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Synopsis Migratory animals are simultaneously challenged by the physiological demands of long-distance movements

and the need to avoid natural enemies including parasites and pathogens. The potential for animal migrations to disperse

pathogens across large geographic areas has prompted a growing body of research investigating the interactions between

migration and infection. However, the phenomenon of animal migration is yet to be incorporated into broader theories

in disease ecology. Because migrations may expose animals to a greater number and diversity of pathogens, increase

contact rates between hosts, and render them more susceptible to infection via changes to immune function, migration

has the potential to generate both ‘‘superspreader species’’ and infection ‘‘hotspots’’. However, migration has also been

shown to reduce transmission in some species, by facilitating parasite avoidance (‘‘migratory escape’’) and weeding out

infected individuals (‘‘migratory culling’’). This symposium was convened in an effort to characterize more broadly the

role that animal migrations play in the dynamics of infectious disease, by integrating a range of approaches and scales

across host taxa. We began with questions related to within-host processes, focusing on the consequences of nutritional

constraints and strenuous movement for individual immune capability, and of parasite infection for movement capacity.

We then scaled-up to between-host processes to identify what types, distances, or patterns of host movements are

associated with the spread of infectious agents. Finally, we discussed landscape-scale relationships between migration

and infectious disease, and how these may be altered as a result of anthropogenic changes to climate and land use. We are

just beginning to scratch the surface of the interactions between infection and animal migrations; yet, with so many

migrations now under threat, there is an urgent need to develop a holistic understanding of the potential for migrations

to both increase and reduce infection risk.

Introduction

The migratory behavior of animals has fascinated

humans for centuries. With the advent of increas-

ingly sophisticated tagging and tracking technologies,

we now know that billions of migratory animals tra-

verse the globe each year in pursuit of food, safety,

and reproductive opportunities (Bowlin et al. 2010;

Bauer and Hoye 2014). Research on animal migra-

tions—broadly defined as consistent, directional

movements from one destination to another, undis-

tracted by intervening resources—has historically fo-

cused on when, where, how, and why animals

migrate (Dingle 2014). However, it is increasingly

recognized that animal migrations have the potential

to alter ecosystem structure, dynamics, and function

in the communities they visit (Bauer and Hoye

2014). In particular, there is growing interest in the

role of these predictable, directed, mass movements

in the transmission and evolution of parasites

(Altizer et al. 2011).

Migrations form unique links between disparate

locations, involve large numbers of individuals, and

may increase parasite exposure through the use of

multiple different habitats and increased interspecies

interactions. As a result, animal migrations are

widely assumed to enhance the cross-species trans-

mission and global spread of parasites. For instance,

migrations are suspected to have facilitated the rapid

emergence and spread of neotropical ticks (Cohen et

al. 2015), Phocine Distemper Virus (Harding et al.

2002), Mycoplasma gallisepticum (Hochachka and

Dhondt 2000), and finch trichomoniasis (Lawson et
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al. 2011), as well as zoonotic pathogens including

Ebola virus (Ogawa et al. 2015), avian influenza vi-

ruses (Takekawa et al. 2010; Prosser et al. 2013;

Verhagen et al. 2015), and West Nile virus (Dusek

et al. 2009). Yet, our understanding of the involve-

ment of migrants is often quite superficial. For in-

stance, finding active infection (or antibodies) in

migratory species (Leblebicioglu et al. 2014), and

demonstrating spatio-temporal and phylogenetic cor-

relations between outbreaks and broad migration

patterns (Verhagen et al. 2015) can only provide

coarse indications of the involvement of migrants.

Assessing the importance of animal migrations to

infectious disease dynamics requires the integration

of migration, as an ecological phenomenon, into

formal theories of disease ecology and applications

of physiological ecology.

Migration as a superspreading process

The dynamics of infectious diseases, in both humans

and wildlife, are profoundly altered by so-called

‘‘superspreader’’ hosts (Lloyd-Smith et al. 2005;

Paull et al. 2012). Superspreaders are defined as

those individuals, species, or habitat patches that

are responsible for more secondary cases than an

upper percentile (e.g., 99th) of the expected distri-

bution of transmission events assuming homoge-

neous transmission (Lloyd-Smith et al. 2005; Paull

et al. 2012). These individuals, species, and habitat

patches are typically characterized by increased sus-

ceptibility, competence (intensity and duration of in-

fectiousness), and contact rates (Galvani and May

2005; Hawley et al. 2011; Paull et al. 2012;

Streicker et al. 2013; Barron et al. 2015), and have

been shown to play pivotal roles in shaping the

speed, distance, and overall magnitude of epidemics,

as well as pathogen maintenance and local extinction

(Lloyd-Smith et al. 2005). Critically, although migra-

tion has yet to be considered in the context of super-

spreader theory, migration has been hypothesized to

alter the susceptibility, competence, and contact rates

of species undertaking migration and the locations

they visit en route (Fig. 1). Migration therefore has

the potential to generate both superspreader hosts

and infection ‘‘hotspots’’ in time and space.

In formulating this symposium, we sought to in-

vestigate the potential for migratory animals to act as

superspreaders, based on evidence that migration may

increase contact rates, exposure, susceptibility, and

competence (Fig. 1). Migrations form unparalleled

links between otherwise disconnected geographic lo-

cations, involve large numbers of individuals, and fre-

quently result in unique inter-species interactions

(Altizer et al. 2011; Bauer and Hoye 2014), each of

which are likely to increase the number of contacts

with other potential hosts compared to resident spe-

cies. In addition, hosts that move between regions are

naturally exposed to parasites in each of the regions

they visit, resulting in migratory species experiencing

a higher diversity of parasite exposure and infection

(Figuerola and Green 2000; Jenkins et al. 2012;

Koprivnikar and Leung 2015; Hannon et al. 2016).

Finally, long-distance migration can be incredibly

physiologically demanding, entailing repeated cycles

of strenuous physical exertion and high metabolic

rates interspersed with periods of frantic energy ac-

quisition and physical recovery (Weber and Stilianakis

2007; Piersma and van Gils 2011). These intense phys-

iological demands have been correlated with reduced

immune responses (Owen and Moore 2006, 2008;

Dolan et al. 2016), either directly, or via resource re-

distribution prior to the onset of migration (reviewed

by Buehler et al. 2010 and Altizer et al. 2011). Such

changes to host resistance have been suggested to

render migrants more susceptible to infection (van

Dijk et al. 2014) or reinfection (Gylfe et al. 2000).

Collectively, these traits suggest migration has the po-

tential to act as a superspreading process, both in

terms of novel introductions to and amplification

within resident communities (Fig. 1).

Migration as a transmission–reduction process

Critically, traits that heighten migrants’ exposure, sus-

ceptibility, and contact rates may simultaneously gen-

erate mechanisms that curtail parasite transmission.

First, migrants may have co-evolved with the parasites

throughout their entire migratory range, resulting in

adaptive immune responses (Moller and Erritzoe

1998). Migrants may also upregulate immune func-

tion in response to increased densities of conspecifics

(Srygley and Lorch 2011). Moreover, parasites may

impose constraints on the foraging, fueling, breeding,

and survival of their hosts, particularly in the face of

additional physiological stressors (Ostfeld 2008). The

increased susceptibility and competence of migrants

(due to increased exposure and/or lowered resistance)

can therefore be expected to simultaneously decrease

capacity for migration (Altizer et al. 2011).

Theoretical and empirical work has shown that

when infection renders hosts incapable of migrating

successfully, this ‘‘culling’’ process reduces transmis-

sion potential (Bradley and Altizer 2005; Bartel et al.

2011; Altizer et al. 2015). Cycles of parasite transmis-

sion can be interrupted when migrants depart habitats

that have accumulated infectious propagules, resulting

in reduced transmission through migratory ‘‘escape’’
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(Bartel et al. 2011). Migratory escape may be particu-

larly effective when parasite transmission is restricted

to a single stage of the migratory cycle and when

unfavorable conditions (such as harsh winters or a

lack of hosts) reduce propagule abundance between

intervals of migrant occupancy—(Hall et al. 2014).

The concepts of migratory culling and migratory

escape have been well-documented in monarch but-

terflies (Altizer et al. 2011; Satterfield et al. 2015), but

further evidence exists in tick-infested red deer

(Mysterud et al. 2016), benthic fish infected by skin-

piercing trematodes (Poulin et al. 2012), reindeer in-

fected by warble fly larvae (Folstad et al. 1991), and

the seroprevalence of antibodies to avian influenza

viruses in lesser black-backed gulls (Arriero et al.

2015). Collectively, these findings demonstrate that

migratory behavior can operate as a mechanism to

reduce infection in host populations, with conse-

quences for pathogen transmission, pathogen evolu-

tion, and the evolution of migratory strategies (Altizer

et al. 2011; Hall et al. 2014; Johns and Shaw 2016).

Ultimately, any broad assessment of the role of

migrants in the transmission and evolution of path-

ogens within host communities is predicated on a

detailed understanding of the infection process, in-

cluding the host’s ability to either resist infection, or

tolerate and successfully migrate in spite of their in-

fection burden. Our symposium and the associated

papers in this issue therefore sought to investigate

the interactions between migration and infection

using a range of integrative approaches spanning sev-

eral levels of biological organization. In the sympo-

sium, ‘‘Are migratory animals superspreaders of

infection?’’ speakers explored: (1) effects of strenuous

activity on host resistance, and potential conse-

quences for individual infection; (2) interactions be-

tween immune responses and other stressors, such as

nutrition and reproduction; (3) links between para-

site spread and long-distance movements, and the

spatial limits to these interactions; (4) performance

of infected animals relative to uninfected conspe-

cifics; and (5) infection dynamics and pathogen evo-

lution in the context of environmental change.

Migration, physical exertion, and con-
straints on host immune defenses

Migrations are generally thought to be an evolutionary

adaptation that allows animals to track seasonal

Fig. 1. Migratory animals have the potential to act as superspreading species (sensu Paull et al. 2012) through several interacting

mechanisms. Migrants move between multiple sites throughout the annual cycle, including breeding, non-breeding, and intervening stop-

over sites (i, ii, iii,. . .). In doing so, migrants often experience higher rates of contact with both novel pathogens and susceptible hosts

than resident species at each of these sites. Migrants may also experience increased susceptibility and hence infectiousness through

repeated cycles of migratory preparation and strenuous exercise. However, migration may also reduce transmission by removing

infected individuals from the population (‘‘culling’’) and removing susceptible individuals from habitat patches where infectious stages

have accumulated (‘‘escape’’) .
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changes in the availability of limiting resources, such

that migratory strategies may be fundamentally driven

by dietary needs (Dusek et al. 2009; Jachowski and

Singh 2015). However, in addition to gross calorific

intake, migrations may be driven by more specific nu-

tritional needs or dietary components. Srygley (2016,

this issue) reviews evidence from Mormon crickets

(Anabrus simplex) and migratory locusts (Locusta

migratoria) to reveal that deprivation of either carbo-

hydrates or protein not only initiates collective move-

ments in these hosts, but also increases susceptibility to

bacterial and fungal infection. While the expenditure of

such limited resources during strenuous movement is

widely expected to come at the expense of immune

defenses, identifying these trade-offs is challenging

and, as a consequence, rarely done in free-living ani-

mals. van Dijk and Matson (2016, this issue) therefore

discuss insights into the consequences of physical ac-

tivity for immunity drawn from human exercise phys-

iology. Exercise immunology proposes the existence of

finite ‘‘open windows’’ of susceptibility following exer-

cise (van Dijk and Matson 2016). Taken in the context

of migratory movements, the timing of immunosup-

pression following bouts of movement may therefore

coincide with exposure to (novel) parasites, highlight-

ing the potential for complex temporal interactions be-

tween physical activity and immune responses. Such

conflicts between higher exposure to parasites (espe-

cially owing to increased contact with conspecifics)

and simultaneous constraints on the ability to defend

against them likely occurs in other migratory species

(Moller and Erritzoe 1998; Koprivnikar and Leung

2015) and highlights one of the challenges in predicting

‘‘optimal’’ levels of parasite defense for migrants.

Because the precise causal links between movement

or migration and disease susceptibility are very difficult

to establish, experimental approaches are likely to be

beneficial in this endeavor. One experimental approach

for investigating potential costs of migration for indi-

vidual immunity is the use of forced flight in captive

animals. To this end, Fritzsche McKay and colleagues

(2016, this issue) forced monarch butterflies (Danaus

plexippus) to fly for moderate durations of time across

several days and measured subsequent changes in three

invertebrate immune measures. Because being repro-

ductively active can also constrain resources available

for immune defenses, this study compared effects of

flight on immune responses in groups that differed

in reproductive status: reproductively active or in dia-

pause, the non-reproductive physiological condition as-

sociated with fall migration in the wild (Fritzsche

McKay et al. 2016). Forced flight did not impair any

of the measured immune responses and reproductive

status did not modify the costs of flight for immunity.

However, monarchs in diapause (the migratory condi-

tion) were more efficient fliers than reproductive mon-

archs, suggesting migration-adapted animals may

deploy limited resources more efficiently than non-mi-

grants, potentially rendering any immune costs of flight

less than previously assumed (Weber 2009). Moreover,

reconciling the relationship between immune response

measures and susceptibility to primary infection re-

mains an outstanding challenge in both human exercise

immunology and wildlife eco-immunology (van Dijk

and Matson 2016). This link is essential for scaling-

up individual-level processes to population-level disease

dynamics.

Contributions of migrants to parasite
transmission and spread

Epidemiological theory has long established that

movement of infected individuals between patches

can enhance parasite colonization (Hess et al.

2002), and that such movements may play a pivotal

role in local adaptation and coevolution between

hosts and parasites (Gandon and Michalakis 2002;

Lion and Gandon 2015). As Hill and Runstadler

(2016, this issue) discuss in the context of avian in-

fluenza viruses, a burgeoning number of phylogenetic

analyses imply that animal migration can govern the

structure of transmission networks and maintenance

of pathogen diversity across broad spatial scales. Yet,

this approach is highly sensitive to sampling bias,

with the majority of genetic information obtained

through ‘‘reactionary surveillance’’ targeted at migra-

tory birds following outbreaks of zoonotic disease,

rather than long-term surveillance representative of

all hosts. Hill and Runstadler therefore suggest phy-

logeographics need to be tempered with detailed in-

formation on host physiology, migratory status, and

pathology of infection, in order to assess the relative

contribution of migrants (Newman et al. 2009 and

Verhagen et al. 2014). In particular, because sub-

lethal effects of parasites can be intensified through

periods of increased physiological stress (Pedersen

and Greives 2008), long-distance migrants may be

especially susceptible to negative effects of parasitic

infection. Given the potential for sub-lethal effects of

infection on individual behavior to alter the timing,

location, and total burden of infection (Galsworthy

et al. 2011; Bauer et al. 2015), Hoye et al. (2016, this

issue) add to a limited number of empirical studies

assessing the potential for infection to alter the eco-

logical performance of hosts. Bewick’s swans (Cygnus

columbianus bewickii) that were naturally infected

with avian influenza virus but lacked antibodies in-

dicative of prior infection showed decreased foraging
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rates and were unlikely to be re-sighted one year

after infection (Hoye et al. 2016). However, swans

that were infected but had survived a previous infec-

tion were indistinguishable from uninfected birds in

each of the organismal performance metrics.

Critically, movements were only studied during the

overwintering period and studies examining the mi-

gratory behavior of infected and uninfected animals

remain sorely needed. Ideally, these would be com-

bined with explicit consideration of the duration of

infection (Gaidet et al. 2010) and individual contact

rates (Boulinier et al. 2016) in order to assess the

dispersal potential of migrants.

Hill and Runstadler (2016) also urge that viral flow

may follow more complex patterns of animal move-

ment than the broad flyway-based assumptions used to

date. Movements classified as migration (predictable,

directed, often inter-seasonal), and dispersal (once-off,

permanent relocation from natal site), have received

the majority of attention with respect to parasite trans-

mission and maintenance. Yet, Boulinier et al (2016,

this issue) demonstrate that ‘‘prospecting’’—within

season movements from the site of breeding to other

potential breeding sites—can influence the spatial ecol-

ogy, evolution, and epidemiology of infectious diseases.

Within their seabird study system, several lines of ev-

idence suggest that within-season prospecting move-

ments maintain gene-flow and alter parasite pressure

among breeding colonies (Boulinier et al. 2016).

However, this influence has a distinct spatial boundary,

defined by the scale of the prospecting movements of

the host species. Critically, these movements tend to be

on the scale of tens to a few hundred kilometers, and

may lack many of the physiological challenges faced by

migrants that result in ‘‘culling’’. Finally, because there

also appear to be heterogeneities in transmission po-

tential within migratory populations—as a function of

other life history events (e.g., juveniles or failed

breeders—Boulinier et al. 2016) or as a function of

infection history (e.g., those that have survived previ-

ous infection but lack protective immunity (Hoye et al.

2016)—understanding of the connection between host,

species, temporal, and spatial heterogeneities in infec-

tious diseases is needed (Paull et al. 2012).

Anthropogenic change and the shifting
landscape of migration–parasite
interactions

Global change processes such as climate warming

(Robinson et al. 2009; Tian et al. 2015), and habitat

loss or alteration (Garamszegi 2011; James and

Abbott 2014; Martin and Fahrig 2016) are actively

altering (and endangering) some animal migrations

(Wilcove and Wikelski 2008; Robinson et al. 2009;

Bowlin et al. 2010). Such changes in climate or hab-

itat availability not only affect migration behavior,

but may also profoundly alter infection dynamics.

For instance, high densities of captive salmon

farmed in coastal pens act as transmission foci that

increase sea lice infection pressure for wild salmon

by as much as four orders of magnitude (Krkošek et

al. 2007), eroding the traditional benefits of migra-

tory escape. Similarly, increased planting of invasive

tropical milkweed in southern regions of the United

States has facilitated winter breeding —a more sed-

entary behavior—in monarch butterflies (Satterfield

et al. 2015). Satterfield and colleagues (2016, this

issue) show a striking increase in prevalence of the

protozoan parasite, Ophryocytsis elektroscirrha in

year-round breeding monarchs in California, demon-

strating the impacts of the loss of migratory behavior

for infectious disease dynamics.

Migratory patterns have also shifted in elk, with a

reduction in the number of long-distance versus

short-distance migrants leading to higher burdens

of parasites such as Ixodes ticks (Mysterud et al.

2016). In the western United States, the practice of

subsidized feeding grounds for elk not only substan-

tially shortens historical migration distances, but also

creates hotspots for transmission of an abortion-in-

ducing pathogen (Brucella abortus) through increased

aggregation densities (Merkle et al., unpublished

data). Importantly, changes to the local climate, par-

ticularly snow cover, interact with the food subsidies

to have a profound effect on both animal movements

and transmission risk.

Climate-related changes to migration phenology

appear widespread (Saino et al. 2011; James and

Abbott 2014) and are likely to interact with vector

emergence timing, activity levels, and distributions to

alter contact rates and transmission dynamics. Hall

and colleagues (2016, this issue) modeled the poten-

tial influence of several climate change-related sce-

narios on a vector-borne disease in a hypothetical

songbird population exhibiting long-distance migra-

tion and in which transmission is limited to the

breeding season. They found that if vectors advanced

their phenology more quickly than hosts, pathogen

prevalence was reduced as a result of a temporal

mismatch between host and vector (Hall et al.

2016). However, if both host and vector advance

their phenology at the same pace then migration dis-

tances became shorter, and pathogen transmission

escalated because more infected migrants survived

the journey and re-initiated infection cycles at the

breeding site (Hall et al. 2016). As more animals

shift their migratory patterns in response to
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environmental change (Robinson et al. 2009; Gilroy

et al. 2016), there is a pressing need to better under-

stand the role of animal movement in the transmis-

sion of infections, including zoonotic pathogens.

Conclusions

Our understanding of the epidemiological impor-

tance of migratory animals is in its infancy. These

predictable, directed movements, undertaken by bil-

lions of animals each year, are increasingly recog-

nized for their capacity to profoundly alter

ecosystem dynamics (Bauer and Hoye 2014).

However, migration is yet to be integrated within

disease ecology more broadly. Several lines of evi-

dence suggest that migratory movements may pre-

cipitate key changes to host physiology and

behavior, producing the hallmark characteristics of

so-called superspreader species (Paull et al. 2012).

Overwhelmingly, our symposium highlighted the

need to temper widely held assumptions, such as

migration-induced immunosuppression and long-

distance transmission events, with the physiological

and nutritional demands of migration and anthropo-

genic changes to habitat and climate. Critically, mi-

gration may reduce transmission and infection in

host populations in certain circumstances, with cas-

cading consequences for the evolution and mainte-

nance of migratory strategies (Clark et al. 2016;

Johns and Shaw 2016; Shaw and Binning 2016).

Collectively, our symposium demonstrated that mi-

gratory animals are dynamic entities, adaptively

modified by movement, infection, and the (chang-

ing) environments they encounter. Their role in

pathogen spread is likely to be complex, and there-

fore deserves concerted research efforts going

forward.
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