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Synopsis The likelihood of marine invertebrates to maintain large geographic ranges is widely dependent on the ability

of their early ontogenetic stages to disperse over long distances. Marine benthic invertebrates inhabiting the cold-

stenothermal environment of the Southern Ocean are known for their overall reduced number of pelagic larvae, or

drifting stages of any kind, when compared with organisms elsewhere in the sea. The diversity of organisms thriving in

Antarctic waters is the result of evolution in situ and of the intrusion of species from surrounding seas. The reasons for a

high level of endemism and a stunning diversity of benthic invertebrates found today are frequently discussed in the

literature, but the mechanisms whereby diversity has been controlled over time remain largely theoretical. Here, I suggest

that, indeed, early life-history patterns play a key role in defining the radiation and the speciation potential of Antarctic

benthic invertebrates. In arguing this case, I synthesize the growing body of molecular studies on population connectivity

in Antarctic benthic invertebrates, and compare this information with knowledge of their life histories and biogeography.

I conclude that differences in early life-history patterns are key to the resilience potential of species in response to late

Cenozoic glacial periods and propose that there is a direct relationship between rate of speciation and the ability of taxa

to disperse.

Introduction

Historically, one of the most controversial concepts

in marine ecology has been the question of a latitu-

dinal gradient in the occurrence of pelagic plankto-

trophic larvae (Thorson 1936, 1950; Mileikovsky

1971; Clarke 1992; Arntz and Gili 2001; Thatje

et al. 2003, and references therein). Based on his

pioneering work carried out in Danish and Arctic

waters, Danish benthologist Gunnar Thorson sug-

gested that the decline in the occurrence of pelagic

larval forms with increasing latitude is an adaptation

to the mismatch of prolonged developmental

times and short seasons of food availability, ulti-

mately selecting against the occurrence of a feeding

stage in pelagic larvae in polar seas. What later

became known as Thorson’s rule, named by

Mileikovsky (1971), has for decades, dominated the

discussions of whether reproductive patterns in polar

invertebrates are really any different from elsewhere

in the sea. Unsurprisingly, and in particular for the

Antarctic marine realm, any records of pelagic larvae

in polar seas have subsequently been used to chal-

lenge Thorson’s concept (for discussion see: Clarke

1992; Pearse et al. 1994; Poulin and Feral 1996;

Stanwell-Smith et al. 1997; Gallardo and Penchasza-

deh 2001, Thatje et al. 2005d, and references

therein).

There is no doubt that since Thorson’s early

works, the field of invertebrate reproduction has

seen a tremendous progress in our understanding

of the ecology and physiology that underlie inverte-

brate reproductive traits. For instance, Thorson dis-

tinguished between planktotrophic (pelagic) and

lecithotrophic (benthic) larvae (Mileikovsky 1971).

Today, we know of a great variety of intermediate

larval feeding modes both in benthic and pelagic
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larvae (e.g., Anger 2001; Anger et al. 2002, and ref-

erences therein). The total number of described

larval morphotypes known from the Southern

Ocean is still less than 250 (Stanwell-Smith et al.

1997, 1999; Thatje et al. 2005d), which stands in

great contrast to an estimated more than 15,000 spe-

cies of benthic invertebrates (with about 8200 species

scientifically described so far) (see Griffiths 2010;

Clarke and Johnston 2003) potentially inhabiting

the continental shelves of Antarctica (Gutt et al.

2004). The most important work of recent years is

undoubtedly that of Stanwell-Smith et al. (1997,

1999) describing 131 larval types for waters off

Signy Island. This record may even be an underesti-

mation of species found there since the identification

of larvae is difficult without standardized taxonomic

local keys or the use of molecular tools. Nevertheless,

it does not change the fact that despite decades of

research since Thorson provided us with his ground-

breaking insights, the low diversity, as well as low

abundance, of planktonic larval forms in Antarctic

waters remains apparent.

In this synthesis I elaborate on the idea that the

early life cycle, and in particular, the ability of early

ontogenetic stages to disperse, plays a key role in the

evolutionary history of Antarctic benthic inverte-

brates. Alhough this may be intuitive to marine ecol-

ogists, the link between the degree of complex early

life history, distribution range, and species diversity,

is less obvious in Antarctica. The question of pelagic

versus non-pelagic larvae remains of significance in

this context, but I will argue herein that it is the

peculiarities of ecological and physiological adapta-

tions in Antarctic benthic invertebrates and the ef-

fects of those attributes on reproductive modes that

are key to their resilience over time, and in particu-

lar, in response to late Cenozoic glacial–interglacial

cycles (Crame 1999; Thatje et al. 2005d, 2008).

Alhough I personally regard Thorson’s macroeco-

logical concept to be conclusive, there are ecological

and physiological parameters prevailing in cold

waters that may have led to an underestimation of

the number of existing larval forms and the diversity

in nutritional states, and that combine to directly

affect the potential ability of a species to disperse;

(1) longevity in Antarctic invertebrates may contrib-

ute to an underestimation of the total number of

pelagic larval forms and of the frequency of success-

ful recruitment (Dayton and Oliver 1977; Dayton

1989); (2) as a consequence of longevity, reproduc-

tion may be more irregular and successful recruit-

ment via pelagic life stages may be sporadic and

even less frequent, for example, occurring less than

once in a decade (Dayton and Oliver 1977; Dayton

1989); (3) reproductive effort might be directed

to periods with more favorable conditions for

larvae even within a narrow temperature window

(Stanwell-Smith and Peck 1998); (4) prolonged

developmental times, as a result of low polar tem-

peratures, may aid dispersal in any form of early life-

history stage regardless of whether the larvae are

pelagic or benthic; the pelagic larval stage may be

short and inappropriate for use as a general indicator

of long-distance dispersal (cf. Wilson et al. 2007); (5)

simple comparisons of egg sizes as an energetic

measure across latitudes may not always be a valid

measure of energy contents, as so often is used as an

indirect measure of lecithotrophy (Anger et al. 2002;

Thatje and Mestre 2010; Hall and Thatje 2012); and

(6) the means of transport of early life-history stages

are more diverse than previously believed.

Today, we distinguish a range of nutritional states

associated with both pelagic and benthic (demersal)

larvae. Lecithotrophy (endotrophy) in development

occurs in benthic brooders, as well as in broadcasters

with pelagic larvae, and many intermediate forms of

feeding ranging from facultative lecithotrophy to full

planktotrophy, can be found in marine invertebrates.

However, we know very little about these modes in

polar invertebrates and what we do know is usually

concentrated in specific taxonomic groups, thanks to

dedicated careers of individual scientists. This, to-

gether with the limited available knowledge of inver-

tebrate reproduction in the cold, however, may bias

the scientific community’s perception of macroeco-

logical patterns.

Knowledge of reproductive modes is important for

an understanding of the evolution of the diversity of

organisms in the Antarctic benthos. I will argue this

case by discussing examples of species with known

geographic ranges, and for which we have knowledge

of genetic population identity, thanks to the increas-

ing body of data from molecular biological works in

recent years (Grant et al. 2011). I believe that the

combination of the emergent molecular tools and

traditional approaches to larval developmental biol-

ogy will be a key to increasing our understanding of

the evolution of life in cold waters.

Antarctic evolution in a nutshell

Antarctica is the most isolated continent on earth,

isolated physically by a strong Antarctic Circumpolar

Current (ACC), the polar frontal system, a circum-

Antarctic deep ocean, and physiologically by low,

and often sub-zero, temperatures (Fig. 1). Life in

Antarctica as seen today is the result of the geo-

tectonic history of the continent and the associated
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climatic change dating back as far as the breakup of

the Gondwana supercontinent in the early Jurassic,

about 200 Ma ago. However, it is not until the late

Cretaceous, about 70 Ma that the Antarctic conti-

nent, still connected through shallow-water gateways

with Australia and South America, somehow resem-

bled the overall shape of the continent as seen today

(Lawyer et al. 1992; Crame 1999).

There is general consensus that the onset of south-

ern hemispheric cooling, starting at the Paleocene–

Eocene boundary, about 55 Ma, defined the climatic

evolution of the Southern Ocean (Crame 1999, and

references therein). This process, often referred to as

Antarctic cooling, followed several cooling steps,

with the last one not occurring until about 14

Ma ago (Zachos et al. 2001; Shevenell et al. 2004).

Significant in this process was the opening of ocean

gateways around Antarctica, in particular, the Drake

Passage at about 30 Ma ago (Lawyer et al. 1992).

This allowed for the formation of the vigorous and

deep-reaching ACC, which is the main force behind

the physical and physiological (thermal) isolation of

the Southern Ocean, with the Polar Front being its

most enigmatic oceanographic feature (Fig. 1). The

exact timing of the opening of Drake Passage is con-

troversial and varies from 6 to 41 Ma ago (Scher and

Martin 2004; Lyle et al. 2007). In addition, it remains

unclear whether the onset of the ACC was responsi-

ble for the overall cooling of the Southern Ocean and

glaciation of East Antarctica, or whether glaciation

alone drove overall cooling.

Molecular biology may provide some answers

to this problem in dating; whereas Chen et al.

(1997) put the radiation of the Antarctic teleost ice-

fish (Notothenioidei) at about 15 Ma (but see

Bargelloni et al. 2000), the radiation of brooding

Fig. 1 Schematic of the Southern Ocean and Antarctica, with focus on oceanographic and geological features.

472 S. Thatje

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article/52/4/470/663979 by guest on 20 April 2024



peracarid amphipods of the Antarctic species of the

family Epimeridae was estimated at 15.7 Ma (Lörz

and Held 2004). However, the fossil record in sup-

port of change in the benthic community over geo-

logical time is very limited because of the permanent

ice cover of Antarctica. The only fossil data support-

ing prehistoric dispersal are those of Beu et al. (1997)

which suggest that radiation events in bivalve mol-

luscs occurred at the Oligocene–Early Miocene and

Miocene–Pliocene boundaries, thereby supporting

circum-Antarctic dispersal/radiation.

Today’s benthic communities inhabiting the

Antarctic continental shelf are not only unique in

species richness, but also in community structure.

Particularly striking is the absence of benthic preda-

tors that structure benthic communities elsewhere in

shallow seas: durophagous bony fish, sharks, crabs,

and rays are absent or rare. The absence of duropha-

gous predators has been reported throughout the

limited fossil record of Antarctica and has been

linked to an inability to rise to the physiological

challenges of adaptation to cold (see Aronson et al.

2007; Peck 2002; Thatje et al. 2005b, and references

therein). The stunning diversity and flourishing of

other groups such as peracarid crustaceans and a

high diversity of benthic filter feeders may be directly

or indirectly linked to reduced pressure from preda-

tion (Aronson et al. 2007).

The Antarctic fauna has a long history of evolu-

tion in situ (Dell 1972; Clarke and Crame 1989,

2010). Phylogenetic studies (Brandt 1991, 1992) in-

dicate that some groups’ evolutionary past dates back

further than the onset of Antarctic cooling, and

strong biogeographic affinities are evident between

Antarctica and the Magellanic sub-Antarctic region

(Arntz et al. 2005). Nevertheless, a high degree of

endemism in the Southern Ocean points at a long

period of isolation (Clarke and Crame 2010).

Phylogeographic work in recent years indicates that

evolution in situ, as well as faunal exchange with

surrounding seas, may have been significant over a

long time, and speciation across the oceanographic

frontal system of the Polar Front, as well as deep-sea

radiation of species in and out of the Southern

Ocean, is possible (Page and Linse 2002; Brandt

et al. 2007; Wilson et al. 2009; Krabbe et al. 2009).

A striking feature of the more recent climatic his-

tory is the advance and retreat of the Antarctic con-

tinental ice cap in glacial–interglacial cycles, known

as Milankovitch cycles. During the late Cenozoic,

approximately the last 2.5 Ma, the advance of the

grounded ice sheet across the continental shelf to

the outer shelf break erased the benthos around

Antarctica. A modeling approach suggests that the

continental shelf may have been completely covered

by grounded ice sheets at least at maximum glacial

extent, which would have left little, or no refuge for

the benthos (Huybrechts 2002). However, the extent

of ice certainly followed diachronous—time trans-

gressive—fluctuations, and either persistent shelters

or migration from one shelter to another may have

allowed benthos to dodge extinction (Thatje et al.

2005d, 2008). At the shelf’s edge, the grounded ice

masses released huge amounts of glaciogenic debris,

which was then redeposited down the continental

slope by sedimentary gravity flows, such as slides,

debris, and turbidity flows. Overall, glacial periods

exposed the shelf’s benthos to large-scale distur-

bances that greatly exceeded the levels of disturbance

by grounded ice seen today (Gutt and Piepenburg

2003; Thatje et al. 2005d, 2008). Further, the binding

of water in land-based glaciers and ice sheets caused

drastic and rapid changes in sea level during those

times, likely influencing ocean currents in the

Southern Ocean (Lambeck and Chappell 2001;

Lambeck et al. 2002; Edwards 2006).

It is argued that the genetic diversity of popula-

tions found today, especially in shallow-water ben-

thic taxa with strong depth zonation by depth, is

mainly a reflection of habitat availability during

that period (for discussion, see Thatje et al. 2005d).

Although in many cases the evolutionary history of

shallow Antarctic benthos likely dates back to earlier

periods, the rather extreme changes in habitat, and

possibly in availability of food (Thatje et al. 2008)

may have been the predominant selective forces

shaping the genetic identity of today’s shelf species.

In this context, Pearse et al. (2009) emphasize

however, that brooding is likely an evolutionary ad-

aptation dating back to periods prior to Antarctic

cooling and that its predominance in many

Antarctic invertebrate taxa is unlikely a specific ad-

aptation to polar conditions. Conversely, environ-

mental conditions prevailing in the Last Glacial

Maximum (LGM) may have widely selected against

pelagic larvae that rely upon primary productivity

(for discussion, see also Thatje et al. 2008).

The ability of extant species to survive glacials may

have been directly related to their ability to respond

to changing conditions, for instance by either surviv-

ing in small populations in shelf refugia and/or the

ability to seek refuge elsewhere in the deep Southern

Ocean, such as in the deep sea adjacent to the shelf

(Brey et al. 1996; Raupach et al. 2009), or even in the

sub-Antarctic. Indeed, the ability to disperse or mi-

grate over long distances must have been a key ele-

ment in survival during those periods.
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Dispersal mechanisms in Antarctic
invertebrates

A whole range of dispersal mechanisms of Antarctic

marine invertebrates are known, many of which are

typical of benthic invertebrates elsewhere in the sea.

Differences in dispersal times as a result of slow

development in the cold, however, can result in ex-

ceptional distributional ranges, such as the circum-

Antarctic distributional pattern of invertebrates (Dell

1972; Pearse et al. 1991; Clarke and Johnston 2003),

a concept that has traditionally been based on the

identification of constant morphological characters

among populations of the same species. Here, an

overview of dispersal mechanisms follows, highlight-

ing a range of Antarctic-specific means of transport.

Pelagic dispersal modes

Pelagic drift of any kind is still considered the most

effective dispersal mechanism. Invertebrates with

partial or full pelagic larval development have an

opportunistic advantage in early colonization of

new habitats, such as those resulting from local ice

scour. Despite being found in low numbers, larvae of

certain taxa seem to occur year-round or over several

seasons. Although containing a high number of

brooders as well, echinoids and ophiuroids are

found as planktotrophic larvae (Pearse et al. 1994;

Poulin and Feral 1996; Stanwell-Smith et al. 1999).

Of the bivalve species of the continental shelf in the

Weddell Sea, studied by Hain and Arnaud (1992), 14

out of 44 species appeared to have planktotrophic

larvae, but the absence of any bivalve larvae from

the plankton suggests that any bivalve offspring

might be of demersal occurrence or of short dura-

tion. A classical example of a fully planktotrophic

development is that of the three most abundant

continental shelf/slope caridean shrimp species

Chorismus antarcticus, Notocrangon antarcticus, and

Nematocarcinus lanceopes (Bruns 1992; Thatje et al.

2005c, 2005a) and it is likely that Southern Ocean

shrimp species follow this pattern. The majority of

filter and suspension feeders, such as ascidians,

sponges, and bryozoans are generally known to

follow a short-lived pelagic life cycle, often lecitho-

trophic, although few case studies have clearly

proven this for Antarctic representatives (e.g., Brito

et al. 1997).

Benthic dispersal modes

The ability of larvae and juveniles to distribute by

means of demersal living and by benthic currents has

generally been neglected. Several studies suggested

that absence from the water column should indicate

larvae to be benthic living (e.g., Hain and Arnaud

1992; Thatje and Mestre 2010), but systematic sam-

pling of bottom waters for larvae and early juveniles

has only rarely been attempted. Given the slow de-

velopmental rates and potentially long drift times in

Antarctic invertebrate larvae, however, demersal drift

over long periods may be an important transport

mechanism, comparable with pelagic transport.

Significant in this context is the effect of ice scour

by grounded ice masses, typical of Antarctic shelves

all around the continent, resuspending benthic ma-

terial and organisms. Ice scour may aid the dispersal

of fragmented colonial benthos, such as bryozoans,

hydrozoans, and sponges, which may be able to re-

establish elsewhere; this is an often-disputed assump-

tion that still demands experimental proof. Even

more important in this process may be the mobili-

zation of epifauna attached to such fragmented or-

ganisms, which may carry such animals as bivalves or

even peracarid crustaceans over otherwise impossible

distances (Helmuth et al. 1994; Higgs et al. 2009).

Benthic dispersal should be the predominant possi-

bility of transport for brooding species, many echi-

noderms, bivalves, polychaetes, and the extremely

diverse peracarids, but achievable dispersal distance

might be limited overall (see next chapter). Rather

peculiar means of transport have been reported for

benthic bivalves, which successfully passed through

the gut of the notothenioid fish, Notothenia coriiceps

(Domaneschi et al. 2002). It is therefore likely that

future autecological studies will yield further means

of transport for benthic invertebrates and their

offspring.

Rafting

In an environment in which the Westwind Drift is

driving the ACC as the predominant current system

clockwise around the Antarctic continent, rafting on

macroalgae and debris of any kind might be a suc-

cessful way to disperse over long distances (Dell

1972; Barnes 2002), and was tested by Highsmith

(1985) and observed by Helmuth et al. (1994) for

the brooding pelecypod bivalve Gaimardia trapesina.

Though the ACC is the most prominent current in

the Southern Ocean, the counter-clock current closer

to the continent, as well as more regional gyre sys-

tems of significance, such as the Weddell Sea Gyre,

may significantly aid dispersal of invertebrates by

means of rafting (Barnes 2002; Arntz et al. 2005).

The potential for successful expansion of the geo-

graphic range and establishment of new populations

by rafting may be high for brooders, as a new area
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could be colonized by just a single brooding female

(Pearse and Lockhart 2004; Higgs et al. 2009).

It has long been recognized that pumice and drift-

wood can move both into and out of the Southern

Ocean (Barber et al. 1959; Coombs and Landis

1996). Such means of transport might be recurrent

in areas of tectonic spreading zones, such as the

Scotia Arc, although occurrence of pumice might

be extremely irregular and evidence for associated

rafting fauna is rare and to date has only been

found in two kelp-associated peracarid crustaceans

(but see Nikula et al. 2010).

Anthropogenic means of transport

It is noteworthy that human activities may increas-

ingly support the introduction of marine organisms

into Antarctica. Warming of the climate is lowering

the physiological barrier of low temperature to inva-

sion, in particular, along the rapidly warming waters

off the Western Antarctic Peninsula (Meredith and

King 2005), and may open up niches for the estab-

lishment of invasive species with unprecedented con-

sequences for the native fauna (Aronson et al. 2007).

In this context, the transport of sub-Antarctic and

already rather cold-adapted species by means of foul-

ing on ship hulls (Lee and Chown 2009), or by trans-

port in ballast water should be recognized (Aronson

et al. 2011).

The direction of larval transport is driven by local

and large-scale current systems, of which the ACC is

the most prominent one in the Southern Ocean

(Fig. 1). Local retention in gyre systems even at

larger scales (e.g., Weddell Sea Gyre) is possible

and may enhance the distribution of cryptic species

and the gene flow among populations. More re-

cently, it has become evident that eddy systems

might be a means of crossing oceanographic frontiers

as strong as the Polar Front, thereby providing

means of transport for larvae from otherwise physi-

cally isolated regions, such as the northern and

southern branches of the Scotia Sea (Thatje and

Fuentes 2003; Arntz et al. 2005; Glorioso et al.

2005). Strengths of ocean currents in the Southern

Ocean may have been different or changed in direc-

tion during glacial periods (Lambeck and Chappell

2001; Lambeck et al. 2002) as a result of the extent of

continental ice extent and of permanent cover by sea

ice in vast areas of the Southern Ocean (Thatje et al.

2008) and may have affected dispersal by the drifting

of early ontogenetic of any kind in different ways

than seen today (cf. Page and Linse 2002). This

area of research requires much more future attention

and collaboration of biologists, (paleo)-oceanogra-

phers, and modelers.

Effects of dispersal modes on
(genetic) diversity

The use of genetic studies to assess the genetic var-

iability of Antarctic organisms has given rise to a

new era of understanding species delineation, cryptic

species (species representing a high level of genetic

difference but which resemble one another morpho-

logically), and population (haplotype) diversity that

may indicate the level of genetic connectivity among

populations (e.g., Page and Linse 2002; Janosik et al.

2011; Hoffman et al. 2012). Further, the use of DNA

sequences offers novel opportunities to identify

marine invertebrate larvae and helps understand

better life-history patterns in benthic invertebrates

(Webb et al. 2006; Janosik et al. 2008; Heimeier

et al. 2010; Mahon et al. 2010). Of all marine taxa

that have been studied by molecular means to date,

the arthropods and, in particular, the Peracaridea

have received most attention (Grant et al. 2011).

Although a relatively young area of research in an

Antarctic context, a few years of study have identi-

fied an unexpected number of cryptic species in

Antarctica, mostly from the continental shelves.

Cryptic speciation seems particularly common in

the brooding peracarid crustaceans, which are most

species-rich in the Southern Ocean (Clarke and

Johnston 2003), and have been found not only on

the continental shelves but also in the adjacent deep

sea (Held 2003; Raupach et al. 2007, 2009). Cryptic

species have also been reported in echinoderms such

as ophiuroids, echinoids, and brooding pycnogonids

(Table 1 for more examples; Fig. 2).

Unsurprisingly, the growing body of work on

cryptic speciation has been used to challenge the tra-

ditional concept that many Antarctic benthic inver-

tebrates have a circum-Antarctic distribution (Dell

1972). In support of this, various shallow-water

taxa have also been split into new species or

species-clusters following genetic study (e.g., Lörz

et al. 2009; Brandão et al. 2010), but has the

circum-Antarctic species concept really lost its valid-

ity? The study by Raupach et al. (2010) clearly dem-

onstrated that there is a direct relationship between

larval dispersal mode and circum-Antarctic distribu-

tion. In their study of the shallow-water shrimp

C. antarcticus and the deep-sea shrimp N. lanceopes,

the authors evidenced by the use of two mitochon-

drial and one nuclear gene fragment that regional

genetic differentiation was apparent without cryptic

speciation, supporting the circum-Antarctic species
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Table 1 Cases of genetic diversity in Antarctic benthic invertebrates. Comparison with species distributional ranges provides an indirect

measures of potential for dispersal

Species Genetic pattern Study area Reproductive mode Genetic marker Reference

Chorismus antarcticus

(Decapoda)

Panmixia, reduced

haplotype diversity,

post-glacial expansion

Circum-Antarctic

(shelf depth)

Planktotrophic larva COI, 16S 18S,

28S

Raupach et al. 2010,

Thatje et al. 2005a

Nematocarcinus lan-

ceopes (Decapoda)

Panmixia, high haplotype

diversity

Circum-Antarctic

(deep sea and deep

continental slope)

Planktotophic larva COI, 16S 18S,

28S

Raupach et al. 2010,

Thatje et al. 2005a

Lissarca notorcadensis

(Bivalvia)

Cryptic speciation Sub-Antarctic, weddell

Sea, WAP, Ross Sea

Brooder COI Linse et al. 2007

Margarella Antarctica

(Bivalvia)

Highly restricted

gene flow

WAP Brooder AFLP Hoffman et al. 2011a

Nacella concinna

(Gastropoda)

Homogenous species,

differentiation at

population level

Scotia sea islands, WAP Planktotrophic larva COI, AFLPs Gonzalez-Wevar

et al. 2011;

Hoffman et al.

2011a, 2011b

Doris kerguelenensis

(Nudibranchia)

Rapid post-glacial

expansion; potentially

cryptic species

Circum-Antarctic Direct developer COI Wilson et al. 2009

Promachocrinus kergue-

lensis (Crinoidea)

Some haplotype diversity

found; intermediate,

suggesting limited

pelagic dispersal

WAP and Scotia sea Short pelagic larva (?) COI, CytB Wilson et al. 2007

Promachocrinus kergue-

lensis (Crinoidea)

Circum-Antarctic;

sympatric in seven

mitochondrial lineages,

restricted gene flow,

East Antarctica

Circum-Antarctic Short pelagic larva (?) COI, CytB, 16S,

28S, ITS

Hemery et al. 2012

Astrotoma agassizii

(Ophiuoridea)

Homogenous population

at intermediate scale

(4500 km)

Drake Passage Brooder, some dis-

persal potential

shown

COII, 16S rRNA Hunter and Halanych

2008

Astrotoma agassizii

(Ophiuroidea)

Evidence for likely cryptic

speciation in South

America; homogenous

populations in Ross

Sea

Ross Sea Possibly planktonic

larva in Antarctica,

brooding in South

American lineages (?)

COI, 16S Hunter and

Halanynch 2008,

Heimeier et al.

2010

Ophionotus victoriae

(Ophiuroidea)

Evidence for cryptic

speciation; some

genetically homoge-

nous populations

WAP, Southern

Ocean Islands

Planktotrophic larva

(short duration?)

COI, 16S Hunter and Halanych

2010

Odontaster species

(Astyeroidea)

Multiple species found,

cross ACC distribution

in O. meridionalis,

restricted distribution

to either side of Polar

Front in other

Odontaster species.

WAP, sub-Antarctic/

Atlantic, Ross Sea

Pelagic larva COI, 16S Janosik et al. 2011

Abatus cordatus

(Echinoidea)

Significant differentiation

at the population level

Kerguelen Islands

(endemic)

Brooder Microsats, EPIC

markers

Ledoux et al. 2012

Parbolasia corrugatus

(Nemertea)

Cryptic speciation

(but low diversity;

two forms)

South Orkney Islands;

sub-Antarctic and

circum-Antarctic

Planktotrophic larva COI Rogers et al. 1998;

Thornhill et al.

2008

Eusirus perdentatus,

Eusirus giganteus

(Amphipoda)

Highly restricted gene

flow, possible cryptic

speciation and/or

speciation

Circum-Antarctic Brooder COI, CytB, ITS2 Baird et al. 2011

Durvillaea antarctica

(Amphipoda)

Single haplotype found Circum-Antarctic

through rafting on

kelp

Brooder COI Nikula et al. 2010

(continued)
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concept. This is significant because both species have

planktotrophic larvae that persist in the water

column for several months, thereby aiding long-

distance dispersal (Thatje et al. 2005c, 2005a).

Furthermore, the study indicated a Pleistocene pop-

ulation expansion in C. antarcticus, suggesting a de-

mographic, post-glacial expansion following habitat

contraction during glaciation of the continental

shelf. In contrast, the deep sea, which is habitat for

N. lanceopes, allowed this species to develop and

most importantly, maintain higher haplotype diver-

sity, whereas glacial periods led to an impoverished

diversity in the shallow-water shrimp. The potential

advantage of broadcasters over brooders to maintain-

ing large distribution areas is possible best supported

by the study of Hoffman et al. (2011) in which the

authors present a more restricted gene flow in the

brooding molluscs Margarella antarctica compared

with the broadcasting Nacella concinna along the

Antarctic Peninsula.

Such evidence supports the direct advantage of

broadcasters versus brooders in maintaining geneti-

cally homogeneous populations and species-identity

over long geographic distances. This is also and in-

directly supported by the cryptic speciation and high

population diversity found in Southern Ocean

deep-sea peracarids (Table 1). It should however,

be noted that sampling effort and advance of molec-

ular approaches over time may complicate generali-

zations. In an early work on genetic diversity of

the crinoid Promachocrinus kerguelensis sampled

along the West Antarctic Peninsula (WAP, Fig. 1),

Wilson et al. (2007) supported the view that the

short occurrence of pelagic drifting stages assumed

for this species increases genetic distance among

populations over intermediate distance. In contrast,

more recent study by Hemery et al. (2012), using

large dataset from around Antarctica, demonstrated

high connectivity between populations over wide

areas of the Southern Ocean and in particular,

along the Antarctic Peninsula. This example quite

strikingly demonstrates how our view of genetic di-

versity pattern may change in individual taxa as mo-

lecular approaches develop and large-scale sampling

has been achieved. Nevertheless, this may not entirely

contradict previous work, because barriers to gene

Table 1 Continued

Species Genetic pattern Study area Reproductive mode Genetic marker Reference

Orchomenella franklini

(Amphipoda)

High genetic

differentiation

East Antarctica Brooder Microsats Baird et al. 2012

Leucon species-complex

(Cumacea)

Potentially cryptic

species, although more

evidence needed

WAP, Weddell and

Ross seas,

circum-Antarctic

Brooder COI, 16S Rehm 2009

Acanthaspidia drygalskii

(Isopoda)

Some evidence for

cryptic speciation

Circum-Antarctic,

also deep sea

Brooder 16S Raupach and

Wägele 2006

Betamorpha fusiformis

(Isopoda)

Cryptic speciation Deep sea Brooder 16S, 18S Raupach et al. 2007

Septemserolis

septemcarinata

(Isopoda)

Significant genetic

differentiation found,

but one species still;

result of recent

expansion or rafting?

Scotia sea to Bouvet Brooder COI, Microsats. Leese et al. 2010

Glyptonotus antarcticus

(Isopoda)

Cryptic speciation Circum-Antarctic Brooder 16S Held and Wägele

2005

Ceratoserolis trilobitoides

(Isopoda)

Cryptic speciation Circum-Antarctic Brooder 16S Microsat. Held 2003, Leese and

Held 2008

Limnoria stephenseni

(Isopoda)

Single haplotype found Circum-Antarctic

through rafting on

kelp

Brooder COI Nikula et al. 2010

Macroscapha tensa

(Ostracoda)

Increased number of

cryptic and

morpho-species

Circum-Antarctic

(Weddell Sea, Ross

Sea)

Brooder COI, ITS Brandão et al. 2010

Nymphon australe

(Pycnogonida)

Cryptic speciation Circum-Antarctic Brooder COI, 16S Mahon et al. 2008;

Arango et al. 2010

Colossendeis megalonyx

(Pycnogonida)

Cryptic speciation Antarctic and

sub-Antarctic

Brooder COI Krabbe et al. 2009
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flow appeared evident in East Antarctica and given

the uncertainty about its larval developmental mode

and developmental time in the pelagic, P. kerguelensis

may not contradict the hypothesis developed in this

article. The example does furthermore imply that,

indeed, local conditions, for example, in current in-

tensity may foster or restrict the gene flow indepen-

dent of developmental mode, which may potentially

explain restricted gene flow in East Antarctica in

comparison with the Antarctic Peninsula region

(for details, see Hemery et al. 2012). Finally, it

should be highlighted however, that two brooding

peracarid species were found to maintain panmixia

by means of rafting on macroalgae (Nikula et al.

2010) and therefore, achieving circum-Antarctic dis-

tribution is not exclusive to broadcasters alone.

The question arises: do broadcasters really have an

evolutionary advantage over brooders in Antarctic

waters? Brooders limited to shallow waters may

have marginally dodged extinction during glacial pe-

riods, but nevertheless, seem to dominate the

Antarctic benthos in terms of species richness. This

holds particularly true for the peracarid amphipods

and isopods, and may be similar for other groups

that scarcely have been studied so far (but for dis-

cussion of brooding in echinoderms, see Poulin and

Feral 1996). If evolutionary success is measured by

the ability of a single species to maintain its distri-

butional area over long periods of time, then the

example of the Antarctic shrimp may be the

answer. If we measure evolutionary success as the

ability of a taxonomic group to respond to an evo-

lutionary bottleneck by developing even more so-

phisticated ecotypes resulting in increased diversity,

then the peracarid crustaceans must be considered

champions of Antarctic diversity.

Conclusions

The limited, though intriguing, molecular evidence

available suggests that there is a direct relation-

ship between dispersal potential/distance and main-

tenance of homogenous genetic population structure.

Haplotype diversity increases where dispersal dis-

tance is reduced below population distance or is

less frequent overall as a consequence of irregular

or less frequent reproductive events. Cryptic specia-

tion is commonly found in brooding species, but is

Fig. 2 Schematic of genetic diversity found in shallow and deep waters off Antarctica, as interpreted from available case studies;

Overall, low genetic diversity in broadcasters and high level of cryptic speciation is suggested for invertebrates inhabiting the Antarctic

continental shelf. In contrast, broadcasters maintain high genetic diversity in the circum-Antarctic deep sea; the continental slope is

likely a mixing zone of deep- and shallow-water characteristics in genetic pattern, with deep fauna emerging onto the slope

(cf. Brey et al. 1996; Thatje et al. 2005d); exceptions from this overall suggested pattern for individual taxa are likely. CS, cryptic

speciation; GD, Genetic diversity (population level; cf. Table 1).
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also apparent in cases in which pelagic larval stages

are of short duration. Cryptic speciation may be the

result of a wide geographic range (e.g., circum-

Antarctic) of a species-complex and limited dispersal

potential in brooders. However, there is evidence

that population (haplotype) diversity is increased

even in shallow-water (shelf-depth) inhabiting

broadcasters with long-distance dispersal by means

of planktotrophic larvae. The increase in haplotype

diversity and cryptic speciation seen in shallow-water

benthos, regardless of larval developmental mode, is

a strong indicator of habitat contraction during late

Cenozoic glacial periods. Whereas rapid habitat

expansion following retreat of the sea ice is seen in

pelagic broadcasters, brooders appear to maintain

genetic differentiation at local scales, resulting in

cryptic speciation.
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Ledoux JB, Tarnowska K, Gérad K, Lhuillier E, Jacquemin B,
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