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A regional biophysical model is used to relate projected large-scale changes in atmospheric and oceanic conditions from CMIP5 to the finer-scale
changes in the physical and biological structure of the Bering Sea, from the present through the end of the twenty-first century. A multivariate sta-
tistical method is used to analyse the results of a small (eight-member) dynamically downscaled ensemble to characterize and quantify dominant
modes of variability and covariability among a broad set of biophysical features. This characterization provides a statistical method to rapidly esti-
mate the likely response of the regional system to a much larger (63-member) ensemble of possible future forcing conditions. Under a high-
emission [Representative Concentration Pathway 8.5 (RCP8.5)] scenario, results indicate that decadally averaged Bering Sea shelf bottom tempera-
tures may warm by as much as 5�C by 2100, with associated loss of large crustacean zooplankton on the southern shelf. Under a lower emission
scenario (RCP4.5), these effects are predicted to be approximately half their calculated change under the high emission scenario.
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Introduction
Widespread change is anticipated for the Bering Sea (AK) under

climate change, including substantial oceanographic warming

that scales with future carbon mitigation scenarios (IPCC, 2013,

2014). Climate-driven changes to oceanographic conditions have

the potential to propagate through the food web and impact fish

and fisheries in the region (Holsman et al., 2018). The Bering Sea

is a highly productive system that supports a wide diversity of

species, some critically endangered, as well as multiple small

coastal fishing communities that depend on subsistence harvest

(Haynie and Huntington, 2016) and large-scale commercial fish-

eries that annually represent more than 40% of the U.S. commer-

cial catch (Fissel et al., 2017). In this article, we report estimates

of anticipated change to the physical and lower trophic level dy-

namics of the Bering Sea, derived both through application of dy-

namical model downscaling and through statistical projections

based on those results.

Overview of the Bering Sea ecosystem
Prominent physical features of the Bering Sea include seasonal ice

cover, strong advection of ice, and tidally generated biophysical

domains. Ice formed each winter in the northern Bering Sea is

advected to the southeast, where it gradually melts as it encoun-

ters warmer water and air temperatures. This southward advec-

tion contributes to the latitudinal salinity gradient of the Bering

Sea and its interannual variability. A cross-shelf gradient in the
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vertical penetration of tidal mixing sets up distinct biophysical

regimes with associated biota. Classically, the southeastern shelf is

classified as having three biophysical domains: a vertically well-

mixed inner shelf domain (ocean depth is between �0 and 50 m),

a middle shelf domain (with ocean depth �50–100 m) which is

well-mixed in the winter and has two distinct layers separated by

a sharp thermocline in the summer, and an outer shelf domain

(ocean depth �100–200 m) which is more gradually stratified

(Kinder and Schumacher, 1981; Coachman, 1986; Kachel et al.,

2002). A map of the region with these features identified is pro-

vided in Figure 1.

Distinct biological features of the Bering Sea ecosystem include

ice algae as a potential food source to secondary producers, and

strong benthic-pelagic coupling. Within the different biophysical

regimes, the relative magnitude of pelagic vs. benthic pathways of

carbon flux varies interannually, and is believed to be strongly influ-

enced by the extent of seasonal ice through its effects on stratifica-

tion (Hunt et al., 2002, 2011). The relative importance of pelagic vs.

benthic pathways is likely to shift under the influence of global

warming, partially through its impact on seasonal ice extent in the

Bering Sea. Field data suggest that cold temperatures in the Bering

Sea lead to an increase in large crustacean zooplankton, favoured as

food items by juvenile pollock in the fall season (Coyle et al., 2011).

The present hydrography and seasonal ice-driven climatology

of the Bering Sea result in a highly productive ecosystem, with

plankton biomass ultimately supporting large populations of

shellfish and finfish (and major fisheries), marine birds, and

marine mammals (Sigler et al., 2016). Such intense production

derives, in part, from a broad shelf with strong tidally induced

mixing, a plentiful supply of the micro-nutrient iron, and sea-

sonal stratification which maintains the phytoplankton in the eu-

photic zone, adjacent to a deep, macronutrient-rich basin.

Interannual variation in winter ice extent over the Bering Sea

modulates annual variability in productivity in the system. A cold

period in the Bering Sea from 2006 to 2011 (Stabeno et al., 2012)

was followed by a return to warmer conditions, with reduced ice

(Stabeno et al., 2016, 2017) and attendant changes in primary

and secondary productivity (Sigler et al., 2016).
In previous studies, a model-based multivariate analysis was

used to help explore the relationships between physical and bio-

logical factors on the Bering Sea shelf (Hermann et al., 2013). The

analysis suggested that the Bering Sea shelf may not respond uni-

formly to changes in climate forcing. For example, large crusta-

cean zooplankton (lcz) are negatively correlated with temperature

on the outer, southwestern shelf, and positively correlated to tem-

perature on the inner, northeastern shelf. Areas of positive correla-

tion tended to correspond with those areas with greatest change in

ice cover. As in the revised Oscillating Control Hypothesis of

Hunt et al. (2011), the ratio of large to total zooplankton was en-

hanced at lower temperatures. On the outer shelf, higher tempera-

tures may be leading to reduced lcz production either through

effects on stratification (and hence nutrient limitation), or

through direct effects of temperature on growth, respiration, pre-

dation, and vertical migration. Changes on the northern shelf may
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Figure 1. Bathymetry (m) with biophysical domains of the Bering Sea. Shown are inner shelf domain (0–50 m), middle shelf domain (50–100
m), outer shelf domain (100–200 m), shelf break (200–1000 m), and deep basin (>1000 m). Colour version of this figure is available online at
ICESJM online.
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involve a complex interplay of light and nutrient limitation effects,

as modulated by a reduction in the duration of seasonal ice cover.
Ice dynamics of the Bering Sea have been explored in both ob-

servational and modelling studies (Stabeno et al., 2010; Danielson

et al., 2011; Cheng et al., 2014; Li et al., 2014a, b; Sullivan et al.,

2014). Ice is formed seasonally in the northern Bering Sea and is

advected southward, resulting in a net transfer of freshwater from

north to south. Heat budgets from these studies have underscored

the importance of sensible heat flux between the atmosphere and the

ice in the northern Bering, and between the ocean surface and the

ice in the southern Bering, where the ice edge retreats each spring.

In previous publications (Hermann et al., 2013, 2016a), we

projected future Bering Sea conditions out to 2040 under an in-

termediate carbon mitigation scenario (i.e. A1B) from phase 3 of

the Coupled Model Intercomparison (CMIP3; Meehl et al.,

2007). Here, we extend this work to include a larger ensemble of

global models under unmitigated (RCP 8.5) and moderate (RCP

4.5) mitigation scenarios from phase 5 of the CMIP (CMIP5) out

to 2100 (Taylor et al., 2012). The goals of this contribution are:

(i) to summarize the results of dynamical biophysical downscal-

ing of a limited ensemble of CMIP5 models to the Bering Sea;

(ii) to describe a multivariate method which allows extrapolation

of those dynamically obtained results to a much larger ensemble

of CMIP5 output; (iii) to apply that method in order to obtain a

more robust estimate of the regional response of the Bering Sea

to global change. Output from these simulations are being used

in fisheries models, both to project stocks and for management-

strategy evaluation, as part of NOAA’s Alaska Climate Integrated

Modeling Project (ACLIM; Hollowed et al., in prep.).

Methods
Dynamical downscaling regional model
The regional model used for these analyses (Bering10K) is identi-

cal to the one described in Hermann et al. (2016a). In that earlier

publication, the regional model was driven by results from three

global simulations from CMIP3 under emission scenario A1B.

Here we take a similar approach, using global simulations from

CMIP5 under emission scenarios RCP4.5 and RCP8.5.

Collectively these downscaling runs span a wide range of model

types and assumed future behaviours of mankind (e.g. RCP 4.5

vs. RCP 8.5 emission scenarios).

Major features of the regional model are as follows. The model is

based on the Regional Ocean Modeling System version 3.2. ROMS

is a sigma-coordinate model with curvilinear horizontal coordi-

nates; a description of basic features and implementation can be

found in Haidvogel et al. (2008) and Shchepetkin and McWilliams

(2005). The Bering10K regional grid has approximately 10 km hori-

zontal resolution, with ten vertical levels. Fine-scale bathymetry is

based on ETOPO5 and supplementary datasets as described in

Danielson et al. (2011); smoothing of that bathymetry was utilized

for numerical stability. Any oceanic regions shallower than 10 m

were set to be 10 m deep. Mixing is based on the algorithms of

Large et al. (1994). Both ice (Budgell, 2005) and tidal dynamics are

included in this model; the explicit inclusion of tidal flows allows

tidally generated mixing and tidal residual flows to develop.

Freshwater runoff was applied by freshening of the surface salinity

field within a few grid points of the coastline, using climatological

monthly runoff values based on Dai et al. (2009). Bulk forcing,

based on algorithms of Large and Yeager (2008), were used to relate

winds, air temperature, relative humidity, and downward shortwave

and longwave radiation to surface stress and the net transfers of sen-

sible heat, latent heat, net shortwave, and net longwave radiation

through the sea surface. Further detail of model tuning, implemen-

tation, and biases are available in Hermann et al. (2016a).

The lower trophic level dynamics (Nutrient-Phytoplankton-

Zooplankton, NPZ) model is described in detail in Gibson and

Spitz (2011). Briefly, this model includes two size categories of

phytoplankton and ice plankton, and distinguishes among micro-

zooplankton, copepods, neocalanus, and euphausiids, as well as

jellyfish, benthic detritus, and epibenthos. Limiting nutrients are

nitrate, ammonium, and dissolved iron. Metabolic and grazing

rates are temperature dependent, which leads to substantially dif-

ferent food web structure under cold vs. warm conditions. Many

of the state variables from this model were utilized in our analyses

here. Results from hindcasts and forecasts with this model are de-

scribed in Hermann et al. (2013, 2016a) and Ortiz et al. (2016).

Global models used for downscaling
The three CMIP5 models used as the basis for this study are:

GFDL-ESM2M (Dunne et al., 2012), CESM (Kay et al., 2015),

and MIROC (Watanabe et al., 2011). These were chosen based

on: (i) performance in the Bering Sea under present conditions;

(ii) the desire for a representative subset of CMIP5 members,

spanning their range of variability; (iii) the ready availability of

both physical and biogeochemical output. Spatial and temporal

resolution of the output from the three chosen global models is

shown in Table 1. Knutti et al. (2013) performed a dendogram

analysis of the reference state of CMIP3/CMIP5 models; the

GFDL-ESM2M, MIROC, and CESM models in fact span a broad

range of global patterns for precipitation and SST. A regional

summary of CMIP5 output was obtained through the NOAA climate

change web portal (https://www.esrl.noaa.gov/psd/ipcc/cmip5/).

Air temperatures over the eastern Bering Sea from these three

models span �80% of the range of CMIP5 results, with the

CESM model being closest to the ensemble average (Figure 2).

These models likewise span a wide range of ice climatologies for

Table 1. Spatial and temporal resolution of the three IPCC models.

Model GFDL-ESM2M CESM MICOC

Ocean 0.33–1.0� latitude
1.0� longitude
50 levels vertically
Monthly

nominally 1� latitude
nominally 1� longitude
60 levels vertically
Monthly

0.56� near equator, 1.71� latitude at the poles
1.4 o longitude
44 levels vertically
Monthly

Atmosphere 2.0� latitude
2.5� longitude
6 hourly

0.94� latitude
1.25� longitude
Daily

2.79� latitude
2.81� longitude
Daily
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the Bering Sea, where that climatology was calculated using

observations and model output for the period 1980–1999; GFDL

has more ice than observed, MIROC has less ice than observed,

and CESM has close to observed climatological ice. The models

diverge considerably in their estimates of Bering Sea air tempera-

ture change after 2040.

For the CMIP5 downscaling simulations, we continuously

span years 2006–2100. Oceanic physical boundary conditions for

the Bering10K model were derived from the CMIP5 models’

monthly averages, while atmospheric forcing is either daily

(MIROC, CESM) or 6 hourly (GFDL). For the primary downscal-

ing runs of the CMIP5 models (GFDL, MIROC, and CESM),
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Figure 2. Characterization of the chosen ensemble members for the Bering Sea, relative to other CMIP5 models. Upper left panel: low-passed
(10-year running mean), spatially averaged air temperature for the eastern Bering Sea from CMIP5 members under RCP8.5, from 1976
through 2080, obtained from the NOAA climate change web portal (https://www.esrl.noaa.gov/psd/ipcc/cmip5/). Ensemble mean of all
CMIP5 models (ENSMN) is shown along with individual trajectories of CESM, MIROC, and GFDL models. Light grey, medium grey, and dark
grey illustrate the range of: 100% of CMIP5 members, 80% of CMIP5 members nearest to ensemble mean, and 50% of CMIP5 members
nearest to ensemble mean, respectively. Upper right panel illustrates temperature change relative to individual model climatologies during
1976–2005. Lower panel: seasonal climatology of sea ice extent among different CMIP5 models as compared to observations during 1980–
1999. Solid thick black line shows observed climatology (OBS); grey shading indicates 6 1 SD of all observations. Thin solid and light grey
lines represent other CMIP5 model climatologies.

Projected biophysical conditions of the Bering Sea to 2100 1283

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/76/5/1280/5477847 by guest on 19 April 2024

https://www.esrl.noaa.gov/psd/ipcc/cmip5/


biological ICs and BCs were derived from present monthly clima-

tologies (or assumed near-zero) as described in Hermann et al.

(2013, 2016a).

Yearly (GFDL) and monthly (CESM) nitrate and dissolved

iron values were obtained from the global biogeochemical projec-

tions. These were interpolated as the ICs and BCs for two addi-

tional realizations of Bering10K. These two additional

downscaling runs (GFDL_RCP8.5_BIO, CESM_RCP8.5_BIO)

utilized the same physical ICs, BCs and forcing as the runs with

purely climatological biological conditions (GFDL_RCP8.5,

CESM_RCP8.5). These additional runs sample additional struc-

tural uncertainty of the projections, as they utilize projected

changes in the large-scale biological conditions (e.g. those de-

scribed in Rykaczewski and Dunne, 2010).

Variables analysed
As a summary of model behaviour, we examined a broad spec-

trum of physical and biological variables. A full listing of the vari-

ables chosen, with their units, are shown in Table 2. The

variables chosen are similar to those used in the multivariate

analysis of Hermann et al. (2013); a major new element here is

the inclusion of atmospheric forcing variables. Ocean variables

analysed include relevant surface and bottom values, as well as

vertical averages. A derived variable used to summarize zoo-

plankton biomass, here termed “large crustacean zooplankton,”

is as follows:

lcz ¼ cope þ nca þ eup

where lcz, cope, nca, and eup refer to large crustacean zooplankton,

copepods, neocalanus, and euphausiids, respectively (Table 2).

Analysis methods
Here we describe both univariate and multivariate analyses of the

dynamically downscaled results. A summary of the CMIP5 real-

izations used in the various calculations is provided in Table 3.

Univariate analyses
To summarize behaviours of the model through time, we calcu-

late yearly averages of the variables shown in Table 2 within 1.0

degree longitude � 0.5 degree latitude bins spanning the area be-

tween 180W–150W and 52N–66N (hence each bin contains ap-

proximately 5 � 5 of the native gridpoints of the Bering10K

model). This averaging highlights the interannual/multidecadal

variability of the output at �50 km spatial resolution. These

binned values are used to calculate annual/decadal averages and

internal vs. model variability, and for derivation of the multivari-

ate modes used in the statistical projections.

For the dynamically downscaled results, mean change for each

variable under RCP8.5 was summarized by two methods: (i) aver-

aging over all the RCP8.5 ensemble members (GFDL_RCP8.5,

CESM_RCP8.5, MIROC_RCP8.5, GFDL_RCP8.5_BIO, and

CESM_RCP8.5_BIO) and over all spatial bins to obtain a single

yearly time series; (ii) averaging over all RCP8.5 ensemble

Table 2. Variables used in the multivariate analysis of the
simulations, with short names and units.

Surface temperature sst oC
Bottom temperature sbt oC
Surface salinity sss psu
Ice cover iceco fractional area
Mixed layer depth mld m (positive up

coordinates; hence,
negative change
denotes deepening
MLD)

Vertical mixing (depth avg.) akts m2 s�1

Nitrate þ ammonium (depth avg.) nut mgN m�3

Ice phytoplankton iceph mgC m�2

Small plus large phytoplankton
(depth avg.)

phyt mgC m�3

Microzooplankton (depth avg.) mzoo mgC m�3

Small copepods (depth avg.) cope mgC m�3

Neocalanus (depth avg.) nca mgC m�3

Euphausiids (depth avg.) eup mgC m�3

Benthic detritus detbe mgC m�2

Benthic infauna benth mgC m�2

Sea surface height ssh m
Sea surface cross-shelf velocity utop m s�1

Sea surface along-shelf velocity vtop m s�1

Air temperature tair oC
Air pressure pair Pa
Specific humidity qair kg kg�1

Zonal wind uwind m s�1

Meridional wind vwind m s�1

Downward longwave radiation lwrad W m�2

Downward shortwave radiation swrad W m�2

Variables shown in bold were log-transformed prior to use in the statistical
analyses.

Table 3. Summary of the regional downscaling realizations and their use in dynamical-statistical results.

Regional model
run acronym

CMIP5
model driver

Emission
scenario Bio-BCs EOFs

RCP85 dynamical
results

RCP45 dynamical
results

Hybrid method
results

GFDL_RCP85 GFDL RCP85 clim x x x
GFDL_RCP85_BIO GFDL RCP85 interp x x
CESM_RCP85 CESM RCP85 clim x x x
CESM_RCP85_BIO CESM RCP85 interp x x
MIROC_RCP85 MIROC RCP85 clim x x x
GFDL_RCP45 GFDL RCP45 clim x x x
CESM_RCP45 CESM RCP45 clim x x x
MIROC_RCP45 MIROC RCP45 clim x x x

CMIP5 model driver, CMIP5 global model output used as forcing and boundary conditions; Emission scenario, emission scenario of the driver; Bio-BCs, biolog-
ical boundary conditions used for regional model (clim, present-day climatology; interp, interpolate from biogeochemical output of the global driver); EOFs,
models used in derivation of univariate/multivariate EOFs; dynamical results, models used in calculation of dynamical method results; hybrid results, models
used in calculation of hybrid (dynamical-statistical) method results.
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members and over individual decades to obtain ensemble mean

maps of change between decades.

Estimates of uncertainty
Our calculation of internal vs. model variability (also known as

“intrinsic” vs. “structural” uncertainty) is similar to methods

used elsewhere (e.g. Hawkins and Sutton, 2009). While it is rec-

ognized that oceanic and atmospheric time series have significant

energy over a broad range of frequencies (red spectra), it is useful

for our present purposes to divide these into sub-decadal and

intra-decadal frequencies. Here, internal variability within a par-

ticular decade was calculated using the variance of each model’s

yearly averages during that decade, followed by averaging that sta-

tistic over all members of the ensemble under a particular emis-

sion scenario—that is, our working definition of “internal

variability” refers to fluctuations of the annual averages over peri-

ods shorter than a decade (intra-decadal frequencies). Model var-

iability was calculated as the variance of the decadal average

change across ensemble members at each horizontal location—

hence it is a measure of differences in decadal means (sub-decadal

frequencies) due to model structure, where the “internal” variability

has been filtered out. Using a similar distinction, Figure 2 displayed

the model variability of spatially averaged, low-pass-filtered air tem-

perature from the CMIP5 models. Here we will calculate internal

and model variability for all of the regional and forcing variables at

each spatial bin during the period 2090–2099. These definitions

and methods for internal vs. model variability are separately

applied to the dynamically and statistically derived ensembles

of this study, and are subsequently combined into weighted

estimates of uncertainty (see “Weighted estimates of change and

uncertainty” section).

Multivariate analyses
Multivariate statistical methods can be useful in summarizing the

behaviour of oceanographic models and how they respond to

large-scale atmospheric forcing. Here we employ a variant of the

canonical correlation analysis (CCA) technique to identify the

dominant spatial patterns of multiple variables which rise and fall

together through time. Similar analyses (Hermann et al., 2013,

2016b) utilized coupled principal component analysis (CPCA) to

achieve this aim. Related techniques have been described in

Preisendorfer (1988) and Bretherton et al. (1992).

As an example of CCA, the time amplitude of a dominant re-

gional spatial pattern of sea surface temperature, identified

through univariate EOF analysis, may well be correlated with the

time amplitudes of dominant spatial patterns of air temperature

and primary production. These spatial patterns need not be simi-

lar across the variables; indeed, the primary production response,

due to advection and bathymetry, will typically look very different

than any wind, air temperature or SST pattern with which it is

correlated through time.

Details of the statistical procedure are provided in the

Appendix; here we summarize the basic steps. To find the most sig-

nificant modes of multivariate behaviour—those which efficiently

reproduce most of the covariance in the original time series of N

variables—we begin with the univariate EOFs, which decompose

the original fields into pairs of space and time functions. To obtain

the most universal patterns, encompassing the widest range of sce-

nario, model, and internal variabilities in a balanced fashion, we

include the following six dynamically downscaled ensemble mem-

bers: GFDL_RCP4.5, GFDL_RCP8.5, CESM_RCP4.5,

CESM_RCP8.5, MIROC_RCP4.5, and MIROC_RCP8.5. We de-

mean the binned annual time series for each realization, then con-

catenate all members together along an abstract time axis. Note

that the EOF analysis calculates the eigenvectors of the covariance

matrix, and this matrix is unaffected by the values of time per se or

their ordering; here we are preparing a collection of independent

yearly realizations of each field, which happens to include both

multiple years and multiple ensemble members.

The top few (say M) EOFs and their modulating “time series”

for each of the N variables provide a new, dimensionally reduced,

set of functions summarizing the patterns in the original data. A

subsequent principal component analysis of the set of N � M

multivariate time series will then identify how the spatial modes

of these different variables tend to covary in our yearly realiza-

tions. This yields a final set of modulating series, with associated

spatial patterns for each variable, which efficiently describes

much of the correlated variability across both space and

variables:

Vilt ¼
X

j

XjilTjit ¼
X

k

CkilCkt (1)

where X and T are the traditional EOF space and time functions,

whereas C and C are the new modes emphasizing covariance

among the different variables. The indices i, j, k, l, t represent

variable type i, spatial location l, univariate mode number j,

multivariate mode number k, and time index t. We map the spa-

tial structures of the most significant univariate and multivariate

modes, and note the spatially averaged variance explained by

each.

The value of this decomposition lies not only in its illumination

of multivariate modes of variability, but also in its potential use in

predicting any subset of “response” variables (here, the regional

quantities not yet generated through dynamical downscaling) from

a collection of “forcing” variables (readily available from coarse-

scale CMIP5 output). This is achieved by projecting those forcing

variables onto the previously derived multivariate modes—that is,

by estimating how much of each multivariate mode C (which in-

clude the response variables) is contained in those readily available

fields, for each year where downscaling has not been performed, to

obtain the corresponding Cvalue for that year. The result is an esti-

mate of likely regional biophysical response, given only the large-

scale or coarse-scale atmospheric forcing from some new global

model (e.g. other CMIP5 or CMIP6 models), not yet dynamically

downscaled to the Bering Sea:

Vest ilt ¼
X

k

CkilCestkt (2)

Effectively this bootstraps the results from a few, computation-

ally intensive, dynamically downscaling runs to an estimate of

what downscaling results would have been obtained from a much

larger ensemble. The success of this approach depends on finding

multivariate modes which explain non-trivial variance in both the

forcing variables (for which we have a large ensemble of realiza-

tions) and the regional response (for which we have a more lim-

ited ensemble).

In the present case, we choose air temperature, air pressure,

zonal winds, and meridional winds as our “forcing” variables,

since they are readily available online for most of the CMIP5
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models, subjected to RCP4.5 (35 different models) and RCP8.5

(28 different models) emission scenarios (http://apdrc.soest.

hawaii.edu/datadoc/cmip5.php). We compare the estimates

from statistical projection of our six-member ensemble with

the corresponding dynamically downscaled output, to quantify

how much of the signal in each variable is captured by the

technique. Specifically, we calculate the mean square difference

between the original and estimated fields, normalized by

the variance of the original field (Rfit, henceforth termed

“fractional variance”):

Rfit il ¼ 1:0�
X

t

V est ilt � Viltð Þ2=
X

t

Viltð Þ2
� �

(3)

Hence a value of 1 indicates a perfect fit between original

and estimated fields (and values less than 0 are possible for an

exceptionally bad fit, though in practice all values fell between

0 and 1).

Finally, we use the technique to generate a 63-member

ensemble of regional projections under RCP4.5 and RCP8.5, by

estimating the Ckt for each of those members in each projected

year, and summing the modes to obtain Vest [Equation (2)]

Details regarding the derivation of Cest (essentially, projection of

four atmospheric forcing variables onto the multivariate modes)

are shown in the Appendix.

Weighted estimates of change and uncertainty
The goal of our hybrid dynamical-statistical downscaling method

is an improved estimate of the expected change, and the uncer-

tainty of that estimate, due to the internal variability of the real

system across a broad range of time scales and the structural un-

certainty (many possible formulations of equations and parame-

ters) of both the global and regional models. Dynamical

downscaling methods are more likely to capture large, nonlinear

changes in the regional system under global climate change, com-

pared to simple statistical downscaling methods based on correla-

tions between present-day global and regional data. However,

there is no guarantee that the (affordably) small ensemble used

for dynamical downscaling will faithfully capture the mean and

variability which would have been obtained had the larger ensem-

ble of CMIP5 global results all been used. The application of mul-

tivariate statistical rules, derived from the smaller ensemble, to

the larger ensemble of global results, serves to correct for these

discrepancies. This provides improved estimates of mean

expected change and its uncertainty, when a full dynamical down-

scaling of all CMIP5 members is not feasible.

Note, however, that the statistical method is still just an

approximation, and will fail to capture some of the changes

observed under full dynamical downscaling. Its efficacy as a re-

placement will be both space and variable dependent. Hence, a

final “best” estimate of change and uncertainty combines both

the dynamical and statistical results. A reasonable approach here

is to utilize the fractional variance (goodness of fit) metric to de-

rive a weighted average of the two:

V wgtilt ¼ Rfit il < V est ilt > þ 1� Rfit ilð Þ < Vilt > (4)

where <.> denotes the ensemble average over all available dy-

namical (V) or statistical (Vest) members. That is, for each vari-

able, in areas where the statistical method is least successful, we

preferentially utilize our small ensemble, dynamically downscaled

results, while in areas where the statistical method is most suc-

cessful, we preferentially utilize our large ensemble, statistically

derived results. An analogous weighted mean is derived from the

internal and model variability estimates, derived separately from

the dynamical and statistical members.

Results
We begin by comparing the seasonal means for 10-year periods

of the “present” (2010–2019), the “near-future” (2050–2059),

and the “far-future” (2090–2099) under RCP8.5, as derived from

direct dynamical downscaling. We then present results from the

multivariate analysis, and statistically expand our original ensem-

ble to include a much larger set of CMIP5 forcings. Finally we

combine the dynamical and statistical estimates, present the an-

ticipated changes by 2100 under RCP4.5 and RCP8.5, and present

the magnitude of internal and model variability for these com-

bined estimates.

Mean spatial patterns under present forcing
Decadal ensemble mean spatial patterns of “present” (2010–2019)

conditions from the five-member RCP8.5 ensemble are displayed

in Figure 3 using the raw (untransformed) variable values (for all

subsequent plots and analyses, some of the variables were log

transformed as noted in Table 2). Prominent spatial features in-

clude the following: (i) warmer sea surface temperatures in

the Gulf of Alaska and cooler temperatures to the northwest;

(ii) lowest sea bottom temperatures at mid shelf (the “cold

pool”); (iii) lowest salinity near the coast; (iv) elevated phyto-

plankton on the middle shelf and near the coast; (v) depleted nitrate

plus ammonium on the shelf; (vi) elevated microzooplankton,

copepods, and euphausiids on the southeastern and middle shelf;

(vii) elevated neocalanus on the southeastern shelf; (viii) elevated

mixing on the northwestern shelf; (ix) elevated benthic detritus and

epi-benthos along the 50 m isobath, with maxima to the north and

south; (x) elevated ice cover and ice phytoplankton on the north-

western shelf; (xi) deepest mixed layer depth at the outer shelf;

(xii) highest sea surface height in the Gulf of Alaska and on the

southeastern shelf; (xiii) highest air temperature and absolute hu-

midity in the southeast; (xiv) northeastward winds in the southeast

and southeastward winds in the northwest; (xv) strongest down-

ward longwave and shortwave radiation in the southeast.

Many of these model-generated features correspond to observed

properties of the present-day Bering Sea. The mid-shelf “cold pool”

of low bottom temperatures is a prominent feature of the region,

with strong impacts on fish production. Correspondence of the

modelled cold pool and ice cover with observations under past and

present-day forcing, as well as extensive comparisons of tempera-

ture and salinity throughout the water column, have been de-

scribed in Hermann et al. (2013, 2016a) and Ortiz et al. (2016).

Similar patterns were observed here under “present” (2010–2019)

CMIP5 forcing. The spatial pattern of yearly averaged phytoplank-

ton—higher in the southeastern Bering (e.g. Bristol Bay and along

the Aleutian chain), the northwestern Bering (e.g. the Bering

Strait), and along the middle shelf domain—resembles the satellite-

derived annual chlorophyll climatology reported in Brown et al.

(2011). The southeasterly, mid-shelf maxima of euphausiids resem-

ble the acoustically derived euphausiid biomass patterns reported

in Ressler et al. (2012, 2014). A similar (southeasterly and mid-

shelf) distribution of copepod biomass generally corresponds to

the (spatially limited) copepod abundance estimates (Coyle et al.,
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2008; Hunt et al., 2011; D. Kimmel, pers. comm.). The model is

less successful at replicating observed patterns of neocalanus, where

the available data suggest maximal biomass near the shelf break (D.

Kimmel, pers. comm.). Some of these pelagic biomass comparisons

are complicated by the fact that we are using vertical averages from

the model, as compared to near-surface vertical integrals or surface

values reported in the observational studies. Spatial patterns of

modelled benthic detritus and infaunal biomass in the northern

Bering (e.g. local maxima near Bering Strait) roughly correspond

to the infaunal patterns reported for the northern shelf in

Grebmeier (2012) and Grebmeier et al. (2015). Limited informa-

tion is available for total benthic infaunal biomass in the southeast-

ern Bering; however, bottom trawl surveys typically indicate

maxima of red king crabs along the Aleutian peninsula and the in-

ner shelf domain near Bristol Bay, and maxima of snow crabs in

the northern portion of the middle shelf domain (e.g. Siddon and

Zador, 2017). Our model indicates relative maxima of total benthic

infaunal biomass in these regions.

Spatially averaged trends under RCP8.5
As a simplest index of projected change, we now examine the

time series of the spatial average of each quantity, averaged over

the five-member RCP8.5 ensemble (Figure 4; see Table 3 for

models used). Quantities exhibiting consistent upward trends in-

clude sea surface temperature, sea bottom temperature, sea sur-

face height, cross-shelf transport, air temperature, absolute

humidity, and downward longwave radiation. Quantities exhibit-

ing consistent downward trends include sea surface salinity, phy-

toplankton, nutrients, copepods, euphausiids, benthic detritus

Figure 3. Decadal average spatial patterns for the years 2010–2019, downscaled from the five-member ensemble of RCP8.5 runs. Descriptions
of each variable and its units are listed in Table 2. In this subsequent areal plots, isobaths are shown at depths of 50, 100, 200, and 1000 m. In
these plots, the raw (untransformed) values are displayed; for all subsequent plots and analyses, some of the variables are log transformed as
shown in Table 2. Colour version of this figure is available online at ICESJM online.
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and epibenthos, ice cover, mixed layer depth (more negative val-

ues indicate mixed layer deepening), and ice phytoplankton. For

most of these variables, the largest changes appear after 2040.

Note how even after averaging across space and ensemble mem-

bers, there is still substantial interannual as well as interdecadal

variability, reflecting the intrinsic variability within each

simulation.

Projected change in spatial patterns under RCP8.5
To examine the spatial patterns of these changes in more detail,

and to correct for systematic bias in each of the models, we plot

the average decadal change between the 2010s and the 2050s for

the five-member RCP8.5 ensemble in Figure 5 (same models used

as in Figure 4). These patterns differ substantially from those of

the mean state shown in Figure 3. Sea surface temperature (sst)

increases uniformly across the model domain. Changes to sea

bottom temperature (sbt) are focused on the inner and middle

shelf, with maximum increase to the northwest. Sea surface salin-

ity (sss) exhibits greatest decrease near the coast. Depth-averaged

phytoplankton, copepods, and euphausiids (phyt, cope, eup) ex-

hibit greatest losses along the outer shelf, while neocalanus (nca)

exhibits a slight increase on the northwestern shelf, and micro-

zooplankton (mzoo) exhibits a substantial increase all across the

shelf. Ice cover (iceco) and an ice phytoplankton (iceph) decrease

in the northwest. Sea surface height (ssh) increases along the

coast, consistent with enhanced shoreward flow across the shelf

(utop). Air temperature (tair) and absolute humidity (qair)

Figure 4. Time series of spatial averaged properties, averaged over the five-member RCP8.5 ensemble.
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increase everywhere, especially in the northwest, while air pres-

sure (pair) decreases, especially in the northwest. Changes to

winds (uwind, vwind) are geostrophically consistent with the

changes in air pressure (pair), i.e. enhanced northeastward winds

along the enhanced atmospheric pressure gradient. Increased

downward longwave radiation (lwrad) is especially prominent in

the northwest.

These broad spatial trends under RCP8.5 continue through the

remainder of the twenty-first century (Figure 6). In addition, a sub-

stantial increase in vertical mixing (akt) and deepening of the mixed

layer (mld) are produced along the shelf break. Sea surface and sea

bottom temperatures increase by as much as 5�C, while copepods,

euphausiids, and benthos (all log10 transformed in Figures 5 and 6)

decrease by as much as half their initial values (log10 decreased by

0.3 or greater). Changes to shortwave radiation lack a clear trend or

spatial pattern by mid-century, but are reduced by �10% of their

present-day mean by the end of the century.

To summarize: the CMIP5 projections of the small ensem-

ble (based on GFDL, CESM, and MIROC models) anticipate a

shift to warmer air temperatures (especially in the northern

Bering Sea) and a shift to more northward winds under the

RCP8.5 scenario. When dynamically downscaled through the

Bering10K model, these and related changes in the forcing

lead to substantially warmer surface and bottom temperatures

(hence a smaller “cold pool”), reduced ice cover, enhanced

cross-shelf surface flux, enhanced growth of small zooplankton

and neocalanus in the (increasingly ice-poor) northern Bering,

and reduced biomass of phytoplankton, copepods, and

euphausiids on the outer shelf of the (increasingly warm)

southern Bering.

Figure 5. Decadal average change between 2010–2019 and 2050–2059 from downscaled projections based on GFDL-ESM2M, CESM, and
MIROC RCP 8.5 global projections. Colour version of this figure is available online at ICESJM online.
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Multivariate analysis
Univariate EOFs
These analyses use the six-member ensemble (see Table 3), which

includes both RCP4.5 and RCP8.5 members. We begin by pre-

senting the univariate EOFs of each analysed variable, based on

the annually averaged fields (Figure 7). For many but not for all

cases, these spatial patterns are similar to those of the long-term

decadal trends under RCP8.5 in Figures 5 and 6. Note that this

EOF analysis includes interannual through interdecadal scales of

variability, as well as the considerable structural and scenario var-

iability across the CMIP5 models driving the Bering10K realiza-

tions. This suggests a consistent, spatially dependent response in

those realizations to recurring patterns in the forcing. In some

cases (e.g. sst, tair, qair), the first univariate mode captures nearly

all of the variance in the original time series, whereas in others

(e.g. surface velocities utop and vtop) less than 25% is explained

by the first univariate mode.

Multivariate modes
When the multivariate modes are calculated (Figure 8), we find

many spatial patterns similar to those of the first univariate EOFs

(compare Figures 7 and 8, bearing in mind the sign of each pat-

tern in Figure 7 is arbitrary). The spatial patterns of the first mul-

tivariate mode clearly indicate many of the patterns rise and fall

in synchrony across variables; for example, note how different

spatial patterns of sea bottom temperature and air temperature

co-occur, and how these co-occurring patterns explain over 70% of

each variable’s original signal. Variables most strongly explained by

the multivariate mode are: sea surface and bottom temperature, ice

cover, air temperature, and absolute humidity. Variables most

Figure 6. Decadal average change between 2010–2019 and 2090–2099 from downscaled projections based on GFDL-ESM2M, CESM, and
MIROC RCP 8.5 global projections. Colour version of this figure is available online at ICESJM online.
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weakly explained by this mode are: air pressure, surface velocities,

winds, and shortwave radiation. A significant fraction of the biolog-

ical signals are explained. In many locations, this “warm mode” is

associated with reduced biomass of phytoplankton and large crusta-

cean zooplankton, especially along the outer shelf. In some loca-

tions, the higher temperatures are associated with increased

biomass, for example for microzooplankton and neocalanus.

The second multivariate mode (Figure 9) explains substantially

less of the original signals; however, averaged over the entire do-

main, the following variables have at least 10% of their original

variance explained: air pressure, zonal and meridional winds,

along-shelf surface velocity, downward longwave radiation, short-

wave radiation, vertical mixing (greater on the outer shelf), and

benthic infauna. None of the biological variables have more than

10% of their spatially averaged variance explained by this mode,

although in some cases there are spatially localized effects where

much of the original signal is captured (e.g. note the near-shore

reduction in many of the biological groups, and the near-shore

increase in nutrients).

The differences between the two modes are further illustrated

by plotting the variance explained for each variable (shown on

Figures 8 and 9) on a 2D scatter plot (Figure 10). The two multi-

variate modes appear as fundamentally different modes of vari-

ability (a “heat” mode and a “wind” mode), with nearly all

variables falling into one or the other “factor” group. The notable

exceptions are benthic detritus and downward longwave radia-

tion; modes 1 and 2 both explain a significant percentage of the

original signal for those variables. Note also that both modes

Figure 7. First-mode univariate EOFs for forcing and regional response variables, calculated using a six-member ensemble which includes
both RCP4.5 and RCP8.5. Fractional variance explained by the univariate EOF is listed for each variable. Colour version of this figure is
available online at ICESJM online.
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include increased vertical mixing and deepening of the mixed

layer on the outer shelf (Figures 8 and 9).

We now calculate how much of the variance in our “training”
set V can be replicated by Vest, with multivariate mode ampli-
tudes calculated exclusively by projecting only four of atmo-
spheric forcing variables used in our dynamical downscaling: air
temperature, air pressure, zonal winds, and meridional winds
(Figure 11). In general, greater variance is explained within those
areas where large change was calculated between 2010s and 2090s
(Figure 6); these areas naturally dominate the univariate and mul-
tivariate modes as well (Figures 7–9). In many areas over 50% of
the variance is replicated by the method, that is, we capture over
50% of the dynamically downscaled results using our statistical
estimator alone (Figure 11). As described in “Weighted estimates
of change and uncertainty” section, this fractional variance at
each location is used in our final weighted estimates of change
and uncertainty for each variable.

Statistical expansion of the ensemble using the multivariate
modes
We now estimate the regional response to an expanded set of

CMIP5 models under emission scenarios RCP4.5 and RCP8.5. As

described in the Methods, this proceeds by projecting each mem-

ber’s available atmospheric “forcing” variables (here, air tempera-

ture, air pressure, zonal winds, and meridional winds) onto the

multivariate modes calculated from the dynamical downscaling

results, and subsequently taking a weighted average of the statisti-

cally and dynamically downscaled results [Equation (4)] The sta-

tistically calculated change in decadal sea bottom temperature

(Figure 12) shows considerable variability among the different

members, reflecting substantial structural variability among

CMIP5 models. An ensemble mean is calculated from those

members; as with the dynamically downscaled results, it exhibits

an increase of up to 5�C on the northern Bering Sea shelf. The

Figure 8. First-mode multivariate EOFs for the collection of forcing and regional response variables, with fractional variance of the original
time series explained by that mode. Colour version of this figure is available online at ICESJM online.
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same procedure applied to total large crustacean zooplankton

(lcz), using the logarithm of those values, predicts a decrease of

�0.2 log units on the southeastern shelf by 2100—that is, a re-

duction nearly by half from the values earlier in the century

(Figure 13). Conversely, there is mean increase in lcz over the

northern shelf.

The weighted means of the (5-member) dynamical ensemble

and (28-member) statistical ensemble result for decadal change

under RCP8.5 for all variables (Figure 14) bear a very strong re-

semblance to the means calculated from the dynamical results

alone under that emission scenario (compare Figures 6 and 14).

Relative to the small ensemble results, the large ensemble appears

to have greater northward winds (vwind), leading to greater

onshore flow (utop) and slightly reduced ice cover (iceco). Other

differences include slightly reduced changes for air temperature

(tair), sea surface temperature (sst), and sea bottom temperatures

(sbt). Some of these differences between Figures 6 and 14 are hard

to discern, as the spatial patterns are so similar, but emerge in dif-

ference maps (not shown). The strong resemblance of the spatial

patterns by the two methods results from two factors: (i) the

mean change in air temperature of the five-member dynamical

ensemble is very similar to the mean change of the full CMIP5 en-

semble (e.g. see Figure 2), and that particular forcing variable

strongly correlates with the regional responses (the “heat” mode

revealed by the analysis); (ii) not all areas were well reproduced

by the statistical modes (low fractional variance explained, see

Figure 11), and hence the original, dynamical estimate was prefer-

entially used in those areas [Equation (4)].

The analogous weighted maps based on the (3-member) dy-

namical and (35-member) statistical ensembles under RCP4.5

(Figure 15) exhibit marked differences from the results under

RCP8.5. Of particular note, they predict only half the increase in

Figure 9. Second-mode multivariate EOFs for the collection of forcing and regional response variables, with fractional variance of the original
time series explained by that mode. Colour version of this figure is available online at ICESJM online.
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surface and bottom temperatures anticipated under RCP8.5. The

general sense of the spatial patterns is retained, but at much

smaller amplitude as compared to RCP8.5.

Internal vs. model variability of the projections
Variabilities (“uncertainties”) of projections computed from the

dynamical method alone (not shown here) were in fact very dif-

ferent from those computed by the statistical method, a reflection

of the small sample size of the dynamical set. The much larger

statistical set presumably gives us a superior estimate of the true

uncertainty among projections, at least in those areas where the

statistical method is able to capture a substantial fraction of the dy-

namical variance (see Figure 11). The weighted dynamical-statistical

means for internal and model variability among the RCP8.5 projec-

tions are shown in Figures 16 and 17, respectively. The model vari-

ability is larger than the internal variability for nearly all variables

and locations; this is especially true for sea surface height. The

exceptions are the atmospheric pressure and associated winds,

which exhibit far greater internal than model variability. For many

of the variables, model variability is greatest in areas where the larg-

est mean interdecadal change was calculated (Figure 6). In particu-

lar, sea bottom temperature exhibits greatest such uncertainty

(greater than 2�C) in the northern Bering Sea.

For a majority of the variables, both the model and internal

variability are smaller than the calculated mean change in most

areas by 2100. Winds and air pressure exhibit some of the greatest

internal variability relative to mean change, whereas sea surface

height, longwave radiation, and shortwave radiation exhibit some

of the greatest model variability relative to mean change.

Discussion
Causal pathways and limits of the dynamical model
The basic patterns of change from the dynamically downscaled

results suggest large changes to the future Bering Sea, with consid-

erable spatial detail—not all areas warm to the same extent, and

large zooplankton are reduced most severely on the outer shelf.

These results are consistent with our previous downscaling runs of

the model through 2040 (Hermann et al., 2016a), as well as recent

observations of warm vs. cold years in the Bering Sea (Hunt et al.,

2011). The warmer surface and bottom temperatures are largely a

response to warmer air temperatures and reduced ice (hence

greater penetration of shortwave radiation). Reduced southward

advection of ice (as winds become more northward) may con-

tribute secondarily to warming in the south. Reduced formation

of ice also manifests as reduced salinity in Norton Sound, as

brine rejection is reduced there. One probable causal pathway

reducing the large zooplankton is heightened grazing pressure

on those groups (represented as a temperature-dependent qua-

dratic loss term in the model). The northern increase in neocala-

nus is difficult to interpret, especially as the present-day pattern

produced by the model may not reflect the true observed distri-

bution. The broad increase in microzooplankton is likely driven

in part by an increase in temperature-dependent growth rates.

The decreased phytoplankton on the outer shelf may be partly

Figure 10. Variable loadings on the first 2 multivariate modes; a scatter plot of total variance explained for each variable by multivariate
mode 1 (x-axis) vs. multivariate mode 2 (y-axis). Variances plotted here are also listed in Figures 8 and 9, respectively
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due to the deepened mixed layer, for example through light

limitation. Further analysis of the model output may help to

clarify these mechanisms.

Known biases and imperfections of the regional dynamical

model used here include a limited number (10) of vertical layers,

a fixed Bering Sea through flow, and a simple monthly climatol-

ogy (no interannual variability) for coastal runoff. Several of these

issues have been addressed in more recent simulations, which in-

clude more (30) layers and improved algorithms for light extinc-

tion, primary production, and zooplankton diapause (K.

Kearney, pers. comm.). Previous work has indicated that the use

of only 10 layers does not strongly limit our ability to reproduce

the fundamental seasonal and interannual temperature patterns,

although it may contribute to a persistent shallow bias in mixed

layer depth (Hermann et al., 2016a). An observed bias toward late

melting of ice in the hindcasts (Ortiz et al., 2016), while undesir-

able, should not strongly affect the annual averages employed for

our analyses. Recent improvements to the ice dynamics and ther-

modynamics code (K. Hedstrom, pers. comm.) have significantly

reduced this bias.

More generally, it is recognized that for the biological elements

in particular: (i) there is considerable uncertainty about the pre-

sent structure of the food web and appropriate rates for each vari-

able, and (ii) we are implicitly assuming that the present major

groups (state variables) and their rates will endure over the

twenty-first century. As in global models, we have no guarantee

that this will be the case; new species types, with different rates

and strategies, may ultimately come to dominate the Bering Sea

as it warms. Caution is of course warranted in the use of such

projections.

Figure 11. Fractional variance of the dynamically downscaled output reproduced by projecting four atmospheric forcing variables (tair, pair,
uwind, and vwind) onto the top three multivariate modes. Colour version of this figure is available online at ICESJM online.
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Limits of the hybrid dynamical-statistical methodology
The differences in temporal change calculated from the smaller

(dynamically downscaled) and larger (statistically downscaled)

ensembles reflect the added model (structural) uncertainty of

CMIP5 encompassed by the latter. The five-member RCP8.5 en-

semble (actually only three different models, with two additional

runs using biological boundary conditions from GFDL and

CESM models), while deliberately chosen to span a range of

“warmer” and “colder” models from CMIP5, is still a small sub-

sample of that set. Indeed, our initial choice of three models

(GFDL, CESM, and MIROC) is a small sample from a population

with large variance (e.g. see Figure 2), hence subject to significant

error as an estimate of the true mean and variance (uncertainty)

of that population. This fact—and the high cost of dynamical

downscaling—is the primary motivator for seeking an efficient

hybrid (dynamical-statistical) method to downscale a larger pop-

ulation of CMIP5 output.

The fact that the statistically generated ensemble results are so

similar in pattern to the dynamically generated results is to some

extent a consequence of so much of the variance and covariance
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Figure 12. Ensemble results for sea bottom temperature (sbt), obtained by projecting atmospheric forcing variables (from 28 different
CMIP5 models under emission scenario RCP8.5) onto the multivariate modes. Upper panel: calculated change in 10-year average sbt between
2010–2019 and 2090–2099 for each CMIP5 realization. The forcing CMIP5 model is listed at the bottom of each panel. Isobaths are shown at
depths of 50, 100, 200, and 1000 m. Lower left panel: yearly areal average for each CMIP5 realization, relative to the 2010–2019 mean. Dark
black line shows ensemble mean; light black lines indicate 6 1 SD for that year. Lower right panel: ensemble mean change based on the 28
CMIP5 models. Colour version of this figure is available online at ICESJM online.
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being contained in the first, “heat,” multivariate mode. The forc-

ing data from the larger set of CMIP5 output projects strongly

onto this mode, which generates a final pattern similar to that of

the dynamically generated results. However, we now have the

added benefit of the much larger ensemble, to inform us regard-

ing the expected mean amplitudes of those patterns in any future

year, and their uncertainty. We achieve this benefit without dy-

namically downscaling all of the CMIP5 members. Obviously we

will not capture all of the signal which would emerge from a full

dynamical downscaling through this hybrid method. To compen-

sate, we use an objective measure of our statistical method (frac-

tional variance explained, Figure 11) in our final weighted sums

[Equation (4)], to extract the greatest value from both methods.

Simpler statistical methods (e.g. linear regression between ob-

served air temperature and regional ocean temperature, applied

to predict the future ocean temperature using projected air tem-

perature from CMIP5) have been used in other studies to quickly

predict the regional response to a broad range of possible futures.

The fact that our multivariate technique emphasizes covariance

across space and across variables (e.g. air temperature is corre-

lated with absolute humidity, and the sea level pressure field is

correlated with the winds) reduces the possibility of spurious cor-

relations being obtained for any single location and/or single pair

of predictor/predictand variables. Instead, we have assimilated

the covariance structure of the entire set of multivariate fields

into our unified statistical rule.

100

ACCESS1-0

100

ACCESS1-3

100

bcc-csm1-1-m

100

bcc-csm1-1

100

BNU-ESM

100

CanESM2
100

CMCC-CM

100

CMCC-CMS

100

CNRM-CM5

100

CSIRO-Mk3-6-0

100

GFDL-CM3

100

GFDL-ESM2G
100

GFDL-ESM2M

100

GISS-E2-H

100

GISS-E2-R

100

HadGEM2-AO

100

HadGEM2-CC

100

HadGEM2-ES
100

inmcm4

100

IPSL-CM5A-LR

100

IPSL-CM5A-MR

100

IPSL-CM5B-LR

100

MIROC5

100

MIROC-ESM-CHEM
100

MIROC-ESM

100

MPI-ESM-LR

100

MPI-ESM-MR

100

MRI-CGCM3

-0.160

-0.140

-0.120

-0.100

-0.080

-0.060

-0.040

-0.020

0.000

0.020

0.040

2010 2020 2030 2040 2050 2060 2070 2080 2090

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0.00

0.05

0.1

0.15

0.2

0.25

0.3

52.0°N

54.0°N

56.0°N

58.0°N

60.0°N

62.0°N

64.0°N

66.0°N

180° 172°W 164°W 156°W

50
100

200

50

50

50

10
0

20
0

Figure 13. Ensemble results as in Figure 12, for log10 (large crustacean zooplankton). Colour version of this figure is available online at ICESJM
online.
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Further testing and alternate methods
In the present work, we used the same set of data both for:

(i) generation of the multivariate modes and (ii) testing how well a

subset of the variables could replicate, through projection onto those

multivariate modes, the original set. More rigorous tests of the

method will include sequentially withholding individual ensemble

members from the original training set, and calculating how well the

methods can replicate the withheld member. We will also explore

the relative performance of simpler multivariate regression methods

at each spatial location. Finally, this and alternate methods will be

tested for application to seasonal patterns. Seasonal evolution entails

strong autocorrelation of signals, and hence alternate methods such

as linear inverse modelling (LIM) (Newman et al., 2003; Alexander

et al., 2008) may be more appropriate for that case. Such LIM

methods entail the calculation of a space-time correlation matrix,

sometimes using a dimensionally reduced dataset (e.g. Capatondi

and Sardeshmukh, 2015), as was used in our analysis.

Conclusions
As part of an interdisciplinary project to explore management

strategy in a future Bering Sea (ACLIM), an eight-member en-

semble of global CMIP5 output was dynamically downscaled us-

ing a 10-km resolution regional biophysical model. These

downscaled projections indicate that shelf bottom temperatures

may increase by as much as 5�C by the end of the twenty-first

century, given a continuation of present global trends in the

emission of greenhouse gases (i.e. IPCC scenario RCP8.5). These

changes may be accompanied by a significant reduction in large

Figure 14. Predicted decadal average change between 2010–2019 and 2090–2099 under RCP8.5, using statistical extrapolation to include 28
ensemble members (weighted average of dynamical and statistical results). Colour version of this figure is available online at ICESJM online.
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crustacean zooplankton over the outer shelf of the southeastern

Bering Sea. Such impacts are substantially reduced (approxi-

mately by half) by 2100 under a moderate emission mitigation

scenario (RCP4.5). These results suggests that future anthropo-

genic atmospheric carbon emissions will have a strong impact on

Bering Sea physics and lower trophic level biology by the end of

the twenty-first century. These are in turn expected to have strong

consequences on the fisheries of the region; such impacts are be-

ing explored in fishery and socioeconomic models under ACLIM.

A hybrid multivariate method, based on a six-member dynam-

ically downscaled ensemble, was used to statistically expand our

ensemble to over 60 members (35 for RCP4.5 and 28 for

RCP8.5). The multivariate analysis suggests two primary indepen-

dent modes of variability, the primary one involving temperature

and zooplankton productivity (among other covariates), and a

secondary one involving air pressure and winds with fewer associ-

ated biological effects.

The expanded results from the hybrid dynamical-statistical

method are similar in spatial pattern to those from dynamical

downscaling alone, but provide an estimate of the magnitude of

change we would have obtained if all 63 members were to be dy-

namically downscaled, and the associated uncertainty of those

estimates due to both internal and cross-model (CMIP5) variabil-

ity. As such it yields improved estimates of future conditions in

the Bering Sea, which are useful in management strategy evalua-

tion for fisheries of the region under high vs. low emission sce-

narios. Results thus far suggest that the projected mean changes

of many biophysical attributes, from the present through 2100,

exceed the internal variability or model-generated uncertainty of

those estimates under RCP8.5.
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Appendix
The steps of our hybrid statistical procedure, based on dynami-

cally downscaled output, may be summarized as follows:

1. Calculate individual spatial modes (EOFs) of each variable

with associated time series (PCs). For this analysis, we use the se-

ries of annual averages at each bin prepared as described in

“Univariate analyses” section, with each of the ensemble members

concatenated together after removal of the time mean.

Vilt ¼
X

j

XjilTjit

where V represents the demeaned and concatenated data, X rep-

resents the spatial EOFs, T represents the modulating time series,

and the indices i, j, l, t represent variable type i, spatial location l,

mode number j, and time index t. In this decomposition, T has

zero mean and unit variance.

2. Calculate “multivariate PCs” using the univariate Ts as the

input set of time series. (In practice the best results are obtained

when Ts are each scaled by the percent variance of V explained

by that univariate mode). We are now calculating EOFs across

variables, rather than across space, decomposing the univariate Ts

into a single multivariate set of time functions Cand variable

loadings M:

Tjit ¼
X

k

MkjiCkt

where k represents the multivariate mode number. This ultimately

yields a new set of multivariate PCs (multivariate time series) with

associated loadings (multivariate spatial modes) for each variable:

Vilt ¼
X

j

Xjil

X
k

MkjiCkt ¼
X

k

Ckt

X
j

MkjiXjil ¼
X

k

CkilCkt

Note how the new multivariate spatial modes C are simply a lin-

ear combination of the univariate spatial modes X, weighted by

M. This new basis set retains the orthogonality property of the

original EOF basis set for each variable, as it entails the multipli-

cation of one orthogonal matrix by another. Hence it can in the-

ory be used to fully reconstruct the original data, in a manner

which compactly emphasizes the covariance among the dominant

spatial patterns of different variables.

3. For convenience, we convolve each of the multivariate time

series with the original time series for each variable at each spatial

bin to obtain the new multivariate spatial modes:

Ckil ¼
X

t

Ckt Vilt

In general, these will look different than the original univariate

EOFs, as they represent the dominant spatial patterns of variables

rising and falling together through time.

4. Now use the multivariate modes derived from the training set

as predictors of the regional response, given only a new set of coarse,

large-scale atmospheric/oceanic forcing. We project the new set of

available forcing variables (in our application these are atmospheric

variables from other CMIP5 members) onto the multivariate basis

set at each time step, to obtain the amplitude of each mode through

time. Ideally, this allows us to estimate the covarying regional varia-

bles not contained in that new set, as a proxy for what would have

appeared if we had conducted a full dynamical downscaling of that

forcing through the regional model. For each forcing variable i at fu-

ture time t we construct the estimate as follows:

C�ikt ¼
X

l

Vilt Ckilð Þ
� �

=
X

l

CkilCkilð Þ
� �

Consider each forcing variable as an independent estimate of the

modal amplitude. Some of these estimates are likely to be more ac-

curate, as some of the variables are captured more fully by that

mode. Hence for our final estimate of the modal amplitudes at

each future time, we weight the individual estimates by the percent

variance of that variable explained by that multivariate mode:
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Rik ¼
X

lt

Vilt Ckilð Þ
� �

=
X

lt

Vilt Viltð Þ
X

lt

CkilCkilð Þ
� �1=2

C��kt ¼
X

i

C�ikt Rik

� �� �
=
X

i

Rik

So our estimate of the “unobserved” (regional biophysical re-

sponse) variables at some future time, based on the projection of

“observed” (large-scale atmospheric forcing) variables onto the

multivariate modes, becomes:

V est ilt ¼
X

k

CkilC
��
kt

This estimate can be further tuned by linearly regressing each

Vestilt against the original Vilt over the original time sequence t; the

slopes bil of those regressions may be used in our final estimates:

V finalilt ¼ bilV est ilt

In practice, it was found that this tuning made little difference to

the results.
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