian stimulation were collected for either
direct analysis or for IVM (GV and MI) during 28 h. The percentage
of methylated alleles was, respectively, 60.4, 62.5 and 89.5% for
fully grown GV, MI and MII oocytes retrieved after ovarian stimulation,
suggesting that KvDMR1 has not acquired full imprinting establishment
in GV oocytes and also suggesting methylation advances at this region
with meiosis progression, at least in oocytes collected from stimulated
cycles. These results were in conflict with another study that showed a
fully methylated pattern in human GV oocytes from ART cycles for a
region of KvDMR1 located downstream from the region studied by
Khoueiry (Geuns et al., 2007) and also in conflict with mouse data
showing a full methylation of KvDMR1 in oocytes from early antral fol-
licles (Hiura et al., 2006). After 28 h of IVM, oocytes that became MII

showed somewhat lower methylation levels than the MII oocytes
obtained 36 h after hCG (78.3 versus 89.5%, P , 0.01).

Oocytes were also retrieved from natural cycles in PCOS patients
and subjected to IVM, where GV and MI-arrested oocytes were avail-
able for analysis. Compared with the same stage oocytes after ovarian
stimulation and IVM (whole group and PCOS-group), GV and MI
oocytes obtained in PCOS patients from natural cycles and subse-
quently in vitro matured displayed a slightly (around 6%) higher methy-
lation at KvDMR1, suggesting that ovarian stimulation might interfere
with imprinting establishment at the studied region. The authors con-
clude that ovarian stimulation might recruit immature oocytes that are
unable to complete imprinting establishment during the short IVM
period, although culture-induced effects could not be excluded.

In a third study from the same group, immature oocytes were
retrieved after ovarian stimulation to be either in vitro matured directly
or to be vitrified at the GV stage and subsequently in vitro matured
(Al-Khtib et al., 2011). Oocyte vitrification did not alter the methyla-
tion status of the imprinted H19 and KCNQ1OT1 genes. Moreover,
and in contrast to the two previous studies from the same group,
the IVM condition induced less alterations in imprinted DNA methy-
lation for the two genes: 3 out of 34 sequenced clones showed a gain
of methylation for H19 in 48 MII oocytes, and 2 out of 37 sequenced
clones showed a loss of methylation at KCNQ1OT1 in 20 MII oocytes.
The IVM duration was extended from 26–28 to 36 h in this study.
Whether the extension of IVM duration might explain the lower oc-
currence of imprinting errors in the latter study remains to be deter-
mined. It seems unlikely, however, that extended culture would
reduce the extent of aberrant hypermethylation at H19.

Discussion

Current data on imprinting establishment
from animal models
The bovine IVM and mouse in vitro follicle culture models provide re-
assuring data on imprinted DNA methylation acquisition in oocytes
(Anckaert et al., 2009a; Trapphoff et al., 2010; El Hajj et al., 2011;
Heinzmann et al., 2011).

The use of serum in culture medium has been implicated in aberrant
imprinting in preimplantation embryo culture. In sheep and cattle,
culture of preimplantation embryos frequently leads to the so-called
large offspring syndrome (LOS), which is characterized by overgrowth
and developmental abnormalities during fetal and post-natal develop-
ment (which are reminiscent of BWS in human). In sheep, in vitro
culture until the blastocyst stage, followed by transfer into recipient
females, leads to fetuses that feature a strong reduction in DNA
methylation levels at the IGF2R ICR correlating with a loss in IGF2R ex-
pression (Young et al., 2001). Ovine studies have shown that the pres-
ence of serum in culture medium can lead to LOS (Sinclair et al.,
1999). Likewise, aberrant imprinting has been described after in vitro
embryo culture in mouse. Decreased expression of the H19 and
Igf2 genes has been described in mice fetuses after blastocyst
culture in M16 medium supplemented with fetal calf serum (Khosla
et al., 2001). In contrast, the use of fetal calf serum in the mouse
follicle culture system does not interfere with imprinted DNA methy-
lation (Anckaert et al., 2009a; Trapphoff et al., 2010; El Hajj et al.,
2011). Furthermore, the correct imprinting establishment in mouse
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oocytes after in vitro follicle culture under various treatment and (sub-
optimal) follicle culture conditions such as high doses of r-FSH, mineral
oil overlay, ammonia accumulation and low methyl donor levels sug-
gests that DNA methylation establishment at regulatory sequences
of imprinted genes in oocytes is a robust process (Anckaert et al.,
2009a, b, 2010), whereas the preimplantation embryo appears to
be susceptible to culture-induced aberrant imprinting maintenance.
The former is also illustrated by the finding of correct imprinting estab-
lishment in mouse oocytes derived from fetal ovarian tissue culture
followed by in vitro follicle culture from the pre-antral stage onwards
(Obata et al., 2002).

In contrast, Kerjean found that in vitro follicle culture can lead to ab-
errant imprinting in fully grown GV mouse oocytes (Kerjean et al.,
2003), especially at the Igf2r locus. The mouse strain, the culture
medium used and the early pre-antral follicle stage at the start of
the culture were similar to the studies cited above (Anckaert et al.,
2009a, b, 2010; Trapphoff et al., 2010; El Hajj et al., 2011).
However, in Kerjean’s study follicle culture was performed in small
culture volume droplets under mineral oil, possibly leading to the ac-
cumulation of some metabolites that might influence imprinting estab-
lishment. Therefore, continuing research is necessary to identify
possible risk factors and procedures.

Another possible explanation for the discordant findings is that dif-
ferent regions were studied by these groups, e.g. for the H19 gene:
respectively, the CTCF1-2 region (Anckaert) and the CTCF3–4
region (Kerjean et al., 2003). The H19 CTCF1–2 region was shown
to be more susceptible than the CTCF3–4 region to aberrant DNA
methylation after IVF and embryo culture in mouse (Fauque et al.,
2007), suggesting then, however, that the H19 region studied in our
experiments might be more susceptible to culture-induced effects
than the region studied by Kerjean. The possibility of somatic cell con-
tamination should also be kept in mind as a cause of the findings in
Kerjean’s study.

Bovine IVM did not significantly alter imprinted DNA methylation at
H19, PEG3 and SNRPN when compared with in vivo maturation
(Heinzmann et al., 2011).

However, mRNA expression of the three imprinted genes was
up-regulated in bovine IVM oocytes, suggesting that a regulatory
mechanism other than DNA methylation might be affected by the
IVM conditions (Katz-Jaffe et al., 2009; Heinzmann et al., 2011).
DNA methylation is an essential feature, but not the only component
of imprinting as other epigenetic mechanisms such as histone tail mod-
ifications (e.g. methylation and acetylation) and microRNAs, play a
role in regulating genomic imprinting.

In rhesus monkey, a cDNA array-based analysis showed an overex-
pression of MEST and PLAGL1, two maternally imprinted genes, in in
vitro matured oocytes, indicating a possible deregulation of genome
imprinting after IVM, although DNA methylation (and other epigenetic
features regulating genomic imprinting) were not examined in that
study (Lee et al., 2008).

More studies are therefore necessary to determine the possible in-
fluence of in vitro culture of oocytes on epigenetic modifications (other
than DNA methylation) regulating genomic imprinting. Finally, well-
designed studies should be performed to assess whether in vitro
oocyte aging might affect imprinted DNA methylation in oocytes as
suggested by two studies (Imamura et al., 2005; Liang et al., 2008).

Imprinting maintenance
To allow full-term development, not only should imprinted DNA
methylation be accurately established during gametogenesis, but
equally important is the correct maintenance of the germline DNA
methylation patterns, despite genome-wide changes in DNA methyla-
tion during preimplantation. However, no data are currently available
on the effect of oocyte culture on imprinted DNA methylation main-
tenance during preimplantation development.

After fertilization, a wave of DNA demethylation occurs in the pre-
implantation embryo. In mouse, the paternal genome undergoes a
rapid DNA demethylation that is completed within 6 h after fertiliza-
tion, suggesting an active (enzymatic) process (Santos et al., 2002).
In contrast, the step-wise demethylation of the maternal genome is
thought to be a passive process in absence of DNA methylation main-
tenance during cell divisions until the blastocyst stage (Rougier et al.,
1998; Santos et al., 2002). Around the time of implantation, there is
a wave of de novo DNA methylation resulting in a highly methylated
inner cell mass and a less methylated trophectoderm (reviewed in
Feil, 2009). The active demethylation of the paternal genome has
also been described in the human; passive demethylation and de
novo methylation are also functionally conserved between species,
but the timing and the extent of (de)methylation varies between
species (reviewed in Dean et al., 2005).

Certain DNA sequences, such as ICRs of imprinted genes are pre-
sumed to be resistant to the genome-wide changes in DNA methyla-
tion after fertilization, although ICRs are not fully protected so that
some dynamic changes in allele methylation occur during preimplanta-
tion development, resulting in some size variation between gametic
and embryonic DMRs (Tomizawa et al., 2011).

A number of protein factors have been discovered to play a role in
the maintenance of imprinting. Dnmt1o is a truncated form of the
maintenance Dnmt1, which is specifically expressed and stored in
oocytes. Although the exact mechanism is unknown and somewhat
controversial, maternal Dnmt1o and zygotic Dnmt1s appear to co-
operate to maintain imprinted methylation in the preimplantation
embryo (reviewed in Weaver et al., 2009). The absence of Dnmt1
in the early embryo leads to a loss of DNA methylation at paternally
and maternally methylated genes resulting in embryonic death (Hira-
sawa et al., 2008). Several other trans-acting factors expressed in the
oocyte have been implicated in maintenance of imprinting during pre-
implantation development such as Zfp57, Stella and Mbd3 (Nakamura
et al., 2007; Reese et al., 2007; Li et al., 2008). The role of Zfp57 in
DNA methylation maintenance is conserved between mice and
human as shown in transient neonatal diabetes caused by autosomal
recessive ZFP57 mutations and featuring a loss of methylation at
several DMRs including PLAGL1 (Mackay et al., 2008).

An up-regulation of the maintenance Dnmt1 has been shown in
bovine IVM oocytes, but the functional consequences are currently
unknown (Heinzmann et al., 2011) and more studies are therefore
needed to determine whether the expression of DNA maintenance
factors is altered by in vitro oocyte culture.

A number of mouse studies have suggested that ovulation induction
might interfere with imprinting maintenance after fertilization. Ovula-
tion induction of mice led to a higher proportion of blastocysts
without detectable H19 expression compared with controls (Fauque
et al., 2007) and resulted in aberrant biallelic expression of Snrpn
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and H19 in placentas (Fortier et al., 2008). The expression of these
genes was not altered in embryos in the latter study, confirming an
earlier study suggesting that trophectoderm tissues might be more
susceptible to aberrant imprinting induced by ART than the embryo
proper (Mann et al., 2004). A recent study examined the effect of ovu-
lation induction on DNA methylation in individual mouse blastocysts
obtained from superovulated C57BL/6 (CAST7) females mated with
C57BL/6 males (Market-Velker et al., 2010b). Ovulation induction
resulted in a dose-dependent loss of methylation at the maternally
methylated Snrpn, Peg3 and Kcnq1ot1 loci; and a dose-dependent
gain at the paternally methylated H19. In contrast, DNA methylation
establishment in oocytes from C57BL/6 (CAST7) mice was not
affected by conventional and high eCG/hCG doses (Denomme
et al., 2011).

Collectively, these in vivo studies suggest that ovulation induction
might interfere with the capacity of oocytes to maintain imprinting
during preimplantation development. Therefore, it remains to be
determined whether oocyte culture might also affect imprinting main-
tenance after fertilization rather than imprinting establishment during
oogenesis.

Current data from human studies
Validity of animal models for human
Studies on imprinting establishment in human oocytes have been per-
formed in stimulated ART cycles. Two studies have shown conflicting
results for the timing of imprinting establishment at the SNURF-SNRPN
locus, which is involved in the PWS and AS, with methylation acquisi-
tion complete after fertilization (El-Maarri et al., 2001) or in GV
oocytes (Geuns et al., 2003). DNA methylation was found to be
already established in GV stage oocytes for the KvDMR1 also
(Geuns et al., 2007). In contrast, Khoueiry found hypermethylated
alleles at KvDMR1 in only two-thirds of fully grown GV oocytes and
an increase in methylation with meiotic progression (Khoueiry et al.,
2008).

In only two studies, human oocytes from unstimulated cycles have
been examined. Sato found a hypermethylated pattern in fully grown
GV oocytes from antral follicles (obtained in ovarian biopsy samples)
for MEST, LIT1 and ZAC DMRs (Sato et al., 2007). Finally, Arima
described acquisition of full DNA methylation for HYMAI/PLAGL1
(ZAC) DMR already at the pre-antral follicle stage (Arima and Wake,
2006).

The majority of studies therefore suggest that imprinting is estab-
lished in human oocytes before fertilization as in mouse, suggesting
that the mouse is a good model for the study of imprinting establish-
ment during oocyte culture.

However, it should be considered that some differences are present
between species, e.g. some genes such as Igf2r are imprinted in mouse
but not in human; and expression of Dnmt3L, which is indispensable
for imprinting establishment in mouse oocytes and is also present in
growing bovine oocytes (O’Doherty et al., 2012) was only detected
after fertilization in human (Huntriss et al., 2004). Furthermore, in
mouse, the maximal oocyte diameter and the process of chromatin
compaction (non-surrounded nucleolus to fully surrounded stage)
are reached when the antrum is formed (Mattson and Albertini,
1990). The mouse oocyte is transcriptionally silent when maturation
starts and has all the proteins needed to resume meiosis. In contrast,

in larger mammals, such as cow and human, the oocyte still grows in
the antral follicle and transcription is needed during final meiotic mat-
uration in order to reach the MII stage (Bilodeau-Goeseels, 2011).
Consequently, extrapolating from mouse to human may imply a risk,
thus the bovine IVM model provides additional valuable information.

IVM, a technique prone to imprinting errors in human?
IVM may be defined as the IVM of oocytes from COCs out of small
antral follicles with a diameter ≤10 mm, from cycles with leading fol-
licles not exceeding a diameter of 12 mm (Son el al., 2008). However,
results are confounded by huge differences in the type of methodology
used clinically (Nogueira et al., 2008; Sirard, 2011; Smitz et al., 2011).

The final stages of cytoplasmic maturation, essential for develop-
mental competence of the oocyte, take place in the follicles recruited
by the intercycle FSH rise. A normal follicular phase lasts 10–12 days
(Gougeon, 1986); it remains to be studied whether taking out COCs
from small follicles around Day 7 or 8 after menses would comprom-
ise the normal imprinting pattern. This question is relevant, as the
meiotic maturation timespan after retrieving an oocyte from its follicle
environment is considerably shortened by a few hours compared with
that in vivo after a positive maturation stimulus (Albuz et al., 2010).

Studies have suggested an increased incidence in rare human
imprinting disorders such as BWS in children conceived after ART
(DeBaun et al., 2003; Gicquel et al., 2003; Maher et al., 2003; Halliday
et al., 2004; Chang et al., 2005; Rossignol et al., 2006; Sutcliffe et al.,
2006; Bowdin et al., 2007; Gomes et al., 2007; Lim et al., 2009), al-
though the reported incidence of BWS remains extremely low and
was not confirmed in other studies (Lidegaard et al., 2005; Doornbos
et al., 2007). There is currently no evidence that IVM is associated with
an increased risk for congenital malformations, abnormal fetal and
neonatal growth or imprinting syndromes, but there are currently
only limited data on the safety of IVM as only slightly more than
1000 births have been reported worldwide.

Studies of human oocytes after ovarian stimulation followed by IVM
found aberrant DNA methylation at H19 and KvDMR1 (Borghol et al.,
2006; Khoueiry et al., 2008; Al-Khtib et al., 2011). However, it is not
clear from these studies whether IVM by itself should be considered
causal for the aberrant imprinting. First, it was not excluded that
ovarian stimulation interferes with imprinting establishment in human
oocytes. Sato studied DNA methylation patterns at MEST, LIT1,
ZAC and H19 in stimulated oocytes and in oocytes obtained from nat-
urally cycling ovaries (Sato et al., 2007). In GV and MI oocytes
retrieved after ovarian stimulation (and analysed by single-cell bisul-
phite PCR), an unmethylated allele for MEST and a hypermethylated
allele for H19 was found in, respectively, 6 out of 16 and in 2 out
of 6 examined oocytes. The authors conclude that although the
DNA methylation changes observed in human stimulated oocytes
may be due to the underlying infertility or the advanced maternal
age, ovarian stimulation might be (at least partly) responsible for the
observed aberrant imprinting in oocytes. Further studies on imprinting
establishment in human oocytes are mandatory to reach definitive
conclusions.

There were a number of other important limitations and confound-
ing factors in the human IVM studies such as the use of low-quality
oocytes that failed to respond to ovarian stimulation, the underlying
infertility and the advanced maternal age. Indeed, a Dutch study
found an increased incidence for imprinting disorders in children
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from couples with fertility problems (time to pregnancy .12 months)
(Doornbos et al., 2007). Moreover, aberrant methylation at maternally
and paternally methylated ICRs has been reported in association with
poor semen parameters or male infertility, correlating with the sever-
ity of oligozoospermia (Marques et al., 2004, 2008; Kobayashi et al.,
2007; Poplinski et al., 2010).

Also, in the IVM studies, the IVM period applied was short: 24–28 h
compared with 30–36 h for in vivo maturation and for other IVM pro-
tocols used in clinical practice. Although 24–28 h cultures are often
used in human IVM given it appears sufficient to reach MII, the accel-
erated kinetic could influence imprinting establishment.

Finally, the fact that the in vitro matured oocytes had no or few
cumulus cells attached (which play a major role in oocyte maturation)
may be an important limitation. The importance of the somatic envir-
onment was illustrated in an in vivo study with sex-reversed mouse
germ cells suggesting that the somatic environment of the female
germline contributes to the imprinting establishment as the female
imprinting patterns for Peg3 were dependent on the response of
germ cells to undergo oogenesis, but not on their sex chromosome
constitution (Durcova-Hills et al., 2006).

Conclusion
Animal models provide reassuring data on imprinted DNA methyla-
tion acquisition in cultured oocytes. Using a mouse in vitro follicle
culture system, influences of treatment and suboptimal culture condi-
tions were found to have no or only minor effects.

Nevertheless, additional studies are needed to investigate whether
the expression and DNA methylation of imprinted genes in blasto-
cysts, fetuses and placental tissue derived from oocytes obtained
after IVM and follicle culture is unaltered, to show that: (i) other epi-
genetic modifications (besides DNA methylation) regulating genomic
imprinting are not altered by the in vitro culture conditions; and (ii)
in vitro culture does not cause a disruption of maternal-effect gene pro-
ducts subsequently required for genomic imprint maintenance during
preimplantation development.

Although animal models provide reassurance, no definitive conclu-
sion on normal imprinting establishment in human IVM oocytes can
be drawn as well-designed human studies are currently not available.
Optimized IVM procedures currently under development will
require assessment in donated oocytes from young, fertile healthy
females (not exposed to ovarian stimulation) to exclude possible con-
founding factors. Equally important is the use of appropriate techni-
ques to assess DNA methylation such as LD bisulphite sequencing
providing increased sensitivity and reduced risk for amplification/
cloning bias. Finally, comparative analysis of epigenetic patterns in
cord blood and placenta from children born from either IVM pregnan-
cies or spontaneous pregnancies, will allow a more detailed insight into
the influence of IVM on the epigenome and to draw definitive conclu-
sions on the epigenetic safety of human IVM.
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