
SYMPOSIUM

Beyond Suction-Feeding Fishes: Identifying New Approaches to
Performance Integration During Prey Capture in Aquatic
Vertebrates
Emily A. Kane,1,* Hannah E. Cohen,* William R. Hicks,* Emily R. Mahoney* and
Christopher D. Marshall†,‡

*Department of Biology, Georgia Southern University, Statesboro, GA, USA; †Department of Marine Biology, Texas

A&M University at Galveston, Galveston, TX, USA; ‡Department of Wildlife and Fisheries Sciences, Texas A&M

University, College Station, TX, USA

From the symposium “Multifunctional structures and multistructural functions: Functional coupling and integration in

the evolution of biomechanical systems” presented at the annual meeting of the Society for Integrative and Comparative

Biology, January 3–7, 2019 at Tampa, Florida.

1E-mail: ekane@georgiasouthern.edu

Synopsis Organisms are composed of hierarchically arranged component parts that must work together to successfully

achieve whole organism functions. In addition to integration among individual parts, some ecological demands require

functional systems to work together in a type of inter-system performance integration. While performance can be

measured by the ability to successfully accomplish ecologically relevant tasks, integration across performance traits

can provide a deeper understanding of how these traits allow an organism to survive. The ability to move and the

ability to consume food are essential to life, but during prey capture these two functions are typically integrated. Suction-

feeding fishes have been used as a model of these interactions, but it is unclear how other ecologically relevant scenarios

might reduce or change integration. To stimulate further research into these ideas, we highlight three contexts with the

potential to result in changes in integration and underlying performance traits: (1) behavioral flexibility in aquatic

feeding modes for capturing alternative prey types, (2) changes in the physical demands imposed by prey capture across

environments, and (3) secondary adaptation for suction prey capture behaviors. These examples provide a broad scope

of potential drivers of integration that are relevant to selection pressures experienced across vertebrate evolution. To

demonstrate how these ideas can be applied and stimulate hypotheses, we provide observations from preliminary anal-

yses of locally adapted populations of Trinidadian guppies (Poecilia reticulata) capturing prey using suction and biting

feeding strategies and an Atlantic mudskipper (Periophthalmus barbarus) capturing prey above and below water. We also

include a re-analysis of published data from two species of secondarily aquatic cetaceans, beluga whales (Delphinapterus

leucas) and Pacific white-sided dolphins (Lagenorhynchus obliquidens), to examine the potential for secondary adaptation

to affect integration in suction prey capture behaviors. Each of these examples support the broad importance of inte-

gration between locomotor and feeding performance but outline new ways that these relationships can be important

when suction demands are reduced or altered. Future work in these areas will yield promising insights into vertebrate

evolution and we hope to encourage further discussion on possible avenues of research on functional integration during

prey capture.

Integration across performance traits

Organisms are composed of hierarchically arranged

traits and component parts that must work together

to successfully achieve whole organism functions

(Seaborg 1999; Pepper and Herron 2008;

Ghalambor et al. 2015). The need for parts to suc-

cessfully work together is often referred to as

“functional integration,” where a functional outcome

is the product of the integration (Fig. 1) (Olson and

Miller 1951, 1958; Klingenberg 2014), and
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integration is identified using correlations to deter-

mine biological covariation (Olson and Miller 1951,

1958; Berg 1960; Gould and Lewontin 1979;

Cheverud 1982; Pigliucci 2003; Wainwright et al.

2008). For example, changes in jaw and skull shape

in cichlid fishes are correlated, and this integration

provides the ability to better resist bite forces

(Cooper et al. 2011). Without this integration, func-

tion may be compromised and success of the organ-

ism on both short (ecological interactions) and long

(evolutionary) time scales may be negatively affected.

In addition to use of the descriptor “functional”

to refer to a potential driver of integration, descrip-

tors can also be applied to refer to the component

parts that are integrated (Fig. 1). For example,

“morphological integration” describes relationships

between structural traits (i.e., What does it look

like?) (Van Valen 1965; Cheverud 1982; Bastir and

Rosas 2005; Klingenberg 2008; Goswami et al. 2014).

Similarly, “kinematic integration” describes relation-

ships between behavioral traits (i.e., How is it

used?) that can be measured using motion

(Bishop et al. 2008; Montuelle et al. 2012b), and

results in a behavioral outcome. For example, coor-

dinated movement of limbs can result in forward

propulsion. Performance is the ability to successfully

accomplish ecologically relevant behavioral outcomes

(i.e., What does it do?) (Irschick et al. 2008), and

performance traits can also covary in an integrated

way to produce new higher-order functions that are

more directly related to survival and fitness than use

of morphological or kinematic proxies. For example,

many animals possess the capability to perform al-

ternative “modes” of behaviors that require alterna-

tive kinematic patterns, but that can also be used

together to facilitate a shared functional outcome.

For example, suction and biting feeding modes in

aquatic vertebrates each result from alternative kine-

matic patterns and behaviors, but can be combined

during prey capture to compensate for an anteriorly

projected bow wave (Summers et al. 1998; Ferry

et al. 2015).

Despite the similarity in how these terms are ap-

plied across traits, differences in the traits themselves
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Fig. 1 A general framework for integration within and between functional systems. Multiple potential uses of the term “integration”

occur, depending on the level of organization of interest. This terminology can be applied to multiple functional systems that generate

potentially disparate performance outcomes. Performance integration can occur within a functional system as well as across functional

systems. Our discussion of integration will center on that between performance outcomes across functional systems, or inter-system

performance integration.
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have important implications for understanding

higher-order functions of organisms (Wainwright

2007). Recognizing kinematic and performance inte-

gration as distinct from morphological integration is

useful in three ways: (1) it distinguishes integration

between traits that can be altered on short time

scales in response to demand (performance) from

integration between traits that are relatively static

in the short term (structural features), (2) it recog-

nizes potential differences between integration that

results from active control by the central nervous

system compared to forms that do not require this

level of control, such as when integration results

from mechanical linkages or shared developmental

pathways (Wainwright et al. 2008; Kane and

Higham 2015), and (3) it is variation in the use of

structures, not necessarily their form, which supports

new functions in the organism. In other words, mul-

tifunctional structures facilitate kinematic integration

to accomplish new behavioral tasks. It is here where

variation in how outcomes are achieved, rather than

how structures are formed or used per se, that sup-

ports new solutions to ecological problems (Ferry

et al. 2015). Therefore, examination of kinematic

and performance integration, which have received

less attention than morphological integration, can

provide new insights into organism-level functions.

Another important viewpoint to consider when

understanding organism function from a perfor-

mance integration perspective is that due to the hi-

erarchical nature of organismal traits, entire

functional systems can also be integrated during

common tasks (Pepper and Herron 2008;

Klingenberg 2014). These functional systems can typ-

ically carry out disparate tasks on their own, but

there may also be ecological demands that require

these systems to work together in a type of inter-

system performance integration (Fig. 1). For exam-

ple, locomotor performance is frequently coupled

with performance of other systems, such as sensory

input (Falk et al. 2014, 2015; Mandecki and

Domenici 2015), reproduction (Ghalambor et al.

2003, 2004), ventilation (Boggs 2002; Farmer and

Carrier 2015), and feeding behaviors (Montuelle

et al. 2012b; Kane and Higham 2015; Haines and

Sanderson 2017). In this way, integration across

functional systems represents a multistructural func-

tion, depending on structures and their usage that

typically accomplish different tasks but can be per-

formed together to support functions at the level of

the whole organism. Throughout this article, the

shorthand “integration” is used in reference to this

level of integration across performance metrics of

separate functional systems.

Suction-feeding in fishes is a useful model system

to investigate these interactions, where the shared

problem of approaching and capturing prey can be

solved using integrated performance of locomotor

and feeding systems in an emergent and non-

additive way (Kane and Higham 2015). Here, we

provide background on these ideas but propose

that this is only a starting point for answering ques-

tions about inter-system performance integration

and organism function since suction feeding repre-

sents an incomplete view of functional outcomes in

either system. We examine how the context of the

prey capture event can alter the functional demands

on feeding and locomotor systems, potentially shift-

ing the requirements for integration. In contrast to

the idea that modulation of components affect

higher-order functions (a “bottom–up” approach),

we consider how changes in demand affect function,

and the resulting changes in integration and compo-

nent traits (a “top-down” approach). We draw on

examples from our research laboratories to explore

whether the integrated relationships observed during

suction feeding remain relevant beyond the strict use

of this behavior. Discussion of these examples is used

to highlight similarities and differences compared to

prior knowledge, and to inspire others to build on

these ideas and develop research questions and hy-

potheses that can be tested in future work.

Suction-feeding in fishes as a model of
performance integration

Many fishes rely on rapid expansion of their head

and jaws to generate subambient intraoral pressure

to draw water and prey into their mouth (Lauder

1985; Day et al. 2015; Wainwright et al. 2015); this

involves multiple integrated components (Fig. 2).

Fishes that rely on forceful suction (as experienced

by the prey) typically have integrated morphological

features (Wainwright 1996; Carroll et al. 2004; Collar

et al. 2014; Day et al. 2015) whose integrated kine-

matic movements result in rapid wave of posteriorly

directed mouth and head expansion (Gibb and

Ferry-Graham 2005; Westneat 2006; Bishop et al.

2008; Collar et al. 2014; Day et al. 2015). Variation

in related performance traits such as subambient

force, strain rate, or ingested volume can result in

feeding strategies tailored to capture alternative prey

types (Holzman et al. 2008a, 2012). For example, a

small, rapidly opening gape coupled with jaw pro-

trusion maximizes force on attached prey, whereas a

large, more prolonged gape, with or without protru-

sion maximizes engulfed volume and the chance of

capturing large evasive prey (Higham et al. 2006;
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Holzman et al. 2007, 2008a, 2008b). The locomotor

system similarly demonstrates integration among

morphological, kinematic, and performance traits

(Higham 2007a; Flammang and Lauder 2009;

Langerhans 2009; Feilich 2016, 2017), but for brevity,

those interactions are not the focus here and are

simplified in Fig. 2.

In addition to integration within each of these

functional systems, increasing evidence also suggests

that integration across these systems can play a vital

role during prey capture at structural, behavioral,

and functional levels (Collar et al. 2008; Rice 2008;

Tran et al. 2010; Camp et al. 2015, 2017; Larouche

et al. 2015). We focus on integration across perfor-

mance outcomes (higher-order functions) during

whole-organism responses to prey since this has

the most direct implications for survival. However,

note that suction performance (metrics describing

water flow into the mouth) is challenging to observe

directly due to the need to visualize particles of wa-

ter, and is often approximated in feeding trials using

kinematics (Ferry-Graham et al. 2003; Day et al.

2005, 2007, 2015; Higham et al. 2006; Wainwright

et al. 2007), whereas locomotor performance (met-

rics describing body translation such as approach

speed) can be quantified directly. Mouth size, as an

indicator of suction force experienced by the prey,

and predator approach speed are broadly integrated

during suction such that small mouths (forceful

suction) occur with slow swimming and large mouth

size (high volume suction) occurs with faster swim-

ming (Higham et al. 2006, 2007; Tran et al. 2010;

Kane and Higham 2011; Oufiero et al. 2012; Kane

and Higham 2015; Longo et al. 2015). This relation-

ship may evolve in response to selection, but the

mechanism is unclear at this time (Kane et al.

2019). Integration between locomotor and feeding

performance is necessary so that the capture mech-

anism (suction volume and/or mouth) is placed in a

precise and accurate location relative to the prey that

maximizes capture success (Higham 2007b; Kane

and Higham 2014). Therefore, inter-system perfor-

mance integration is likely an important component

of whole-organism function in suction feeding fishes.

Although this idea is not necessarily new, many

questions still remain and the details of this

higher-order functional integration warrant further

investigation.

One question that remains is how ecological prob-

lems that require alternative functions that deviate

from suction can affect inter-system performance in-

tegration of locomotion and feeding during prey

capture. Covariance between gape and approach

speed during suction has been repeatedly demon-

strated in suction-feeding fishes (reviewed in Kane

and Higham 2015; Kane et al. 2019) but it is unclear

if this relationship holds in other situations. Given

the broad occurrence of suction during prey capture
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Fig. 2 An example of integration within the feeding functional system and across feeding and locomotor functional systems in fishes

during prey capture. A simplified portrayal of the locomotor system is shown here due to the focus on feeding and prey capture. Due

to empirical difficulty in quantifying suction performance (the flow of water into the mouth), function of the feeding system is often

approximated using kinematics. Therefore, inter-system performance integration represents statistical correlation between cranial

kinematics and locomotor performance outcomes such as velocity or changes in velocity. The hypothesized fitness outcome of these

interactions is in aiming and accuracy during prey capture.
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in fishes (Wainwright et al. 2015), and the constraint

of this feeding mode on skull form and function

(Mehta and Wainwright 2007; Collar et al. 2014),

integration with locomotion may similarly be con-

strained. In this case, integration of mouth size and

swim speed may be constant in fishes such that it is

present and relatively unchanging across species or

contexts. However, changes in function may necessi-

tate changes in underlying component traits and

their integration. Fishes can behaviorally modulate

both locomotor and feeding responses to prey based

on contexts such as motivation, prey type, and en-

vironment (Nemeth 1997; Ferry-Graham et al. 2001;

Sass and Motta 2002; Van Wassenbergh and De

Rechter 2011; Gardiner and Motta 2012).

Therefore, integration with locomotion during prey

capture may also respond to changes in context, and

may be more variable (within behaviors) and flexible

(across behaviors; sensu Wainwright et al. 2008) than

what can be, and has been, described between gape

and approach speed during suction feeding.

Therefore, we discuss how changes in prey capture

that necessitate new functional outcomes affect per-

formance integration across functional systems.

To encourage the expansion of studies on inter-

system performance integration to new ecologically

relevant scenarios beyond suction-feeding, we high-

light three contexts with the potential to result in

changes in integration and its underlying perfor-

mance traits: (1) behavioral flexibility in aquatic

feeding modes in response to capturing alternative

prey types, (2) changes in the physical demands im-

posed by prey capture across environments, and (3)

secondary adaptation for suction prey capture behav-

iors. These examples provide a range of potential

changes in integration relevant to the changes ob-

served across vertebrate evolution. We provide

observations from preliminary or published work

in our laboratories to support the broad importance

of integration between locomotor and feeding per-

formance in each of these contexts and highlight new

insights that warrant further exploration. We hope

these ideas will stimulate students and researchers to

pursue each of these ideas more deeply in future

studies.

Context 1: Changes in prey type
necessitate alternative feeding modes

Suction-feeding is commonly used among fishes to

draw external prey into the mouth, but this is only

one end of a continuum of potential feeding modes

(Ferry et al. 2015; Longo et al. 2015). An alternative

that can be utilized in the absence of suction and

requires a change in performance is biting to remove

prey from a substrate. Several independent lineages

of fishes possess jaws adapted for maximizing force-

ful contact with the surface and removal of encrusted

food items (Gibb et al. 2008; 2015; Konow et al.

2008; Hernandez et al. 2009; Price et al. 2010), which

extend prey opportunities beyond those available us-

ing suction (Gibb et al. 2015) and demonstrate that

structural changes can facilitate biting behaviors.

However, even in the absence of structural modifi-

cations, kinematics and performance can also

change. Whereas suction is dependent on mouth

opening behaviors and indirect contact with prey

to generate the suction volume and capture prey,

biting relies on mouth closing behaviors and direct

contact by the jaws to obtain and manipulate prey

(Ferry et al. 2015; Kane et al. 2019). Additionally,

performance is optimized using opposite kinematics;

during suction, performance (force on the prey) is

maximized when gape and opening duration are de-

creased (Higham et al. 2006; Holzman et al. 2007,

2008a; Wainwright and Day 2007; Day et al. 2015),

but during biting, increased gape and opening dura-

tion permits increased contact with the surface and

enhanced prey removal (Gibb et al. 2008; Konow

et al. 2008). But how might these differences be

reflected in integration with the locomotor system

during prey capture?

Compared to suction-feeding, integration with lo-

comotion during biting is less well understood. If

coordination of approach speed and mouth size is

an applicable constraint beyond suction behaviors,

such as in avoiding collision, then integration may

be present regardless of the prey type consumed.

However, biting does not rely as heavily on intra-

cranial integration within the feeding system (Collar

et al. 2014) and can be performed in a range of

situations, potentially even facilitating transitions be-

tween aquatic and terrestrial environments (Marshall

et al. 2008, 2014, 2015). Additionally, biting in fishes

occurs when prey are relatively non-evasive or large,

potentially reducing the reliance on locomotion and

allowing flexibility among component traits (Ferry

et al. 2015). Therefore, integration during biting

may be weakened to facilitate alternate prey capture

strategies (Webb 1984; Kane and Higham 2015).

To begin to examine how changes in prey type

might affect integration and performance in the

same individual, we present new observations of lo-

cally adapted populations of Trinidadian guppies

(Poecilia reticulata) capturing prey using suction

and biting feeding strategies and compare these to

previously published data for guppies using suction-

feeding (Kane et al. 2019). Guppies have repeatedly
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colonized upstream low predation (LP) environ-

ments from downstream high predation (HP) pop-

ulations, resulting in shifts from predator-driven to

density-dependent natural selection (Reznick and

Endler 1982; Endler 1995; Bassar et al. 2013). This

divergence has resulted in correlated changes in tro-

phic ecology (Palkovacs et al. 2011; Zandon�a et al.

2011; 2017), predator escape performance (O’Steen

et al. 2002; Walker et al. 2005; Dial et al. 2016), and

integration of swim speed and gape during prey cap-

ture (Kane et al. 2019). Specifically, when using suc-

tion to capture live zooplankton prey (wild-type

cladocerans and copepods), inter-system perfor-

mance integration occurs repeatedly in LP environ-

ments but is absent in HP ancestral populations

(Kane et al. 2019). Although they can use suction,

guppies, like other Poeciliid fishes, use a specialized

jaw morphology to perform biting behaviors and

biting plays a significant role in the feeding strategy

of these fish (Dussault and Kramer 1981; Gibb et al.

2008; Hernandez et al. 2009; Zandon�a et al. 2011,

2017). Therefore, we use guppies as a model system

to ask how an alternative prey capture strategy might

alter integration of gape and approach speed com-

pared to suction.

New observations of fish performing both prey

capture strategies were obtained by recording gup-

pies at 500 frames/s capturing live, wild-captured

plankton prey in the water column (suction) or feed-

ing upon a vertical agar substrate (biting). Only a

single HP/LP population pair from the Aripo River

(six to eight individuals each population and behav-

ior) is included here because these populations rep-

licate those from previous work (Kane et al. 2019).

The tips of the jaws and approximate center of mass

were digitized from the single best video for each fish

to calculate 95% peak gape and peak approach speed

during the feeding behavior. Previous work used

100% peak gape and approach speed at the time of

peak gape (Kane et al. 2019), and differences here are

to standardize traits across suction and biting behav-

iors. We use gape as a proxy for both suction per-

formance (small mouth size indicates greater suction

force) and biting performance (large gape indicates

greater bite area). Differences in performance were

described using t-tests and integration was deter-

mined using correlations between gape and approach

speed. Additional methods are described in the

Supplementary data.

In our new sample of guppy feeding data, popu-

lation of origin may have had a greater influence on

integration than prey capture strategy. Body size was

larger during suction-feeding trials due to the later

filming date. However, approach speed and peak

gape were similar across prey capture behaviors

(Table 1). Gape was relatively large and independent

of prey capture strategy, which supports the idea that

guppies tend to show reduced ability to generate

forceful subambient pressures, but an increased abil-

ity to contact the substrate for biting. Compared to

trials analyzed in previous work (Kane et al. 2019),

the newly analyzed data show approach speeds were

Table 1 Summary statistics for guppy performance data

Behavior Biting Suction t-test (feeding mode)

Population

High

predation

Low

predation

High

predation

Low

predation High predation Low predation

Number of individuals 8 8 6 7

Standard length (cm) Mean 2.408 2.631 2.809 3.042 t ¼ 4.167 t ¼ 2.90

SD 0.219 0.330 0.140 0.214 P ¼ 0.0014* P ¼ 0.0132*

Min 2.154 2.031 2.658 2.693

Max 2.741 2.996 2.985 3.307

95% peak gape (cm) Mean 0.224 0.250 0.230 0.205 t ¼ 0.415 t ¼ �2.048

SD 0.032 0.026 0.019 0.053 P ¼ 0.6859 P ¼ 0.0726

Min 0.187 0.200 0.215 0.134

Max 0.268 0.283 0.266 0.291

Peak approach speeda

(cm/s; from mouth opening

to 95% peak gape)

Mean 2.488 2.075 3.604 2.925 t ¼ 1.125 t ¼ 1.596

SD 1.249 0.875 1.415 1.033 P ¼ 0.2878 P ¼ 0.1393

Min 1.035 1.253 1.431 2.042

Max 4.170 3.876 4.927 4.874

aCalculated from mouth opening to peak gape (substrate contact) for biting and mouth opening to mouth closing during suction behaviors.

*Statistically significant at P< 0.05.
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similar but gape may have been slightly larger

(Fig. 3C). Interestingly, the magnitude of potential

correlations were consistently greater for LP popula-

tions (Fig. 3C,D), suggesting that divergence across

HP/LP populations may be a stronger influence on

integration than divergence due to prey capture

strategy. However, in contrast to previous work, cor-

relations between performance traits were weaker

and not statistically significant in our new samples

(Fig. 3C,D), suggesting either an inability to detect

integration (likely due to a small sample size) or a

general lack of integration overall. Excluding sample

size, several differences between the previous and

current samples of guppies may have also contrib-

uted to this difference in strength of integration, in-

cluding but not limited to random differences in

guppy and/or prey populations across sites or year

of sampling and/or random differences in housing or

experimental equipment across different labs.

Further investigation is needed to tease apart the

effects of these possible factors.

The preliminary comparisons of guppy feeding

events presented here may be limited in their ability

to provide conclusive support, but do suggest that

further work examining the potential for changes in

inter-system performance integration, is warranted.

In this case, the type of prey being captured imposes

alternate demands on locomotor and feeding func-

tional systems, but this may not be sufficient to sig-

nificantly alter performance or its integration when

alternate capture strategies are performed within the

same individuals using the same structural traits.

Alternatively, differences that have evolved between

HP and LP populations may play a larger role in

affecting structures, their use, and their integration

during prey capture. The current discussion is lim-

ited to guppies, but experiments involving alternate

biting and suction capture strategies more broadly
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Fig. 3 Prey capture behaviors (A, B) and their integration (C, D) for HP (red diamonds) and LP (blue squares) guppies (P. reticulata)

using suction (A, C, unfilled shapes) and biting (B, D, filled shapes) prey capture strategies. Still frames are shown at the time of 95%

peak gape and prey location is indicated. Performance traits were determined using gape representative (distance between upper and

lower jaws) and approach speed (rate of change in position of the approximate center of mass). The 95% density ellipse is shown for

each population and behavior and correlation statistics are provided. Correlation ellipses from previous work on integration during

suction in guppies (Kane et al. 2019) are also shown for comparison (C). Integration during suction was not replicated, (see discussion

in text). However, the magnitude of the correlation for the current data is consistently higher for LP fish during both prey capture

behaviors compared to HP fish, a pattern that trends toward that in prior work, suggesting that similar patterns of integration may span

alternative prey capture strategies in guppies.
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across fishes can further explore how shifts in spe-

cialization for each strategy may lead to potential

differences in integration.

Context 2: Alternate physical demands
during prey capture

The physical differences between water and air are a

known driver that explains divergence in feeding ki-

nematics and prey capture strategies in a variety of

vertebrates (Shaffer and Lauder 1988; Reilly 1996;

Summers et al. 1998; Vincent et al. 2005; Marshall

et al. 2008, 2014, 2015; Natchev et al. 2009; Van

Wassenbergh 2013; Hocking et al. 2014; Michel

et al. 2015a, 2016). However, it is not well understood

how these changes might impact integration across

functional systems. Since water is denser and more

viscous than air, it imposes significant challenges to

movement (i.e., drag) that are minimized in terrestrial

environments. However, on land, propulsion also

includes counteracting the effects of gravity on body

mass. These differences have implications primarily

for locomotion but also for feeding behaviors such

as suction, which relies on the density and viscosity

of water and cannot be accomplished on land (but see

Michel et al. 2015b). Because of these differences, am-

phibious vertebrates often switch locomotor or feed-

ing modes across environments (O’Reilly et al. 2000;

Ashley-Ross and Bechtel 2004; Van Wassenbergh

2013; Michel et al. 2016; Heiss et al. 2018), potentially

affecting integrated relationships between these sys-

tems. Alternatively, challenges inherent in predator–

prey interactions may supersede those presented by

the environment, and integration of locomotion and

feeding may be similar across environments. For ex-

ample, lunge behaviors that utilize a rapid burst of

forward movement toward prey can be performed in

water and air, despite differences in the mechanism of

propulsion in each medium. Therefore, if the func-

tional outcome is similar across environments, loco-

motion and feeding may be integrated in a way that is

independent of specific kinematic or performance

traits in each system.

Understanding whether and how differences in

prey capture in water versus air affect integration

between locomotor and feeding performance

requires comparisons among animals attempting

prey capture across both of these environments.

Integration has been described separately in aquatic

teleost fishes and terrestrial squamate lizards

(Higham 2007b; Higham et al. 2006, 2007;

Montuelle et al. 2009, 2012a, 2012b; Kane and

Higham 2011; Kane and Higham 2015; Kane et al.

2019). In both taxa, feeding (head and jaw) and

locomotor (body and limb) movements are impor-

tant for integration, but it is unclear whether differ-

ences reflect those between species or prey capture

environments. Therefore, examining integration in

amphibious organisms that can capture prey in

both aquatic and terrestrial environments can provide

a useful avenue for teasing apart evolutionary and

environmental differences in prey capture and inte-

gration. Mudskippers (Order Gobiiformes, Family

Oxudercidae) are one such group within which com-

parisons across prey capture environments are possi-

ble. In this group of fishes, the ability to generate

subambient pressures is likely compromised in water

(Michel et al. 2014) such that the feeding system may

perform a relatively similar biting behavior in and out

of water. However, the propulsive system may be

more flexible across environments, switching between

structures and modes of locomotion with changes in

demand (Pace and Gibb 2009). Therefore, differences

in kinematics and performance of the locomotor sys-

tem across terrestrial and aquatic environments may

result in different patterns of inter-system integration

than what is observed during suction prey capture in

strictly aquatic feeders.

To begin to provide insight into potential changes

in locomotion and feeding during prey capture in

amphibious animals and stimulate further research,

we present observations of an Atlantic mudskipper

(Periophthalamus barbarus; 13.1 cm standard length)

prey capturing on land (in air) and in water. A single

individual was recorded at 500 frames/s capturing

thawed bloodworms from an acrylic sheet wrapped

in a paper towel, either floating on a polystyrene

sheet above water or submerged underwater. The

eye, tips of the jaws, and prey were digitized in 10

land and 9 water trials to determine body velocity,

gape, and distance to the prey as a measure of ac-

curacy. t-tests were used to compare performance

traits across environments and correlations between

these variables were used to determine the likelihood

of inter-system performance integration. Additional

information on methodology is available in the

Supplementary data.

Despite similar reliance on a lunge behavior to-

ward prey in both environments, component behav-

ioral traits and their integration likely differ between

terrestrial and aquatic environments in a mudskipper

(Fig. 4). On land, the mudskipper relied on a later-

ally pronated caudal fin and/or depression and re-

traction of pectoral fins to rotate its body over the

stationary pelvic fins, similar to “crutching” move-

ments that have been reported in amphibious fishes

moving on land (Stebbins and Kalk 1961; Sayer

2005; Pace and Gibb 2009; Ashley-Ross et al. 2013;
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Kawano and Blob 2013). In water, the mudskipper

continuously swam in the direction of the prey with

a horizontal trajectory, without contacting the sub-

strate, and relied on multiple propulsive strokes of

the pectoral fins. In water, prey moved into the

mouth as a result of suction generated in water, de-

spite being potentially limited in this ability morpho-

logically (Michel et al. 2014). On land, prey

movement was not observed and prey were captured

using direct contact with the jaws. Gape was consis-

tently larger in water than on land but approach

speed was similar in both environments (Table 2).

A larger gape may be the result of the pressure of the

water forcing the jaws open to a greater extent, sim-

ilar to the mechanism responsible for rapidly in-

creasing gape in Balaenopterid lunge-feeding whales

(Goldbogen et al. 2015). Aiming was generally poor

in water (Table 2), in contrast to observations in a
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    Land trials
r = 0.60; p = 0.0646

    Water trials
r = -0.17; p = 0.6633

Fig. 4 Prey capture behaviors (A, B) and their integration (C, D) for a mudskipper (P. barbarus) capturing prey in a terrestrial (A,

orange rectangles) and aquatic (B, blue circles) environment. Still frames are shown at the time of 95% peak gape and prey location is

indicated with an arrow. Performance traits were determined using gape (distance between upper and lower jaws) and approach speed

(rate of change in position of the eye). The 95% density ellipse is shown for each environment and correlation statistics are provided.

On land, the fish performed a lunge via rotation over the pelvic fins whereas in water a lunge was achieved by generating forward

thrust with the pectoral fins. Aiming was poor in water and the integrated relationship was weaker. These data are preliminary and

represent a single individual but suggest the importance of further exploration of these trends.

Table 2 Summary statistics for mudskipper performance data

Environment Land Water t-test

(environment)Number of trials 10 9

95% peak gape (cm) Mean 1.50 1.93 t ¼ 6.81

SD 0.16 0.11 P < 0.0001*

Min 1.28 1.81

Max 1.71 2.14

Peak approach speed

(cm/s; from mouth

opening

to 95% peak gape)

Mean 45.4 49.0 t ¼ 1.11

SD 8.6 5.4 P ¼ 0.2821

Min 34.3 41.4

Max 57.8 54.7

Distance from prey to

predator eye at

95% peak gape (cm)

Mean 2.33 8.42 t ¼ 10.63

SD 0.11 1.72 P < 0.0001*

Min 2.22 6.08

Max 2.47 11.76

*Statistically significant at P< 0.05.
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previous study (Michel et al. 2016). This difference

may be due to subject being only partially sub-

merged in prior work, allowing their visual system

to operate in air where visual acuity is increased

(Sponder and Lauder 1981; Sayer 2005).

Combined, the differences observed here in locomo-

tor and feeding performance resulted in stronger in-

tegration when behaviors were performed on land

(Fig. 4). Although statistical significance was not

achieved, likely due to the variation present within

our small sample, the magnitude of the potential

correlation during land trials (r¼ 0.6) is similar to

correlations observed during suction feeding

(r¼ 0.5–0.8) (Higham 2007a; Tran et al. 2010;

Kane et al. 2019), suggesting this trend may hold

upon further examination in future work. In con-

trast, the potential correlation during water trails (r

¼ �0.17) is much closer to 0, indicating that these

trials most likely lack integration. Therefore, this

preliminary evidence suggests that integration be-

tween gape and approach speed may be present,

but only during prey capture on land, in contrast

to its presence in water for solely aquatic suction

feeding fishes.

The results presented here are limited in scope,

but suggest that further work investigating inter-

system performance integration in amphibious

organisms, where the medium within which prey

capture occurs imposes alternate demands on func-

tional systems, is merited. In these animals, the same

structural components are utilized to perform differ-

ent within-system functions and as a result, integra-

tion may differ in ways not observable in suction

feeding fishes. Additionally, these preliminary results

suggest that the ability to integrate performance sys-

tems may be affected both by the media within

which prey capture occurs acting on locomotor

and feeding structures, and sensory capabilities in

each environment. Integration of kinematic and per-

formance traits is likely determined by active neuro-

mechanical coordination (Wainwright et al. 2008;

Kane and Higham 2015), such that changes in the

ability to detect prey might limit the ability to inte-

grate the approach with mouth opening to achieve

successful capture. Future work is needed to better

understand the contributions of sensory input to in-

tegrated performance behaviors.

Context 3: Secondary adaptation to
aquatic prey capture

One of the most extreme examples of convergence

has occurred in several lineages of terrestrial verte-

brates that have secondarily returned to an aquatic

environment. Convergence occurs when groups of

organisms evolve similar responses to common se-

lective pressures, despite divergent evolutionary his-

tory (Losos et al. 1998; Rüber and Adams 2001; Serb

et al. 2011). Due to the strong selective forces of a

dense and viscous aquatic environment, many sec-

ondarily aquatic vertebrates have evolved prey cap-

ture strategies that are analogous to those found in

fishes (Bryden 1988; Thewissen et al. 1994; Fish

1998; Thewissen 1998). One such character is the

ability to use subambient pressure (suction) to cap-

ture prey (Stinson and Deban 2017). In secondarily

aquatic animals, the gill chambers have been lost, the

suction volume is limited to that of the mouth cav-

ity, and water has the potential to flow back out of

the mouth while it is still being sucked in (Lauder

and Shaffer 1986; Lauder and Reilly 1988; Reilly and

Lauder 1988; Deban and Wake 2000; Stinson and

Deban 2017; Heiss et al. 2018). Therefore, structural

accommodations are necessary to compensate for

these constraints to produce the same functional

output as observed fishes (Stinson and Deban 2017).

Some marine mammals such as cetaceans and pin-

nipeds are specialized for suction generation

(Marshall and Goldbogen 2015). Innovations that

facilitate this prey capture mechanism include a

vaulted palate and a large, wide hyolingual apparatus

(Bloodworth and Marshall 2005; Marshall et al. 2008,

2014, 2015; Kane and Marshall 2009; Hocking et al.

2013; Marshall and Goldbogen 2015; Marshall and

Pyenson 2019; Reidenberg and Laitman 1994; Werth

2007), as well as modified short and wide orofacial

morphology that often uses lip pursing to occlude

lateral gape and form a circular mouth aperture

(Werth 2006; Marshall et al. 2008, 2014, 2015;

Kane and Marshall 2009; Marshall and Goldbogen

2015; Marshall and Pyenson 2019). These morpho-

logical adaptations can result in suction performance

comparable to primarily aquatic fishes (Kastelein

et al. 1994, 1997; Werth 2000; Marshall et al. 2008,

2014, 2015; Kane and Marshall 2009). However, it is

unclear whether integration with the locomotor sys-

tem may be similar to suction feeding fishes as well.

Although suction specialists may be able to gen-

erate significant subambient pressures, many second-

arily aquatic species may still experience constraints

that limit the use of suction for prey capture

(Stinson and Deban 2017), which may have conse-

quences for integration with locomotion. A reduced

ability to draw prey into the mouth using suction

necessitates an increased reliance on body movement

to position the mouth close to the prey (Kane and

Higham 2014), imposing constraints on the use of

locomotion and its integration with feeding. In fact,
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the greatest suction pressures have been recorded

from secondarily aquatic tetrapods during behaviors

that constrain locomotion (i.e., feeding from a sta-

tionary device) or when forward velocity is signifi-

cantly reduced (Bloodworth and Marshall 2005;

Marshall et al. 2008, 2014, 2015; Kane and

Marshall 2009; Hocking et al. 2013). These species

are typically feeding on benthic prey. Alternatively,

species that rely more on locomotion during prey

capture may use suction only in a compensatory

manner that counteracts the bow wave generated

during forward movement, and not as a primary

method of closing distance to the prey (Lauder and

Prendergast 1992; Summers et al. 1998; Bloodworth

and Marshall 2007; Kane and Marshall 2009). This

dichotomy suggests that the integrated relationship

between approach speed and gape described in suc-

tion feeding fishes (Kane and Higham 2015; Kane

et al. 2019) may also be apparent in secondarily

aquatic animals to some degree. Therefore, we ask

how secondary adaptation to aquatic prey capture

affect patterns of inter-system integration compared

to relationships observed during suction prey capture

in primarily aquatic feeders.

We re-analyzed published kinematic data (Kane

and Marshall 2009) from two species of secondarily

aquatic cetaceans to examine the potential for intra-

system performance integration during aquatic prey

capture (see Supplementary Methods for further

details). Beluga whales (Delphinapterus leucas) rely

on suction generation to pull prey toward the mouth

for capture, whereas Pacific white-sided dolphins

(Lagenorhynchus obliquidens) use a raptorial biting,

ram strategy to overrun prey in combination with

compensatory suction (Fig. 5). As with the previous

examples, we use correlations between peak gape and

peak approach speed (from mouth opening through

closing) to determine the presence of intra-system

performance integration during prey capture in

cetaceans.

For both species, the correlation between feeding

and locomotor traits was statistically significant

(P< 0.05), indicating the presence of integration be-

tween functional systems (Fig. 5). In belugas, this

correlation (r¼ 0.518) is within the range of values

reported in suction feeding fishes (r¼ 0.5–0.589)

(Kane et al. 2019). The ability to achieve integration

comparable to suction feeding fishes despite the vast

divergence between taxa suggests that integration us-

ing this strategy may depend more on performance

outcomes than the underlying structures and behav-

iors that generate performance. However, the corre-

lation between gape and speed is negative in Pacific

white-sided dolphins. This is in contrast to

theoretical and reported relationships between these

variables during suction-feeding in fishes (Higham

et al. 2007; Higham 2007b; Kane and Higham

2015; Kane et al. 2019; Montuelle and Kane 2019).

This includes ram-suction feeding largemouth bass

(r¼ 0.762) with a greater observed swim speed dur-

ing prey capture (Higham 2007a) similar to Pacific

white-sided dolphins. However, bass tend to rely on

high-volume suction (Higham et al. 2006) whereas

Pacific white-sided dolphins rely on compensatory

suction, where both volume and velocity of suction

may be weaker. Therefore, this negative relationship

between locomotion and feeding in at least one spe-

cies of secondarily aquatic vertebrate may represent a

novel form of inter-system performance integration

that has not been described in aquatic-feeding verte-

brates previously.

The potentially novel relationship between feeding

and locomotor functional systems in Pacific white-

sided dolphins may be a reflection of secondary ad-

aptation to an aquatic lifestyle imposing a constraint

on integration. Marine mammals demonstrate re-

markable convergence in form and function with

fishes in both swimming and feeding (Fish 1996;

Marshall and Goldbogen 2015; Pabst 2015).

However, without structural and behavioral modifi-

cations for specialized performance, as in belugas,

(Kane and Marshall 2009), convergence in integra-

tion across functional systems may not be possible.

Ram-feeding fishes that rely on swim speed to over-

take prey (i.e., largemouth bass) open their opercular

cavities earlier in the gape cycle than those relying on

suction (Muller et al. 1980; Muller and Osse 1984;

Van Leeuwen and Muller 1984; Van Wassenbergh

2015). This allows water to flow unidirectionally

through the mouth to minimize resistance (drag)

during the mouth opening phase (Ferry et al.

2015). Marine mammals lack a gill chamber and

therefore likely encounter significant drag and/or a

bow wave during ram feeding behaviors. Lunge

feeding whales can utilize this drag to rapidly in-

crease gape during their feeding events (Goldbogen

et al. 2007), or have evolved a channel at the pos-

terior margin of the jaws that allows water to exit

the mouth cavity unidirectionally during continu-

ous ram filter-feeding (Goldbogen et al. 2015).

Similarly, harbor seals, and potentially belugas,

can expel water posteriorly using flexible lips

(Kane and Marshall 2009; Marshall et al. 2014).

Pacific white-sided dolphins, like most dolphins,

do not have this morphological structure and may

be forced to minimize gape at high speed to reduce

drag, resulting in the negative correlation with

speed observed here.
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The results presented here provide deeper insight

into the possibility for convergence and constraint in

integrated relationships between locomotor and feed-

ing systems and suggest that further work examining

convergence in form and function of integration

would provide new insights into the drivers of ver-

tebrate feeding strategies and their evolution. In ani-

mals that display convergence, function is retained

despite differences in form, highlighting the impor-

tance of integration at higher levels of organization

for maintaining whole-organism function. However,

in other vertebrates, function is divergent and new

ways of integrating functional systems may be nec-

essary. These hypotheses should stimulate further

work examining the role of secondary convergence

on integration across functional systems.

Conclusions

Each of these alternative prey capture contexts and

the examples and observations highlighted in this

work support the broad significance of integration

between functional systems during prey capture in

a wide range of aquatic vertebrates. But these obser-

vations also suggest ways in which integration might

change as a response to changes in ecological de-

mand that result in reduced or altered reliance on

suction. These examples also highlight that integra-

tion of performance across functional systems may

represent new ways of understanding how compo-

nents of an organism work together to achieve com-

mon goals, compared to more traditional studies of

morphological integration. Through the addition of
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Fig. 5 Integration of locomotor and feeding performance during prey capture in secondarily aquatic beluga whales (A, C, green

shapes) and Pacific white-sided dolphins (B, D, purple shapes). Prey are circled and the more prominent movement is indicated with an

arrow on the still images taken from representative videos, indicating the use of different feeding modes in each species. Integration is

represented by correlations of peak gape (feeding) against peak speed during feeding (locomotion) (C, D). Different individuals are

shown with contrasting shapes and the 95% density ellipse is shown for each species. Correlation statistics are shown and statistical

significance at the P< 0.05 value is indicated with an asterisk. Integration is present in both species but Pacific white-sided dolphins

show a negative correlation between peak gape and peak speed, differing from belugas and previously described relationships in suction

feeding fishes.
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components that can be altered on short time scales

(compared to morphology) we have the opportunity

to understand the compounding and hierarchical

effects of integration on organism function.

These examples are only a starting point for fur-

ther inquiry and additional contexts besides those

presented in detail here may also affect performance

and its integration. Little is known of integration in

terrestrial vertebrates (Montuelle et al. 2008, 2009,

2012a, 2012b), where both the structures generating

performance and the performance itself can be vastly

different compared to in an aquatic medium.

Additionally, sensory systems likely play a large

role in the ability to detect stimuli and perform ap-

propriately integrated tasks (Birn-Jeffery and

Higham 2016; Higham and Schmitz, 2019). We en-

courage other researchers to continue expanding be-

yond the examples provided here to continue

exploring how traits are integrated and how this

relates to changes in environmental demand.
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