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background: Infertility is a condition of the reproductive system that affects �10–15% of couples attempting to conceive a baby. More
than half of all cases of infertility are a result of female conditions, while the remaining cases can be attributed to male factors, or to a combination of
both. The search for suitable biomarkers of pregnancy outcome is a challenging issue in human reproduction, aimed at identifying molecules with
predictive significance of the reproductive potential of male and female gametes. Among the various candidates, endocannabinoids (eCBs), and in
particular anandamide (AEA), represent potential biomarkers of human fertility disturbances. Any perturbation of the balance between synthesis
and degradation of eCBs will result in local changes of their tone in human female and male reproductive tracts, which in turn regulates various
pathophysiological processes, oocyte and sperm maturation included.

methods: PubMed and Web of Science databases were searched for papers using relevant keywords like ‘biomarker’, ‘endocannabinoid’,
‘infertility’, ‘pregnancy’ and ‘reproduction’.

results: In this review, we discuss different studies on the measurements of AEA and related eCBs in human reproductive cells,
tissues and fluids, where the local contribution of these bioactive lipids could be critical in ensuring normal sperm fertilizing ability and
pregnancy.
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conclusion: Based on the available data, we suggest that the AEA tone has the potential to be exploited as a novel diagnostic biomarker of
infertility, to be used in association with assays of conventional hormones (e.g. progesterone, b-chorionic gonadotrophin) and semen analysis.
However further quantitative research of its predictive capacity is required.

Key words: biomarkers / endocannabinoids / human reproduction / infertility / pregnancy

Introduction
The reproductive events needed for pregnancy establishment consist of
multiple steps that must successfully occur at exactly the right time and in
the right place. To become fully competent for fertilization, oocytes and
sperm cells must undergo a series of differentiation and maturation
events (Voronina and Wessel, 2003; Toshimori, 2009). On the female
side, aberrations in the correct embryo placement along the uterus,
decidualization, placentation and intrauterine embryonic growth can
result in the onset of pre-eclampsia, miscarriage and/or preterm birth
(Cha et al., 2012). On the male side, sperm cells should undergo capaci-
tation and acrosome exocytosis in order to fertilize oocytes correctly
(Buffone et al., 2012; Aitken, 2013). Any derangement in this complex
sequence of events may affect the competence of sperm cells and
their ability to commit to the final steps of fertilization (Barash et al.,
2003; Das and Holzer, 2012). Therefore, the discovery of biomarkers
that track the correct progression of pregnancy process, or reveal any
possible complication including anomalies in female and male gametes,
is a clinical imperative to provide an opportunity for timely and appropri-
ate intervention (Achache and Revel, 2006; Polsani et al., 2013; Volk
et al., 2013). Endocannabinoids (eCBs) are a new groups of bioactive
lipids that act as critical signals in various aspects of male and female
human reproduction. The aim of this review is to outline and discuss
the way forward in using eCBs as novel biomarkers of reproductive
events, which have the potential to become predictive and diagnostic
tools of fertility defects, to be exploited for improving pregnancy out-
comes and ameliorating the management of fertility problems in humans.

Current and potential biomarkers in clinical
practice
Nowadays, there is an ongoing research to identify and develop novel
molecular and/or genetic biomarkers which might improve diagnostic
accuracy or help in detecting different diseases (Achache and Revel,
2006; Lédée et al., 2011). Indeed, the current biomarkers used in clinical
practice are limited, since most of the available assays do not have the
required sensitivity and specificity (Palmer and Barnhart, 2013). There-
fore, it is often difficult to translate results obtained at the bench to the
bed site, and research efforts frequently end at the initial phases of bio-
marker discovery, without any validation of preclinically promising
targets (Barnhart et al., 2010). In addition, the phenotyping of samples,
collection and storage of biomaterials, use of novel assays, and over-
interpretation of confounding/chance findings all represent serious lim-
itations for a biomarker to reach the final step of validation (Pepe et al.,
2008; Altman et al., 2012; Hardarson et al., 2012). Since clinicians
need reliable biomarkers for the diagnosis of reproductive defects, the
use of robust assays is required to qualify new molecules upon their iden-
tification. Nevertheless, in view of their clinical relevance, the National
Institutes of Health defined a serum biomarker as ‘a characteristic that

is objectively measured and evaluated as an indicator of normal biological
processes, pathogenic processes or pharmacologic responses to a thera-
peutic intervention’ (Woodcock, 2010). A biomarker in clinical repro-
ductive medicine may be useful to better understand and predict
ovarian reserve, gamete quality, embryo viability and euploidy, as well
as endometrial receptivity and pregnancy outcome, including miscar-
riage, ectopic pregnancy and obstetric complications (e.g. pre-eclampsia
or preterm labor) (Palmer and Barnhart, 2013). Also in the management
of in vitro fertilization (IVF) protocols, specific biomarkers could be used
to discriminate between suitable and unsuitable embryos to be trans-
ferred. At present, the only biomarker used routinely in clinical practice
is human chorionic gonadotrophin (hCG) (Rausch and Barnhart, 2012;
Seeber, 2012). Indeed, once a pregnancy is established, the rise of
hCG produced by the trophoblasts indicates the viability of the
embryo. Additional biomarkers in serum, including progesterone (P), es-
trogen (E2), alpha-fetoprotein, fetal fibronectin and inhibin A, have been
studied and used in clinical practice to track the progress of a normal
pregnancy, or to determine complications related to this process
(Stovall et al., 1992; Grosskinsky et al., 1993; Seifer et al., 1996; Ness
et al., 1998; Krause et al., 2001; Lambert-Messerlian and Canick, 2004;
Abdelazim, 2013). The chemical structures of the lipid hormones P
and E2 are shown in Fig. 1A. At an early stage and before placental pro-
duction, P is secreted by the corpus luteum and becomes a critical signal
for the establishment of normal pregnancy. Indeed serum P appears to
be the single most specific biomarker for distinguishing viable from non-
viable pregnancies in early gestation (Cowan et al., 1992) and, in combin-
ation with transvaginal ultrasound hCG, it is useful for diagnosis of ectopic
pregnancy (Arck et al., 2007). Additionally, E2 levels provide important
information on ovarian function and diseases that affect testes, ovaries
or adrenal glands (Domingues et al., 2010). Blood E2 levels can also
allow clinicians to monitor the progression of pregnancy, efficacy of fer-
tility treatments, or evaluate menopause symptoms. Furthermore,
inhibin A and beta-core hCG, the major metabolite of hCG in maternal
urine, have been studied as potential biomarkers for determining ectopic
versus normal pregnancies (Cole et al., 1994; Seifer et al., 1996). The bio-
chemical profiles of these biomarkers and their involvement in clinical
female reproductive practice are reported in Table I. Incidentally, it
should be noted that for pre-eclampsia, pre-symptomatic predictive
blood-borne potential biomarkers include activin-A (Diesch et al.,
2006), C-reactive protein (Mihu et al., 2008), placenta growth factor
and its receptor soluble fms-like tyrosine kinase (s-1FLT) (Shokry et al.,
2010), leptin (Sucak et al., 2010), transforming growth factor-a1, and
plasminogen activator inhibitor (Belo et al., 2002). Yet, these biomarkers
have limited clinical exploitation, due to poor sensitivity and specificity of
the available methods for their detection. So far, there is no single marker
that allows early prediction of pre-eclampsia in women. Moreover,
ovarian reserve tests comprise hormonal markers [basal follicle stimulat-
ing hormone (FSH), E2, inhibin-B, antimullerian hormone] and ultrasono-
graphic markers (ovarian volume, antral follicle counts), yet they all have
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major limitations in accuracy, invasiveness and cost parameters that need
to be considered carefully to make reliable predictions (Domingues et al.,
2010). It is important to point out that most of the potential biomarkers

studied in reproductive medicine, or those already in use, are aimed at
diagnosing diseases, like infertility, polycystic ovary syndrome, endomet-
riosis or determining the viability of early pregnancy, just to mention a few
(Seeber, 2012; Fassbender et al., 2013; Iliodromiti et al., 2013). In this
context, the goal has been to identify individual markers of each
disease, whereas only a few examples of multivariate diagnostic
markers have been reported until now (Nolen and Lokshin, 2013;
Palmer and Barnhart, 2013). However, it should be pointed out that
the use of two or more biomarkers may indeed provide a diagnostic
test with better sensitivity and specificity (Ridker et al., 2003). Combina-
tions of biomarkers have also been shown to support rapid diagnosis of
early or ectopic pregnancies, suggesting that a multiple biomarker strat-
egy might help to distinguish viable from non-viable pregnancies (Kuc
et al., 2011; Kagan et al., 2012; Daponte et al., 2013; Nicolaides et al.,
2013).

On the male side, conventional semen analysis provides important in-
formation about sperm concentration, viability, motility and morph-
ology, but is considered a poor indicator of reproductive potential
(Guzick et al., 2001; Jequier, 2010). Although fertile men have higher
mean sperm parameters (concentration, motility and morphology)
than infertile men, there is a large overlap between fertile and infertile
subjects (Guzick et al., 2001). Sperm analysis provides useful clues for
the initial evaluation of male infertility, but it does not measure fertility
itself (Guzick et al., 1998; Jequier, 2010) nor does it take into account
functional aspects of sperm cells like the ability to fertilize the oocyte.
In addition, since mammalian fertilization and subsequent embryo devel-
opment depend partially on the inherent integrity of sperm DNA
(Ahmadi and Ng, 1999; Agarwal and Said, 2003), different assays have
been developed and used in research laboratories to assess sperm
DNA damage, which is more clinically informative and relevant (Vasan,
2011). In any case, the results of sperm DNA integrity testing alone do
not predict pregnancy rates achieved through natural or artificial concep-
tion, as warned by the American Society for Reproductive Medicine
(Practice Committee of the American Society for Reproductive Medi-
cine, 2013).

Figure 1 Chemical structures of current and potential lipid biomarkers of reproduction. (A) Steroid hormones; (B) eCBs and eCB-like compounds;
(C) THC. eCB, endocannabinoid.

........................................................................................

Table I Main serum biomarkers used in clinical female
reproductive practice.

Type Description Role

b-Human chorionic
gonadotrophin
(hCG)

Glycoprotein produced by
trophoblastic cells of the
placenta

Pregnancy viability

Progesterone (P) Steroid hormone secreted
by corpus luteum and
placenta for the
preparation of
endometrium for a
possible pregnancy

Pregnancy viability in
early gestation
Ectopic pregnancy

Estrogen (E2) Sex hormone produced
primarily in ovary and
testes by aromatization of
testosterone. Small
amounts are produced by
adrenal glands

Pregnancy dynamics
Testes, ovaries or
adrenal glands
diseases
Menopause

a-Fetoprotein Oncofetal glycoprotein
produced in the yolk sac
during the first trimester,
and in the fetal liver and
gastrointestinal tract
during late pregnancy

Abnormal
placentation
(placenta previa and
placenta accreta)
Pre-eclampsia
Fetal loss and preterm
delivery

Fetal fibronectin Glycoprotein produced by
fetal cells, found in
amniotic fluid and placenta

Spontaneous preterm
birth

Inhibin A Peptide produced by
corpus luteum and
regulated by hCG

Down’s syndrome
Ectopic pregnancy
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Here we will support the view, based on data from the literature from
human studies, that bioactive lipids like eCBs might represent a novel
class of biomarkers to be exploited in the clinical practice of reproductive
medicine.

Overview of the eCB system in reproductive
events
eCBs are non-classical neurotransmitters, released from membrane
phospholipids and produced ‘on demand’ by the cell (Pacher and
Kunos, 2013). The best characterized eCBs are N-arachidonoylethanol
amine, also known as anandamide (AEA), and 2-arachidonoylglycerol
(2-AG), both shown in Fig. 1B. These bioactive lipids act by binding to
type-1 and type-2 cannabinoid receptors (CB1 and CB2) (Pertwee
et al., 2010), to GPR55, a recently discovered putative ‘CB3’ (Ross,
2009; Gasperi et al., 2013), and to nuclear receptors like the peroxisome
proliferator-activated receptors (PPARs) (Pistis and Melis, 2010). AEA
behaves also as an endovanilloid, by binding to transient receptor poten-
tial vanilloid type 1 (TRPV1) channels (Di Marzo and De Petrocellis,
2010). The ‘canonical pathway’ for AEA biosynthesis occurs in two
steps, of which the first is catalyzed by the N-arachidonoylphosphatidyl
ethanolamine-specific phospholipase D (NAPE-PLD), a member of
the metallo-b-lactamase family that is molecularly distinguished from
the known PLD isoforms that hydrolyze common glycerophospholipids
(Okamoto et al., 2009). Alternative metabolic routes for AEA biosyn-
thesis include: (i) members of the PLA/acyltransferase family like Ca2+-
independent N-acyltransferases and (ii) multistep pathways via
N-acylated lysophospholipids (for a recent review see Ueda et al.,
2013, and references therein). On the other hand, the PLC–diacylgly-
cerol lipase (DAGL) pathway is the most important route for the biosyn-
thesis of 2-AG (Bisogno et al., 2003; Ueda et al., 2011). Both AEA and
2-AG signaling pathways are terminated by enzymatic hydrolysis,
mediated primarily by the serine hydrolases fatty acid amide hydrolase
(FAAH, also called FAAH-1) (McKinney and Cravatt, 2005; Fezza
et al., 2008) and monoacylglycerol lipase (MAGL) (Dinh et al., 2002), re-
spectively. However, other oxidative enzymes such as cyclooxygenase-2
(COX-2), different lipoxygenase (LOX) isozymes and cytochrome P450

add molecular oxygen to AEA or 2-AG, producing prostaglandin-
ethanolamides (Kozak et al., 2002) and glyceryl esters (Kozak et al.,
2001), or hydroxy-anandamides and hydroxyleicosatetraenoyl-glycerols
(van der Stelt et al., 2002), respectively. In addition, despite controversies
on the different routes by which eCBs can cross plasma membranes and
be shuttled to their intracellular targets or catabolic enzymes (Fowler,
2013), eCB transport across membranes appears to be a protein-
mediated process, which occurs through an endocannabinoid mem-
brane transporter (EMT) (Chicca et al., 2012). Fatty acid binding
proteins, heat shock protein 70 and albumin (Maccarrone et al., 2010,
and references therein) might also contribute to AEA uptake. In addition,
a partly truncated FAAH-1, termed FAAH-1 like anandamide transport-
er (FLAT) (Fu et al., 2011), was proposed as an intracellular transporter
of AEA, although a recent paper, published during the preparation of this
manuscript, demonstrated that this protein might better mediate AEA
inactivation (Leung et al., 2013). Taken together eCBs, their receptors,
and biosynthetic and catabolic enzymes, as well as putative transpor-
ter(s), form the endocannabinoid system (ECS), schematically depicted
in Fig. 2. In this context, it should be noted that in vivo levels of AEA includ-
ing those in reproductive organs are regulated by a tight balance between

biosynthetic and degradative enzymes (Wang et al., 2006a, and references
therein). Changes in the activity and/or expression of these enzymes de-
termine significant fluctuations in AEA levels, which in turn can lead to
success or failure of pregnancy (Schuel, 2006; Karasu et al., 2011).

The ECS system regulates diverse physiologic processes, and has
attracted considerable attention in reproductive pathophysiology for
the potential use of its distinct elements for the diagnosis and/or treat-
ment of human infertility (Maccarrone, 2009). Indeed, there is accumu-
lating evidence that alterations of some ECS components in the various
stages of reproductive events may negatively affect the final outcome (Di
Blasio et al., 2013). Previous data have highlighted that AEA metabolizing
enzymes, especially FAAH, are fundamental to ensure proper AEA
levels, and hence to avoid impairments of fertility signals networks,
both on the female (Maccarrone et al., 2000; Sun et al., 2009; Trabucco
et al., 2009) and male side (Francavilla et al., 2009; Aquila et al., 2010a;
Lewis et al., 2012; Amoako et al., 2013). Studies performed on Cb1

and Cb2 knock-out mice demonstrate that they suffer from pregnancy
loss (Wang et al., 2004; Sun and Dey, 2008), and that CB1 deficiency
leads to embryo retention in the oviduct for an extended period, and
hence to ectopic pregnancy and reduced fertility (Wang et al., 2004).
Complete sequestration of CB1-mediated signaling causes abnormal
embryo development (Wang et al., 2004), whereas female mice

Figure 2 Biosynthesis, degradation and target receptors of AEA and
2-AG. AEA is mainly synthesized by NAPE-PLD, whereas DAGL is the
most important enzyme for the biosynthesis of 2-AG. AEA and 2-AG
signaling pathways are terminated by enzymatic hydrolysis, mediated
primarily by the serine hydrolases FAAH and MAGL, respectively.
The transport of eCBs across the plasma membrane is due to a putative
EMT. eCBs exert their biological activity by binding to CBRs, whereas
TRPV1 and PPARs are the main intracellular targets for AEA. The
latter compound can also undergo oxidation to HAEAs by LOXs, or
to PMs by COX-2. Additionally, cyt P450 can also oxygenate AEA to gen-
erate EETs-EA. Abbreviations: AEA, anandamide; 2-AG, 2-arachido
noylglycerol; NAPE-PLD, N-arachidonoylphosphatidylethanolamine-
specific phospholipase D; DAGL, diacylglycerol lipase; FAAH; fatty
acid amide hydrolase; MAGL, monoacylglycerol lipase; eCB, endocan-
nabinoid; EMT, endocannabinoids membrane transporter; CBRs, can-
nabinoid receptors; TRPV1, transient receptor potential vanilloid type
1; PPARs, peroxisome proliferator-activated receptors; AA, arachidon-
ic acid; Et-NH2, ethanolamine; HAEAs, hydroperoxy-anandamides;
LOXs, lipoxygenases; PMs, prostamides; COX-2, cyclooxygenase-2;
cyt P450, cytochrome P450; EETs-EA, epoxygenated fatty acids-
ethanolamide.
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lacking CB2 do not present embryos correctly hatched to the implant-
ation sites (Wang et al., 2004). Embryo retention, due to failure in the
oviductal-uterine embryo transport, might be ascribed to deficient
CB1 expression in maternal oviducts (Wang et al., 2004; Guo et al.,
2005; Sun and Dey, 2012), or to high oviductal AEA levels, as reported
in Faah knock-out mice (Wang et al., 2006b). Similarly, both high and
low eCB signaling compromise the placentation process (Sun et al.,
2010), as well as parturition (Wang et al., 2008). On the male side,
binding of eCBs to cannabinoid and vanilloid receptors plays a key role
in controlling spermatogenesis, the acquisition of sperm fertilizing
ability (i.e. sperm viability and motility), capacitation and sperm-oocyte
fusion (Francavilla et al., 2009). Very recently, hot spots in the regulation
of sperm quality by some ECS members have been discussed (Maccar-
rone, 2013), and involve plasma membrane dynamics, epigenetic
control and chromatin remodeling (Chioccarelli et al., 2010; Battista
et al., 2012). Additional information in humans reported in the following
sections complement comprehensive reviews that have appeared
recently in the literature (Bambang et al., 2012; Battista et al., 2012;
Chan et al., 2013; Di Blasio et al., 2013).

Methodologies for detection of eCBs in human
reproductive matrices
eCBs have been detected in several human matrices, demonstrating that
alterations in their levels might be associated with pathological dysfunc-
tions (Pertwee,2013). Avariety of analytical techniques have been devel-
oped for the qualitative detection and quantitative determination of
these compounds, as detailed in a recent review (Battista et al., 2014,
and references therein). It should be stressed that AEA and 2-AG do
not have chromophores or fluorescent moieties in their structures,
which could make these molecules easily detectable by gas chromatog-
raphy (GC) separation and direct UV absorbance detection. In addition,
the low eCB content in some non-conventional matrices (i.e. follicular
fluids and seminal plasma) requires sensitive, accurate and reproducible
methods for proper detection in clinical samples. The search for novel
methodological approaches is constantly evolving to overcome the pit-
falls due to the matrix effect, extraction yield and low chemical stability
of eCBs (i.e. acyl transmigration from 2-AG to 1-AG), which still affect
available analytical procedures (Buczynski and Parsons, 2010). More-
over, sample storage and extraction (through solid phase extraction or
liquid– liquid extraction methods) represent crucial steps, which might
interfere with the analysis and affect the final results. Liquid chromato-
graphy (LC) coupled to one mass spectrometry (MS) detector (LC–MS)
or two (LC–MS/MS) is largely used for the determination of eCBs in bio-
logical samples (Zoerner et al., 2011). Lately, ultra high performance LC
(UPLC) has been also used in the form of UPLC–MS/MS, in order to in-
crease the analytical performance (Lam et al., 2008, 2010; Amoako et al.,
2010; Fanelli et al., 2012). Taking into account that studies on humans
generate data with wide confidence intervals, the use of largely standar-
dized methodologies with improved sensitivity may markedly reduce the
variability of results obtained so far by independent investigators.

The quantitative detection of eCB content in human reproductive
cells, tissues and fluids through different methodologies is summarized
in Table II, and represents an emerging issue because of its potential ex-
ploitation for the diagnosis and/or therapy of male and female infertility,
as detailed in the next sections.

Methods
PubMed and Web of Science databases were searched for papers using rele-
vant keywords, like ‘biomarker’, ‘endocannabinoid’, ‘infertility’, ‘pregnancy’,
‘reproduction’ and ‘sperm’.

We only included English journal articles published since 1973, based on
their widely recognized relevance to the topic. Database research was
focused on human and mammalian species.

eCBs in the female reproductive
tract
eCBs play an important role in several female reproductive processes,
including folliculogenesis, ovulation and oocyte maturation, as well as
implantation and early pregnancy (Lazzarin et al., 2004; Taylor et al.,
2007; El-Talatini et al., 2009a, b, 2010; Peralta et al., 2011). In the endo-
metrium, high doses of eCBs alter these latter processes; additionally,
they play a role in labor and parturition (Wang et al., 2006a; Maccarrone,
2009; Nallendran et al., 2010; Bari et al., 2011; Xie et al., 2012). On this
basis, several independent groups have investigated the presence of
eCBs in female reproductive fluids such as blood plasma, breast milk
and oviductal fluid, by measuring the levels of AEA, 2-AG and related
compounds, like OEA (N-oleoylethanolamine) and PEA (N-palmitoyl
ethanolamine) (Schuel et al., 2002a; El-talatini et al., 2009a; Fonseca
et al., 2010; Lam et al., 2010; Gebeh et al., 2013a). The chemical struc-
tures of the latter two compounds are shown in Fig. 1B. It should be
noted that studies on human subjects have been performed in women

........................................................................................

Table II Different methods for eCB detection in human
female and male reproductive matrices.

Matrix Methodology References

Plasma LC-MS Maccarrone et al. (2002a) and
Habayeb et al. (2004, 2008a)

UPLC-MS/MS Lam et al. (2008), El-Talatini et al.
(2009a, b, 2010), Nallendran
et al. (2010), Taylor et al. (2011),
Tong et al. (2012) and Gebeh
et al. (2013a, b)

Fallopian tubes UPLC-MS/MS Gebeh et al. (2012)

Follicular fluid LC-MS Schuel et al. (2002a)
UPLC-MS/MS El-Talatini et al. (2009b)

Amniotic fluid,
placenta, fetal
membranes

UPLC-MS/MS Marczylo et al. (2010)

Milk GC-MS Di Marzo et al. (1998)
LC-MS Schuel et al. (2002a)
UPLC-MS/MS Lam et al. (2010)

Sperm cells LC-MS Francavilla et al. (2009) and
Lewis et al. (2012)

Seminal plasma LC-MS Schuel et al. (2002a),
Francavilla et al. (2009)

UPLC-MS/MS Amoako et al. (2010, 2013)

LC-MS, liquid chromatography-mass spectrometry; UPLC-MS, ultra-high
performance liquid chromatography-mass spectrometry; GC-MS, gas
chromatography-mass spectrometry.
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undergoing IVF-embryo transfer programs or healthy volunteers with
uncomplicated pregnancy, which provide the opportunity to perform
eCB measurements only at different stages of the menstrual cycle or of
pregnancy.

eCB levels in blood during pregnancy
It is well known that plasma AEA levels vary throughout the menstrual
cycle, with highest levels in the follicular phase compared with luteal
phase and with early pregnancy (Maccarrone et al., 2002a; Habayeb
et al., 2004). A recent study analyzed plasma AEA concentrations
obtained from female volunteers at different stages of the menstrual
cycle, or from pregnant women, by using UPLC–MS/MS (Lam et al.,
2008). This highly specific and reproducible method allowed an accurate
analysis in reduced plasma sample volumes, showing an increase of AEA
concentration at the follicular phase (1.45+0.81 nM) compared with
the luteal phase (0.77+0.30 nM), in keeping with previous studies
(Maccarrone et al., 2002a; Habayeb et al., 2004). Higher AEA contents
in plasma at the time of ovulation, and lower concentrations in the
luteal phase of the menstrual cycle, as well as at the beginning of implant-
ation, are required to ensure a successful pregnancy (El-Talatini et al.,
2009a). On the other hand, low FAAH and high AEA levels in blood
are associated with spontaneous miscarriage, as reported in two
studies where low FAAH activity was found in lymphocytes of women
who spontaneously aborted (Maccarrone et al., 2000) compared with
healthy controls. In keeping with these findings, a pilot study limited to
a small number of participants reported higher plasma AEA level
(�3-fold) in women with threatened miscarriage with respect to the
birth group (Habayeb et al., 2008a). Similarly, women undergoing suc-
cessful IVF/intracytoplasmatic sperm injection (ICSI) show low levels
of AEA at the time of implantation, compared with women who fail to
become pregnant (El-Talatini et al., 2009a). In particular, a lower AEA
level has been demonstrated on the day of embryo transfer, along with
a higher level at 4 and 5 weeks of gestation (the time of the pregnancy
test), and a drop at 6 weeks (time of the first ultrasound scan) to
values similar to those at the pregnancy test (Maccarrone et al., 2000;
El-Talatini et al., 2009a; Taylor et al., 2011). Consistent with these
studies on human plasma, an analysis of ECS in peripheral blood mono-
nuclear cells during human menstrual cycles showed the highest FAAH
activity and the lowest AEA concentrations on Day 21 compared with
Day 7 and Day 14, a time point corresponding to the luteal phase and
the putative window of uterine receptivity for implantation (Lazzarin
et al., 2004). Conversely, serum AEA levels measured in asymptomatic
women at 6–10 weeks of gestation have been reported to be the
same in those who miscarried and those who did not (Tong et al.,
2012). It is should be noted that differences in sample processing (e.g.
frozen samples versus fresh samples, and serum versus plasma) may
have contributed to these divergent results (Tong et al., 2012).

Moreover, AEA measurements have also been performed during
early pregnancy, showing no difference in the first (0.91+0.28 nM)
and second (0.91+ 0.30 nM) trimesters with respect to the levels mea-
sured in the luteal phase of the menstrual cycle; instead, AEA levels are
significantly elevated (1.48 nM) in women with non-viable first trimester
pregnancies compared with the values (1.21 nM) found in confirmed
viable pregnancies (Lam et al., 2008; Taylor et al., 2011). In the viable
pregnancies, high AEA levels apparently correlate with low levels of P
(Maccarrone et al., 2003a, b), and are possibly associated with

implantation failure and aberrant development of the feto–maternal
interface, culminating overall in miscarriage. Furthermore, AEA levels
in women with non-viable first trimester pregnancies are similar to
those found in the follicular phase (Lazzarin et al., 2004; El-Talatini
et al., 2010; Taylor et al., 2011). No significant association has been
reported between AEA and P levels in plasma at the time of implantation
or during early pregnancy, or in normally cycling women (El-Talatini et al.,
2009a, b). However, a positive correlation between E2 and AEA was
found during the menstrual cycle of healthy women and in non-pregnant
women after IVF and embryo transfer (El-Talatini et al., 2009a, b, 2010).
In addition, an increase in plasma AEA levels has been observed in
women during active labor, suggesting a role for this eCB also in the
final phase of pregnancy (Habayeb et al., 2004; Lam et al., 2008). In
women spontaneously laboring at term, plasma AEA levels were
�4-fold higher than the levels in non-laboring women at term
(Habayeb et al., 2004). This latter observation was confirmed by an inde-
pendent study (Nallendran et al., 2010), where a �1.5-fold increase in
the levels of laboring versus non-laboring subjects was documented. In-
cidentally, the smaller increase observed in the latter study might be due
to a different mechanism of labor (induced versus spontaneous), and to a
different method of plasma analysis (Nallendran et al., 2010). In this
context, it should be noted that AEA undergoes spatiotemporal distribu-
tion specific changes, in order to support pregnancy onset: during the
early stage, at the implantation site, low levels are needed to promote
uterine receptivity and maintenance of pregnancy, while at the time of
labor, high levels of AEA may be useful for parturition, probably
because its hydrolysis releases arachidonic acid, which in turn increases
the concentration of prostaglandins (Di Marzo and Petrosino, 2007;
Mitchell et al., 2008). These fluctuations of AEA content are schematic-
ally depicted in Fig. 3. Moreover, as already shown in mouse models,
COX-2 might be involved in the regulation of AEA content in humans,
in order to guarantee normal implantation and then preservation of preg-
nancy (Yu et al., 1997; Kozak et al., 2002). In particular, AEA oxygenation
by COX-2 at implantation sites would produce prostamides, which can
be essential for processes such as ovulation, fertilization, implantation
and decidualization, by analogy with classical prostanoids (Lim et al.,
1997). Interestingly, as CB1 is expressed in placental villi of women
undergoing elective Cesarean section, it can be suggested that maternal
AEA may maintain uterine quiescence through this receptor subtype, by
producing myometrial relaxant factors like nitric oxide and
gonadotrophin-releasing factor (Acone et al., 2009). eCBs seem to be
involved also in early pregnancy complications, since higher levels of
AEA have been found in Fallopian tubes of pregnant women compared
with non-pregnant luteal phase controls (Gebeh et al., 2012). Further-
more, plasma samples obtained from women with ectopic pregnancies
exhibit a decreased FAAH activity compared with normally pregnant
controls, which leads to higher AEA levels (Gebeh et al., 2013a). Surpris-
ingly, also the plasma concentrations of other eCBs (i.e. OEA and PEA),
measured by UPLC-MS/MS, were found to be elevated in ectopic preg-
nancy and in vitro studies showed that AEA and OEA, but not PEA, have a
negative effect on the Fallopian tube cilia beat frequency (Gebeh et al.,
2013a). It is generally accepted that OEA and PEA act as ‘entourage’
compounds, which potentiate the effects of eCBs at their receptor
targets by indirectly inhibiting their degradation (Jonsson et al., 2001;
Di Marzo and Petrosino, 2007; Garcı́a Mdel et al., 2009). These data
support a role for AEA and related eCBs in modulating tubal function
in ectopic pregnancy (Gebeh et al., 2013a), though it cannot be ruled
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out that high levels of plasma AEA are more generally associated with
defects in uterine wall implantation. In this context, it has been clearly
documented in mouse models, but not yet in humans, that different
ECS elements play a major role in regulating blastocyst development,
in order to guarantee successful implantation in the uterus (Paria et al.,
1998; Liu et al., 2002; El-Talatini et al., 2009b; Maccarrone, 2009; Sun
et al., 2010; Taylor et al., 2010). Indeed, the levels and activity of
uterine AEA and FAAH, as well as of blastocyst CB1 receptors and
FAAH, are coordinately regulated to synchronize preimplantation devel-
opment and uterine receptivity (Wang et al., 2006b; Maccarrone, 2009).

eCB levels in the ovary and follicular fluid
Adverse effects of D9-tetrahydrocannabinol (THC, shown in Fig. 1C),
the active principle of cannabis extracts like hashish and marijuana
(Izzo et al., 2009), are reported in folliculogenesis and ovulation, where
this phytocannabinoid is associated with poor quality oocytes, and even-
tually anovulation and infertility (Niret al., 1973; Ayalon et al., 1977). Also
AEA, PEA and OEA have been quantified in follicular fluid retained fol-
lowing oocyte aspiration from women undergoing IVF treatment
(Schuel et al., 2002a). Recently, AEA measurements have been in the
human ovary and follicular fluid, to demonstrate that AEA is produced
by the granulosa of growing (i.e. secondary and tertiary) follicles,
corpus luteum and corpus albicans, but not by oocytes (El-Talatini
et al., 2009b). On this basis, the authors suggested that AEA may play
a role during the antral phase of folliculogenesis (El-Talatini et al.,
2009b). Interestingly, AEA measured in the follicular fluid obtained

from women undergoing controlled ovarian hyperstimulation for IVF/
ICSI was higher in follicles with mature oocytes than in those with imma-
ture oocytes (1.56+ 0.11 versus 0.99+0.09 nM) (El-Talatini et al.,
2009b). Yet, receiver operating characteristic analysis, which allows
the visualization and analysis of the behaviors of diagnostic systems
(Fawcett, 2006), revealed that a concentration of AEA of 1.09 nM in fol-
licular fluid was predictive of mature oocytes in 77% of the cases, sup-
porting the hypothesis that AEA in follicular and oviductal fluids may
be involved in oocyte maturity (Schuel et al., 2002a; El-Talatini et al.,
2009b). This effect could probably occur through the CB2 receptors,
which were indeed localized by immunohistochemical analysis in
oocytes of tertiary follicles, but not in those at other stages of develop-
ment (El-Talatini et al., 2009b). Since other ECS components have
been identified in the rat ovarian medulla and cortex, eCB signaling
could also be involved in the regulation of follicular maturation and devel-
opment in humans (Bagavandoss and Grimshaw, 2010).

eCBs at the maternal–fetal interface
AEA has also been quantified by advanced methodologies in human cord
and maternal blood, amniotic fluid, placenta and fetal membranes col-
lected during Cesarean section (Marczylo et al., 2010). Higher AEA
levels were found in freshly processed placenta (2.72+1.04 pmol/g
of tissue) than in fetal membranes (1.19+0.63 pmol/g of tissue) (Marc-
zylo et al., 2010), where a consistently higher FAAH expression was
demonstrated (Park et al., 2003). In this context, it should be noted
that AEA concentrations, in the human brain as well as in human

Figure3 Fluctuations in AEA levels through the menstrual cycle and gestation. Under physiological conditions (solid line), higher AEA plasma levels in the
follicular phase and lower concentrations in the luteal phase of the menstrual cycle, as well as at the beginning of implantation, are required to ensure the
successful outcome of pregnancy. During early pregnancy, low levels of AEA, with respect to the levels measured in the luteal phase of the menstrual cycle,
are needed to promote uterine receptivity and pregnancy maintenance. Finally, high AEA levels in the placenta at term and at the time of labor may be
necessary for parturition. Under pathological conditions (dashed line), AEA levels are increased in the placenta obtained from pre-eclampsia patients,
and in ectopic or non-viable pregnancies, as well as in lymphocytes from women who miscarry. AEA, anandamide.
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plasma, may increase due to repeated freeze-thaw cycles or delays in
tissue processing (Vogeser et al., 2006; Palkovits et al., 2008). Therefore,
it is crucial to strictly control the experimental procedures, in order to
avoid large fluctuations in AEA levels. In addition, CB2 but not CB1 ex-
pression has been found in human placental macrophages during the
first trimester (Helliwell et al., 2004). As placental tissues from spontan-
eously miscarrying women are characterized by very low FAAH levels
and high CB1 expression in trophoblastic cells (Acone et al., 2009; Tra-
bucco et al., 2009), increased FAAH expression (Habayeb et al.,
2008b) and consequently reduced AEA levels in the placenta in the
early stages of pregnancy may be associated with a better pregnancy
maintenance (Habayeb et al., 2008b). Therefore, FAAH may have a pro-
tective role for the placental barrier between fetal and maternal blood
cells, by decreasing circulating maternal AEA (Helliwell et al., 2004; Tra-
bucco et al., 2009). Consequently, the fetus is exposed to changes in AEA
levels during its development within the uterus: these levels are lowat the
beginning, but then become high in the placenta at term. In addition,
higher AEA levels in the umbilical vein (0.88+0.33 nM) compared
with the artery (0.77+0.30 nM) suggest that there may be a transport
across the placenta and/or a biosynthesis of AEA by the placenta itself
(Marczylo et al., 2010). Incidentally, it should be noted that conflicting
data have been reported on AEA concentrations in amniotic fluid,
varying from 0.02–0.18 nM (Marczylo et al., 2010) to 8 nM (Schuel
et al., 2002a). This is likely due to different gestational ages and sample
collection procedures between the two studies. AEA seems to be pro-
duced also by human placenta, where higher and lower expression of
NAPE-PLD and FAAH, respectively, were observed in pre-eclampsia
compared with normotensive women, and might possibly contribute
to fetus damage (Abán et al., 2013). Also the newborn is exposed to
eCBs, and indeed from the day after delivery, the mother produces
human milk with 2-AG concentrations (�1 mM) that are �125-fold
higher than those of AEA (�8 nM) (Di Marzo et al., 1998). This pioneer-
ing study was performed by GC-MS analysis, and was extended later on
through more sophisticated methodologies (Table II). LC-MS and
UPLC-MS/MS showed that indeed human milk contains different
N-acylethanolamines in the nanomolar range: 0.1–5.0 nM for AEA,
2.0–67.0 nM for OEA and 9.0–23.0 nM for PEA (Schuel et al., 2002a;
Lam et al., 2010). Collectively, available data suggest a positive role for
eCBs in milk intake by the newborn.

Overall, the positive or negative effects of eCBs depend on the site of
action and on the duration of exposure, as well as on the spatiotemporal
expression patterns of the key synthetic/hydrolytic enzymes and target
receptors of these substances. Available literature data reviewed here
suggest that AEA levels in plasma of pregnant women might be consid-
ered as a diagnostic biomarker for natural or assisted pregnancy
outcome. They also suggest that modulating the ECS could potentially
be useful as a therapeutic alternative to prevent preterm labor. By using
a specific cutoff of AEA levels, also in combination with other widely
accepted biomarkers (e.g. P or hCG), diagnostic tests on whole blood
could also deliver more reliable information on the risk of miscarriage.

eCBs in the male reproductive
tract
The involvement of eCBs in human male reproductive events was recog-
nized shortly after the identification of these bioactive lipids (Schuel et al.,

2002a). Since then, eCBs have been quantified in seminal plasma and
human sperm cells (Francavilla et al., 2009; Marczylo et al., 2009;
Amoako et al., 2010, 2013). Much like boar sperm cells, where a com-
plete ECS was demonstrated for the first time (Maccarrone et al.,
2005), human sperm cells have been shown to express CB1 (Rossato
et al., 2005; Aquila et al., 2009), CB2 (Agirregoitia et al., 2010) and
TRPV1, along with all major components of the ECS needed to synthe-
size (NAPE-PLD) and degrade (EMT and FAAH) AEA (Francavilla et al.,
2009). Interestingly, ECS elements are expressed differently in distinct
sperm segments: NAPE-PLD and FAAH are localized in the post-
acrosomal region and in the midpiece; CB1 is present in the plasma mem-
brane over the acrosomal region, in the middle region and along the tail;
CB2 is found in the plasma membrane at the sperm head; and finally
TRPV1 is restricted to the post-acrosomal region (Francavilla et al.,
2009; Agirregoitia et al., 2010). The location of different ECS compo-
nents in the human sperm cell is represented in Fig. 4. These immuno-
cytochemistry data support functional and pharmacological studies,
which document a different role for CB1, CB2 and TRPV1 receptors in
the complex process of fertilization (Maccarrone, 2009, 2013).

eCBs in the regulation of sperm functions
The binding of AEA to CB1 and/or CB2 receptors seems relevant for the
acquisition of sperm fertilizing ability, both in invertebrates (Schuel et al.,
1994), vertebrates (Cobellis et al., 2006, 2010; Cacciola et al., 2008; Sun
et al., 2010) and humans (Rossato et al., 2005; Agirregoitia et al., 2010).
The control of sperm motility, as well as the induction of the acrosome
reaction (AR), has been ascribed to CB1 activation (Schuel et al.,
2002b; Rossato et al., 2005; Aquila et al., 2010a; Barbonetti et al.,
2010), although more recently also a role for CB2 has been documented
(Agirregoitia et al., 2010). Indeed, motility analysis on semen samples
incubated with specific agonists or antagonists of CB1 and CB2 demon-
strated that the distinct activation of these receptors modulates the pro-
portion of motile sperm cells, with CB1 increasing the percentage of

Figure 4 Schematic drawing of the localization of endocannabinoid
system (ECS) elements in the human sperm cell. Abbreviations:
NAPE-PLD, N-arachidonoylphosphatidylethanolamine-specific phos-
pholipase D; FAAH; fatty acid amide hydrolase; CB1/2, type-1 or 2 can-
nabinoid receptor; TRPV1, transient receptor potential vanilloid type 1.
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immobile cells and reducing the proportion of rapidly progressive sperm
cells in favor of slow, sluggish sperm cells (Agirregoitia et al., 2010).

Sperm motility is directly related to mitochondrial function, which in
turn is connected to mechanisms of energy depletion, possibly due to
deficits in mitochondrial oxidative phosphorylation (Rossato, 2008;
Badawy et al., 2009) or to glycolysis blockage (Barbonetti et al., 2010).
In this context, it has been suggested that AEA inhibits sperm mitochon-
drial activity in a dose-dependent manner (Rossato et al., 2005), and that
the presence of CB1 in the midpiece of human sperm cells, where mito-
chondria are localized (Aquila et al., 2010b), affects their motility by de-
creasing the mitochondrial transmembrane potential in a non-apoptotic
manner (Barbonetti et al., 2010). TRPV1 receptors were identified in the
testis from rats (Stein et al., 2004), but as yet not from humans. In general,
the latter family of channel receptors may be involved in regulating
calcium-dependent functions of mammalian sperm cells, including motil-
ity, capacitation and AR (Kumar and Shoeb, 2011). They might also be
involved in controlling human sperm/oocyte fusion (Francavilla et al.,
2009). Indeed, functional studies based on capsazepine, a selective an-
tagonist of TRPV1, demonstrated a marked reduction of the ability of
sperm cells to fuse with oocytes in the presence of P, and a reduction
of the P-induced AR rate (Francavilla et al., 2009). Interestingly, the
responsiveness to P was restored by using a specific EMT inhibitor,
which was able at the same time to prevent the effect of capsazepine
(Francavilla et al., 2009).

The levels of expression of CB1 and CB2 receptor subtypes and of
TRPV1, as well as their distinct compartmentalization in sperm cells,
may critically regulate sperm function. Also, the content of eCBs in the
male reproductive tract may differentially activate these molecular
targets, thus affecting the different steps of fertilization.

eCBs and other peripheral factors
involved in reproduction
Besides the well-known direct effects of eCBs in fertility, ECS elements
are also known to interact with sex steroid hormones and cytokines,
thus indirectly regulating these complex processes (Karasu et al., 2011;
Bambang et al., 2012). Sex steroid hormones (i.e. P, E2, luteinizing
hormone, FSH and testosterone) are the main factors involved in fertility;
more recently also leptin, an hormone that helps the body to regulate fat
accumulation, has been added to the list, although its role remains
unclear (Karasu et al., 2011; Ahrens et al., 2013). P up-regulates lympho-
cyte FAAH activity through the transcription factor, Ikaros, leading to
decreased AEA levels (Maccarrone et al., 2001, 2003a, b). An indirect
correlation between E2 and eCB tone was also documented in human
endothelial cells, where enhanced AEA levels, due to increased
NAPE-PLD and decreased FAAH activities, may modulate the cardio-
vascular and immune systems (Maccarrone et al., 2002b). Crosstalks
between the endocrine and immune systems are known to regulate a
large number of biological processes, with a basic role in implantation
(Sen et al., 2014). Several immune cells (i.e. macrophages and T cells)
and signaling/regulatory molecules (i.e. hormones, cytokines and
growth factors) play functional roles during the establishment of preg-
nancy (Karasu et al., 2011). Endometrial and trophoblast cells, as well
as peripheral leukocytes and natural killer (NK) cells, represent a
source of cytokines that exert a widespread regulation of basic cellular
functions, like proliferation and differentiation (Lee et al., 2011).

Type-1 helper (Th1) and type-2 helper (Th2) cytokines derived from
peripheral T lymphocytes act with opposite effects on trophoblast
growth, depending on the balance and timing of their production. Th1
cytokines are anti-fertility factors that stimulate NK cells and enhance
tumor necrosis factor-a (TNF-a) secretion from macrophages,
whereas Th2 cytokines are pro-fertility factors that act through the sup-
pression of NK cells activity and the stimulation of natural suppressor
cells (Piccinni, 2010; Lee et al., 2011; Battista et al., 2012). Leukemia in-
hibitory factor (LIF), a member of the interleukin (IL)-6 family, plays im-
portant roles in the immune and hematopoietic systems, and is also
essential for reproduction (Smith et al., 1998; Aghajanova, 2004). A re-
lationship between reduced LIF expression and recurrent miscarriage
has been shown in women (Piccinni et al., 1998; Taupin et al., 1999), sug-
gesting that this cytokine is critical for implantation and pregnancy main-
tenance in humans (Ahima and Flier, 2000; Maccarrone and Wenger,
2005). LIF levels have been investigated as predictive markers of success-
ful embryo implantation, since theydecrease in the late luteal phase of the
menstrual cycle (Laird et al., 1997; Sharkey et al., 1999), and in secretory
phase endometrium of patients with infertility (Wu et al., 2013). Interest-
ingly, eCBs have been demonstrated to increase the production of IL-1,
IL-4, IL-6 and IL-10 (Derocq et al., 2000; Kishimoto et al., 2004), and to
inhibit the release of TNF-a and interferon-g from human lymphocytes
(Klein et al, 2004; Cencioni et al., 2010). Moreover, it is known that high
levels of AEA in blood inhibit the release of LIF via CB1, culminating in
pregnancy failure (Maccarrone et al., 2001). In this context, it has been
demonstrated that IL-4 and IL-10 enhance FAAH activity, which

Figure 5 High levels of LIF and low levels of AEA are essential for suc-
cessful pregnancy. AEA reduces LIF release via CB1 receptors. P and
leptin decrease AEA levels by up-regulating the FAAH promoter, and
hence FAAH expression and activity. Instead, anti-fertility Th1 cytokines
increase AEA levels by inhibiting FAAH, and additionally they potentiate
NK cells and TNFa production. Pro-fertility Th2 cytokines potentiate
FAAH activation by P, and inhibit NK cells and TNFa secretion.
Finally, endothelial E2 increases AEA levels, by reducing FAAH activity.
Abbreviations: LIF, leukemia inhibitory factor; AEA, anandamide; CB1,
type-1 cannabinoid receptor; P, progesterone; FAAH; fatty acid amide
hydrolase; Th, T-helper; NK, natural killer; TNFa, tumor necrosis
factor a; E2, estrogen.
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instead is inhibited by IL-2 and IL-12, leading to decreased or increased
AEA levels, respectively (Maccarrone and Finazzi-Agrò, 2004). Consist-
ently, defective FAAH in peripheral blood has been proposed as a diag-
nostic marker of human infertility (Maccarrone et al., 2000). The effects
on pregnancy outcome due to cytokines-hormones-AEA networks are
summarized in Fig. 5.

In plasma, the leptin content correlates with P levels during the luteal
phase of the menstrual cycle, and with hCG concentrations during
human pregnancy (Hardie et al., 1997). Recent studies have shown
that obese women undergoing IVF treatment have a lower conception
rate (Wang et al., 2000; Fedorcsák et al., 2004) and higher risk of miscar-
riage (Fedorcsák et al., 2000; Wang et al., 2002). In line with this, it has
been demonstrated that there is a different regulation of eCBs in mater-
nal fat and placental tissue, depending on maternal obesity. Indeed, in
obese mothers increased AEA was observed in the subcutaneous fat,
and decreased 2-AG was observed in the placenta, leading to the hy-
pothesis that both eCBs may exert a distinct control during fetal develop-
ment (Brocato et al., 2013). In addition, AEA levels are also indirectly
controlled by leptin, which up-regulates the FAAH promoter via signal
transducer and activator of transcription 3 (STAT3), and concomitantly

reduces AEA levels in T cells (Maccarrone et al., 2003a). Moreover,
alterations of leptin levels have been found in the ovulatory and luteal
phases of women of reproductive age (Ajala et al., 2013), overall support-
ing a link between obesity, eCBs, leptin, sex hormones and fertility
(Linne, 2004; Henson and Castracane, 2006; Metwally and Ledger,
2008).

Clinical relevance of eCBs
in female and male fertility
eCBs levels may be altered not only in pregnancy disorders, but also
under some pathological conditions that affect the uterus, such as endo-
metritis (Iuvone et al., 2008), and in some types of female reproductive
cancers (Guida et al., 2010). Indeed, it has been reported that the levels
of 2-AG, but not of AEA, are elevated in biopsies from women affected
by endometrial carcinoma, as a result of decreased expression of MAGL
(Guida et al., 2010). In parallel, increased 2-AG and up-regulated CB2

receptors counteract endometrial carcinoma growth in human endome-
trioma (Guida et al., 2010). However plasma eCB levels, measured by

.............................................................................................................................................................................................

Table III ECS elements and AEA as biomarkers of human reproduction.

Reproductive cells,
tissues and fluids

AEA levels Other ECS
elements

Outcome

Blood

Lymphocytes �FAAH Miscarriage

Plasma

Menstrual cycle � follicular phase
�luteal phase

�FAAH Uterine receptivity

Early pregnancy � Progression of pregnancy and/or embryo transfer

Labor � Parturition

Early pregnancy complications � � OEA, � PEA
� FAAH

Ectopic pregnancy

Placenta

Early pregnancy � � FAAH
� CB1

Maintenance of pregnancy

‘At term’ pregnancy � � NAPE-PLD,
�FAAH
� CB1

Parturition
Pre-eclampsia
Placental development

Follicles (secondary and tertiary) � � CB2 Folliculogenesis
Oocytes maturation

Follicular fluid � ? OEA, ? PEA Follicles/oocytes maturation

Amniotic fluid � ? OEA, ? PEA Supply of oxygenated and nutrient-rich blood
to the fetus through the umbilical vein

Sperm cells � � CB1, � CB2

�TRPV1
�TRPV1

Acquisition of fertilizing ability
Sperm-oocyte fusion
Sperm infertility

Seminal plasma

Normozoospermia � ? OEA, ? PEA Regulation of sperm reproductive functions

Asthenozoospermia and
oligoasthenoteratozoospermia

� �CB1 Alteration of physiological sperm cells kinematic parameters

Idiopathic infertility � Reduction of sperm ability to penetrate an oocyte

FAAH, fatty acid amide hydrolase; GEA, N-oleoyethanolamide; PEA, N-palmitoyl ethanolamine; CB1/2, type-1 or 2 cannabinoid receptor; NAPE-PLD, N-
arachidonylphosphatidylethanolamine-specific phospholipase D; TRPV1, transient receptor potential vallinoid type 1.
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UPLC-MS/MS, were found to be the same in women with hyperemesis
gravidarum (HG), a condition whose aetiopathogenesis remains
unknown, and normally pregnant subjects (Gebeh et al., 2013b). Al-
though eCBs were reported to modulate emesis (Mechoulam and
Parker, 2013), both in humans and in animal models, these findings
seem to rule out their involvement in HG.

On the male side, the evaluation of eCB content in human sperm cells
and/or in seminal plasma could be a novel diagnostic tool for reproduct-
ive medicine. The concentrations of AEA in seminal plasma of normo-
zoospermic men range from �0.20 nM (Amoako et al., 2010, 2013)
to 13–26 nM (Schuel et al., 2002a; Lewis and Maccarrone, 2009;
Lewis et al., 2012). In line with this, we have recently reported a
marked reduction of AEA (26.4+ 3.6 versus 7.3+ 1.2 nM) and 2-AG
(218.8+ 55.4 versus 56.7+ 14.1 nM) content in infertile seminal
plasma, paralleled by increased degradation in infertile versus fertile
semen samples (Lewis et al., 2012). However, no significant alterations
were found in infertile versus fertile sperm cells (0.9+0.3 versus
0.8+ 0.1 pmol/mg of protein for AEA; 37.9+9.2 versus 31.3+
6.8 pmol/mg of protein for 2-AG). Instead, we observed a marked de-
crease in TRPV1 binding in infertile versus fertile sperm cells (Lewis et al.,
2012), further supporting a major role for this ion channel in sperm func-
tion (Maccarrone, 2013). On this basis, we might speculate that the re-
duction of AEA causes infertile sperm cells to lose their quiescent state,
and with that the ability to prevent premature capacitation. This condi-
tion could then precipitate a premature AR, reducing the ability of the
sperm cell to penetrate an oocyte in vivo, as well as in IVF. These findings
have been lately strengthened by a clinical study performed on men
affected by asthenozoospermia and oligoasthenoteratozoospermia
(Amoako et al., 2013). Here, AEA levels in seminal plasma, measured
by UPLC-MS, were found to be almost halved in patients with respect
to normal subjects (�0.08 nM versus �0.20 nM). These differences in
AEA content in men with different pathological semen subtypes were
associated with poor semen quality, such as decreased sperm count
and abnormal sperm motility, and also with alterations of CB1 transcrip-
tion (Amoako et al., 2013). Besides AEA, also PEA might play a role in
male infertility. The presence of this compound in male reproductive
tract might modulate plasma membrane polarity, with an effect on
Ca2+ influx during the capacitation process (Ambrosini et al., 2003).
Additionally, PEA might affect some kinematic parameters of sperm
cells (i.e. their motility), and might act on the development of hyperacti-
vation during capacitation, leading to idiopathic infertility (Ambrosini
et al., 2005). Collectively, these data pinpoint eCBs (and in particular
AEA) as potential new biomarkers that may be used to evaluate male
reproductive defects, thus opening new avenues for the treatment of
infertility in humans.

Conclusions
In this review, we have discussed human studies on the assay of eCB
content in female and male reproductive tracts (cells, tissues and
fluids), focusing our attention on how endogenous AEA tone might
exert its function in regulating different reproductive events, from
oocyte and follicle maturation, and normal and pathological pregnancy,
to sperm capacitation, motility and fusion with the oocyte. In females,
the levels of eCBs have been reported from different stages of follicular
development to the gestational period. In males, ECS components
were identified in human sperm cells and seminal plasma, but the

endogenous tone of eCBs remains to be addressed at different stages
of gametogenesis.

Keeping in mind that fertilization fails in up to 10% of IVF cycles (Lewis
et al., 2012), available data might point to AEA and other ECS elements
as new candidate biomarkers for infertility, and for devising strategies
for fertility preservation under normal and pathological conditions
(Table III).

The identification of AEA as a potential biomarker to be exploited to
determine pregnancy outcome and sperm fertilizing ability appears to
hold some potential for reproductive health. Overall, assessing the
content of eCBs as biomarkers in female and male reproductive tracts
may be an addition to the assays of conventional hormones (e.g. P and
hCG) and to semen analyses. On a final note, assays of FAAH activity/
expression and of AEA content in peripheral blood offer the advantage
of being routinely performed in easily accessible cells, by means of high
throughput techniques like radiochromatography/enzyme-linked im-
munosorbent assays, and LC-MS/UPLC-MS/MS. Therefore, these ana-
lyses have the potential to be useful in predicting impaired sperm
fertilizing ability as well as the outcome of natural and/or assisted repro-
duction in pregnant women and in pregnancy complications. However
further quantitative research of their sensitivity and specificity for predict-
ing the various fertility defects is required.
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Maccarrone M, Finazzi-Agrò A. Anandamide hydrolase: a guardian angel of human
reproduction? Trends Pharmacol Sci 2004;25:353–357.

Maccarrone M, Wenger T. Effects of cannabinoids on hypothalamic and reproductive
function. Hand Exp Pharmacol 2005;168:555–571.

Maccarrone M, Valensise H, Bari M, Lazzarin N, Romanini C, Finazzi-Agrò A. Relation
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