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The productivity of fish populations varies naturally over time, dependent on integrated effects of abundance, ecological factors, and environ-
mental conditions. These changes can be expressed as gradual or abrupt shifts in productivity as well as fluctuations on any time scale from
seasonal oscillations to long-term changes. This study considers three extensions to biomass dynamic models that accommodate time-variant
productivity in fish populations. Simulation results reveal that neglecting seasonal changes in productivity can bias derived stock sustainability
reference levels and, thus, fisheries management advice. Results highlight the importance of biannual biomass indices and their timing relative
to the peaks of the seasonal processes (i.e. recruitment, growth, mortality) for the estimation of seasonally time-variant productivity. The ap-
plication to real-world data of the eastern Baltic cod (Gadus morhua) stock shows that the model is able to disentangle differences in seasonal
fishing mortality as well as seasonal and long-term changes in productivity. The combined model with long-term and seasonally varying pro-
ductivity performs significantly better than models that neglect time-variant productivity. The model extensions proposed here allow to ac-
count for time-variant productivity of fish populations leading to increased reliability of derived reference levels.

Keywords: eastern Baltic cod (Gadus morhua), fisheries management, fish stock assessment, maximum sustainable yield, population dynamics,
seasonality, SPiCT, surplus production model

Introduction
Increasing evidence suggests that the productivity of fish popula-

tions is time-variant (Hollowed et al., 2013; Petitgas et al., 2013;

Hare et al., 2016; Tommasi et al., 2017): two recent studies using

>200 stocks from the RAM Legacy Stock Assessment Database

(Ricard et al., 2012) and different modelling approaches revealed

that around 68% of the assessed fish stocks (230 and 276 respec-

tively) showed significant non-stationary behaviour (Vert-pre

et al., 2013; Britten et al., 2017). The productivity of fish popula-

tions describes the rate of generation of biomass and is deter-

mined by the combined effects of three physiological processes:

(i) somatic growth (growth of individuals in weight and length),

(ii) recruitment (numbers of individuals recruiting to popula-

tion), and (iii) the survival rate (number of fish surviving from

one point in time to the next). Time-variant productivity can be

attributed to the dependency of the physiological processes and

thus productivity on environmental conditions, such as tempera-

ture, precipitation, currents, eutrophication, or oxygen condi-

tions (Pauly, 1980; Brander, 1995; Köster et al., 2005), as well as

ecological factors such as predator–prey relationships (Kempf

et al., 2009) or food availability (Ursin, 1963, 1967; Ross et al.,

2018). As environmental conditions are not constant over time

(Belkin, 2009; Gruber, 2011; Boyce et al., 2014), neither are the

individual physiological processes nor the productivity of a fish

population. Variability of productivity is usually described by

stepwise shifts between “productivity regimes” or gradual changes

in productivity over long time scales such as inter-annual vari-

ability (Peterman et al., 2000; Vert-pre et al., 2013; Britten et al.,
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2017). However, all physiological processes contributing to stock

productivity show also within year variability, in particular, in

temperate regions, where seasonal differences in environmental

conditions are large (Fretwell, 1972; Pauly, 1980): seasonal vary-

ing growth (Ursin, 1963, 1967; Lambert et al., 2009; Frisk et al.,

2015), maturity (Lambert et al., 2009), and recruitment (Payne

et al., 2008; Kempf et al., 2009; Lobón-Cerviá and Bradford, 2014;

Pécuchet et al., 2015) have been observed and described for many

species. Natural mortality is an important parameter in stock as-

sessment, but notoriously difficult to measure and estimate in

practice (Pauly, 1980; Mertz and Myers, 1997; Quinn and Deriso,

1999; Jennings et al., 2009; Curti et al., 2013; Maunder and Punt,

2013). Few studies have shown seasonality of natural mortality

(Carlson et al., 2008; Nielsen et al., 2012).

As the productivity of a stock is directly related to its MSY

(Fletcher, 1978)—an important reference level in fisheries man-

agement and advice (Russell, 1931; Graham, 1935; Larkin, 1977;

Jennings et al., 2009), seasonal and long-term fluctuations of fish

productivity have direct consequences for fisheries management

(Caddy and Gulland, 1983; Jennings et al., 2009, and references

therein). Not accounting for time-variant productivity might lead

from sub-optimal harvesting and incorrectly specified recovery

times to mismanagement and in some cases even stock collapse

(Britten et al., 2017; Nesslage and Wilberg, 2019), as the example

of Gulf of Maine cod shows (Pershing et al., 2015). In particular,

in light of ongoing climate change, accounting for environmen-

tally driven time-variant productivity in stock assessments is cru-

cial. Stock assessment methodologies, such as Stock Synthesis

(Methot and Wetzel, 2013), Gadget (Begley and Howell, 2004),

or the state-space assessment model (Nielsen and Berg, 2014;

Berg and Nielsen, 2016), allow for the estimation of time-variant

parameters related to catchability, natural mortality, and stock re-

cruitment. Nonetheless, the number of assessments with time-

variant parameters is still limited (Britten et al., 2017), which is

especially the case for data-limited stock assessment methods.

The prevalence of time-invariant parameters in most stock assess-

ments might be attributed to the higher data requirements (qual-

ity and quantity) for the estimation of time-variant parameters,

in particular regarding individual physiological processes. Models

with a simpler population structure, such as biomass dynamic

models [as Hilborn and Walters (1992) coined surplus produc-

tion models] ease the inclusion of time-variant parameters, in

particular considering limited information available, as poten-

tially contrasting non-stationary patterns in the physiological

processes do not have to be entangled individually, but are jointly

described by the productivity of the population.

Biomass dynamic models are based on the theory of the bio-

mass production of fish populations in relation to population

size (Graham, 1935; Schaefer, 1954) assuming a dome-shaped re-

lationship between surplus production—the net production of

biomass per year—and the stock size in biomass (so-called pro-

duction curve). Due to their simplicity (no age or length structure

of the stock) and low data requirements (only catch and biomass

index time series), this class of models is a commonly used stock

assessment model for data-limited and data-moderate stocks.

Within the working groups of the International Council for

the Exploration of the Sea (ICES), biomass dynamic models are

used to assess the stock status relative to MSY proxy reference lev-

els for data-limited stocks, such as the eastern Baltic cod stock

(ICES subdivisions 24–32; ICES, 2018c), hereafter referred to as

Baltic cod. With landings of >25 thousand metric tonnes in 2017

(ICES, 2018c), Baltic cod is commercially the most important fish

species of the Baltic proper (Casini et al., 2016). From a stock as-

sessment point of view, Baltic cod is a problematic stock, because

age readings seem unreliable (ICES, 2018c) and the stock is ex-

posed to very variable environmental conditions (Köster et al.,

2005; Casini et al., 2016). In the Baltic, cod is distributed accord-

ing to the salinity tolerance threshold of the species, and the salin-

ity conditions in the different Baltic basins fluctuates extensively

due to high periodical variability in inflows of saline Atlantic wa-

ter to the Baltic proper (Köster et al., 2005). The Baltic Sea under-

went significant environmental and ecological changes over the

last century (Möllmann et al., 2009; Reusch et al., 2018), such as

an increase in seal worm parasites due to increasing seal abun-

dance, shifts in the dominating clupeid species and their spatial

distribution patterns, and an increase in hypoxic zones, all of

which challenge many Baltic fish stocks and particularly demersal

predators such as cod (Eero et al., 2015; Casini et al., 2016). It has

been shown that the nutritional condition of Baltic cod decreased

substantially starting in the mid-1990s (Eero et al., 2015; ICES,

2015). Baltic cod experts hypothesize that somatic growth has de-

creased and natural mortality has increased based on the decrease

in nutritional condition, reduction of maturation size and ecosys-

tem changes, such as higher seal predation, extension of hypoxic

areas, cannibalism, and parasite infestation (ICES, 2017a, b). As

claimed already by Walters (1987) and again by Britten et al.

(2017), such temporal fluctuations in environmental and ecosys-

tem conditions support the need for assessment models that can

integrate between years and within year variability in stock

productivity.

Here, we extend a biomass dynamic model to account for time-

variant productivity by three different approaches, of which two al-

low to account for between years variability in productivity, with

either stepwise shifts between productivity regimes, or gradual

varying productivity, and one allows for within year variability, by

a seasonally oscillating productivity. Within a simulation study, we

evaluate the precision and accuracy of the models with and without

within year variability in productivity under different scenarios.

The scenarios focus on the seasonal model since little is understood

about the implications and requirements of seasonal oscillating (or

within year variability in) productivity in biomass dynamic models.

We apply all three models (stepwise, gradual, and seasonal) and

their combinations to the Baltic cod stock and discuss management

implications of the time-variant productivity.

Methods
Stochastic production model in continuous time
The stochastic surplus production model in continuous time

(SPiCT; Pedersen and Berg, 2017) is a fully stochastic version of

the traditional Pella–Tomlinson biomass dynamic model (Pella

and Tomlinson, 1969). It uses the reparametrization of Fletcher

(1978) and is formulated as a stochastic differential equation

(SDE) including process noise:

dBt ¼ cm
Bt

K
� cm

Bt

K

� �n

� Ft Bt

 !
dt þ rBBt dWt ; (1)

where c ¼ nn=ðn�1Þ=ðn� 1Þ, Bt is the exploitable biomass at time

t, K is the carrying capacity, m is the productivity parameter and

represents the MSY (maximum attainable surplus production

Fletcher, 1978), n determines the shape of the production curve,
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rB is the standard deviation of the process noise, and dWt is

Brownian motion. In SPiCT, the fishing mortality Ft is modelled

as a stochastic process:

Ft ¼ S
ðFÞ
t G

ðFÞ
t ; (2)

where S
ðFÞ
t represents the seasonal component, and G

ðFÞ
t the diffu-

sion component. The diffusion component follows:

d logðGðFÞt Þ ¼ rF dVt ; (3)

where rF is the standard deviation of the process noise and dVt is

standard Brownian motion. If seasonal catches are unavailable,

S
ðFÞ
t ¼ 1 and thus Ft ¼ G

ðFÞ
t . In this study, seasonal fishing mortal-

ity was modelled by S
ðFÞ
t ¼ expðDsðtÞÞ, representing a cyclic B-spline

(de Boor, 1978) with a period of 1 year with sðtÞ 2 ½0; 1� being a

mapping from t to the proportion of the current year that has

passed. The annual variation allowed by the cyclic B-spline is deter-

mined by the number of knots, which must be smaller than or

equal to the number of catch observations per year. The values of

the cyclic B-spline are defined by the parameter vector u of length

equal to the number of knots minus one. Note that the seasonal

process represented by the spline (S
ðFÞ
t ) is repeated every year.

Pedersen and Berg (2017) implemented an approximation of a sea-

sonal correlation structure in continuous time with a system of cou-

pled SDEs that is known analytically to have oscillatory solutions,

i.e. solutions with a sinusoidal repeating signal (Gardiner, 1985).

This can accommodate changes in the fishing pattern over time,

however using this approach for Baltic cod did not converge to a re-

alistic solution, while significant auto-correlation in the catch resid-

uals was detected when using the cyclic spline (Figure D13 in the

Supplementary). To circumvent these problems an extension to

SPiCT was developed, which adds an auto-correlated (discrete-

time) process H on top of the cyclic spline S and the diffusion com-

ponent G and to Equation (2) (Ft ¼ S
ðFÞ
t G

ðFÞ
t expðHjðtÞÞ).

HjðtÞ ¼ uH Hjðt�1Þ þ �H ;jðtÞ ; (4)

where j maps t to a quarter of the year (dependent on the time-

resolution of the catch data), uH is the coefficient of the auto-

correlation with the process 1 year ago (here lag 4 since catches

are by quarter), and �H ;jðtÞ � Nð0;r2
H Þ, with rH being the stan-

dard deviation of the observation noise term. This represents an

important addition to the original SPiCT model, allowing for an

alternative way to estimate deviations from a constant seasonal

fishing pattern over time. In other words, the H process describes

a step function that is constant in time within quarters and auto-

correlated with a lag of 1 year, and may be thought of as devia-

tions from the mean seasonal process described by S
ðFÞ
t which can

adapt to changes in amplitude and timing (phase) of the real sea-

sonal fishing pattern. The biomass index and catch observations

are respectively modelled by:

It ¼ qBt � e�t ; (5)

Ct ¼
ðtþD

t

FsBsds � e�t ; (6)

where q is the catchability, �t � Nð0; r2
I Þ and �t � Nð0;r2

CÞ, rI

and rC are the standard deviations of the observation noise terms,

and D is the time-interval for the catch (typically a year or quarter

of a year).

The Pella–Tomlinson biomass dynamic model allows for

skewed production curves (see Figure C7 in the Supplementary

for two examples) and includes the Schaefer (n ¼ 2; Schaefer,

1954) and Fox (n ¼ 1; Fox, 1970) models as special cases. The

assumptions are (i) the analysed stock is not subject to migration

(i.e. closed population), (ii) Bt is the exploitable stock biomass,

(iii) there are no lagged effects in dynamics of Bt, and (iv) the

catchability in the survey and fishery are constant over the years.

Furthermore, fishing gear selectivity and natural mortality are not

explicitly modelled.

Time-variant productivity
Time-variant productivity is modelled by the combination of a

mean productivity parameter, a seasonal component, and an ad-

ditional component determining the long-term changes in

productivity:

mt ¼ m Ŝ
ðmÞ
t G

ðmÞ
lðtÞ ; (7)

where m is the mean m parameter, Ŝ
ðmÞ
t is the scaled seasonal

term, and G
ðmÞ
lðtÞ corresponding to the long-term changes. The sea-

sonal productivity is implemented as a yearly repeating seasonal

process and is modelled as a sinus curve with a known period of

1 year.

S
ðmÞ
t ¼ expðA sinð2pt þ uSÞÞ; (8a)

Ŝ
ðmÞ
t ¼ S

ðmÞ
t

EðSðmÞt Þ
; (8b)

where A is the amplitude and uS the phase of the sinus curve.

The long-term productivity changes G
ðmÞ
t correspond to either

one of the following three cases: (i) no long-term changes

[Equation (9)], (ii) stepwise changes [Equation (10)], or (iii)

gradual changes over time [Equation (11)].

G
ðmÞ
t ¼ 1 ; (9)

logðGðmÞ
lðtÞ Þ ¼ logðDmlðtÞÞ ; (10)

d logðGðmÞt Þ ¼ �w logðGðmÞt Þdt þ rmdW m
t ; (11)

where DmlðtÞ is the difference in the productivity parameters be-

tween regimes with l(t) being a mapping from t to the corre-

sponding regime and w is the mean reversion rate, defining the

speed with which the process approaches the long-term mean

(here 0), rm the standard deviation of the Ornstein–Uhlenbeck

(OU; Uhlenbeck and Ornstein, 1930) process errors. The gradual

model [Equation (11)] corresponds to the OU process, which is a

stationary Gauss–Markov process and can be considered the con-

tinuous time analogue of the discrete time first-order Auto-

Regressive process. The OU process tends to drift towards its

long-term mean over time and represents random auto-

correlated deviations from the average production �m. The most

likely time point for the regime shift of the stepwise model

[Equation (10)] can be determined by minimizing the Akaike in-

formation criterion (AIC ¼ 2k � 2 log L̂, where k is number of es-

timated parameters and L̂ is the maximum value of the likelihood

function; Akaike, 1998).
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These equations allow to model within year variability in pro-

ductivity as seasonal (S) changes or as constant (C) and between

years variability by the variable stepwise model (Vs), the variable

gradual model (Vg), or as constant (C). The combination of these

aspects allows to derive the original SPiCT (C-C) and five exten-

sions accounting for time-variant productivity (Table 1). All

model extensions are available at the GitHub repository under

https://github.com/tokami/spict/tree/seaprodTVP and example

applications at: https://github.com/tokami/pubs/tree/master/

TVP.

Reference levels
SPiCT estimates three reference levels: MSY, the fishing mortality

required to attain MSY (FMSY), and the biomass of the stock if

fished at FMSY (BMSY). Traditionally, reference levels are time-

invariant, however, the equations for the reference levels

[Equations (A1)–(A3) and Appendix] imply that MSY and FMSY

are time-variant if the productivity (in terms of m) is time-

variant, but BMSY is not because it does not depend on m. The

seasonal component of the productivity is of a lesser interest for

fisheries management as the advice is usually based on reference

levels representative for a year (or management period).

Therefore, the seasonal components of mt and Ft (Ŝ
ðmÞ
t and S

ðFÞ
t ,

respectively) are omitted in the estimation of the reference levels.

MSYt ¼ mf
t ; (12)

BMSY ¼ K
1

n

� �1=n�1

; (13)

FMSYt
¼ MSYt=BMSY; (14)

where mf
t represents the non-seasonal component of mt

(mf
t ¼ mG

ðmÞ
lðtÞ ). These reference levels represent the non-seasonal

deterministic reference levels, the non-seasonal stochastic ones

can be derived by substituting the corresponding equations in

Pedersen and Berg (2017) with above deterministic levels (cf.

Appendix). For the stepwise productivity model, this implies a

constant MSY and FMSY level for each regime, while for the grad-

ual model, the two reference levels become continuous.

Simulation study
The simulation study is parametrized according to the results of

the SPiCT assessment of the Baltic cod stock with the S-Vg model

(see below) and allows the evaluation of the seasonal production

relative to seasonal patterns, data quality and the non-seasonal

SPiCT assessment. Table 2 summarizes the parameter values and

simulation settings. The framework comprises 500 simulations

and extends over a simulation period of 30 years and 4 seasons,

which is in line with the occurrent data conditions in the North

Sea. Five different scenarios combine seasonal fishing mortality

and productivity with variable phases (Figure 1) and biannual

biomass indices with different timing (rugs in Figure 1; Table 3).

All models include seasonal fishing mortality (cyclic B-spline),

but do not include the auto-correlated process H [Equation (4)]

nor long-term changes in productivity (G
ðmÞ
t ¼ 1). The simula-

tion study uses a modified version of the SPiCT simulation model

used in Pedersen and Berg (2017). Each scenario is estimated us-

ing the models C-C and S-C. Section B in the Supplementary

includes more details to the simulations study and ten additional

scenarios.

Performance metrics
The results of the simulations are evaluated based on several per-

formance metrics, which are estimated for the reference levels

and the last observations of the relative biomass and fishing mor-

tality, ðB=BMSYÞlast and ðF=FMSYÞlast, respectively. The relative

states in the last year have an important role within stock assess-

ment and management advice. Here, the biomass and fishing

mortality values represent the last instances of the baseline trajec-

tories omitting the seasonal factors. The performance metrics are:

(i) the proportion of converged model fits, where a model is de-

fined as converged if the optimizer nlminb (R Core Team, 2014)

reports a successful completion and if confidence intervals (CIs)

can be estimated and are finite. For converged fits, (ii) the median

bias (MB) is estimated by following equation:

MB ¼ median
ĥ� h

h

� �
; (15)

where ĥ is the estimated value and h the true or target value. In

addition, (iii) the coverage fraction (CF), i.e. the fraction of simu-

lations where the CI includes the true value (target is equal to

95%), and (iv) the coefficient of variation (CV) are estimated.

The combination of these metrics allows inference about the pre-

cision and accuracy of the different scenarios. The relative errors

for the two quantities are compared between the two models (C-

C and S-C) and between the scenarios for each model based on

the Wilcoxon signed-rank test.

Application to Baltic cod
All six model combinations (Table 1) are fitted to the Baltic cod

data: seasonal catches from all commercial fleets targeting Baltic

cod and the biannual (quarter 1 and quarter 4) biomass index

from the Baltic International Trawl Survey for the years 1991–

2018 are taken from ICES (ICES, 2018c). All models include the

seasonal fishing mortality (cyclic B-spline) and the auto-

correlated process H [Equation (4)] and are fitted by a two-step

fitting process: first, to stabilize the optimizer, the model is fitted

using all default priors (n, a ¼ rI=rB; b ¼ rC=rF for the Vs

models, and additional w and rm for the Vg models). In the sec-

ond step, the point estimates are used as the initial values for the

second fit without any priors. This process stabilizes the optimi-

zation and allows to remove the impact of priors on the likeli-

hood of the models and thus the calculation of the likelihood

ratio test for nested models.

Table 1. Model extensions regarding time-variant productivity on
short- and long-term scales based on the original SPiCT.

Model
code

Seasonal
model

Stepwise
model

Gradual
model Equations

C-C Equation (9) and Ŝ
ðmÞ
t ¼ 1

S-C � Equation (9) and Ŝ
ðmÞ
t 6¼ 1

C-Vs � Equation (10) and Ŝ
ðmÞ
t ¼ 1

S-Vs � � Equation (10) and Ŝ
ðmÞ
t 6¼ 1

C-Vg � Equation (11) and Ŝ
ðmÞ
t ¼ 1

S-Vg � � Equation (11) and Ŝ
ðmÞ
t 6¼ 1
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Results
Simulation study
The simulation study revealed that results of the SPiCT assess-

ment are biased if underlying seasonal productivity is not

accounted for (e.g. scenario CE2N; Figure 2). The MB of the

non-seasonal model is 21% for ðB=BMSYÞlast
and �10.9% for

ðF=FMSYÞlast
and is significantly higher than of the seasonal model

(7.3 and �5.3%, respectively) according to the Wilcoxon signed-

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time of year

Se
as

on
al

 fa
ct

or

Dec Mar Jun Sep Dec

F
SP

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time of year

Se
as

on
al

 fa
ct

or

Dec Mar Jun Sep Dec

F
SP

(a) (b)

Figure 1. Different scenarios of the seasonal pattern of fishing mortality (dashed) and productivity (solid) with equal amplitudes:
(a) contrasting pattern of fishing mortality and productivity; (b) identical pattern of two seasonal processes. The rugs on the x axis show the
timing of the survey indices, where the first and third rug correspond to the survey in the North Sea, the second and fourth to a case where
the indices miss the maxima and minima of the seasonal factors, and the first and fourth to the survey in the Baltic Sea.

Table 2. Parameters used for the simulation study.

Parameter Description Value

dt ½year� Euler time step 1=16
K ½ktonnes� Carrying capacity 148.9 (CV ¼ 0.1)
m ½ktonnes� Stock productivity 59.78 (CV ¼ 0.1)
n Shape parameter of production curve 0.62 (CV ¼ 0.1)
q Catchability 0.02–0.04
bkfrac Fraction of B/K 0.9–1
F0 ½year�1� Initial fishing mortality 0.01
Fmax ½year�1� Maximum fishing mortality 2
rB SD of biomass process error [Equation (1)] 0.1
rI SD of index observation error [Equation (5)] 0.1
rF SD of fishing mortality process error [Equation (3)] 0.1
rC SD of catch observation error [Equation (6)] 0.1
u Parameter vector of cyclic B-spline of seasonal fishing mortality process [Equation (2)] 1.4, 1, 0.7/2.5, 1.2, 0.34/0.7, 1, 1.4/0.34, 1.2, 2.5
uS Phase of seasonal productivity process [Equation (8)] 1.28
A Amplitude of seasonal productivity process [Equation (8)] 0.73/0.25

Values are based on the results of the SPiCT assessment of the Baltic cod stock with the S-Vg model (Table 4). Values separated by a backslash correspond to
different scenarios.
CV, coefficient of variation; SD, standard deviation.

Table 3. Scenarios of the simulation study with the properties of the simulation framework as well as the number of converged runs for each
scenario.

Scenario code Pattern F vs. P Seasonal factors Num indices t indices Converged runs (%)

CE2N Contrasting Equal 2 NS 96.2/99.8
CE2X Contrasting Equal 2 X 50.6/91.4
IE2N Identical Equal 2 NS 100/99.8
IE2X Identical Equal 2 X 95.4/99.8
CE2NX Contrasting None 2 NS 97.2/99.6

All scenarios are estimated with and without the seasonal productivity model. The column “seasonal factors” indicates if the amplitudes of the two seasonal
factors (F and P) are equal or if there is no seasonal productivity, i.e. “none” and the column tindices indicates the timing of the indices, where NS corresponds
to a North Sea like timing (first and third quarter) and X corresponds to a mismatch between indices and the maxima and minima of the seasonal factors
(second and fourth quarter; cp. Figure 1). The first number in the “Converged runs” column represents the values for the seasonal model and the second for
the non-seasonal model.
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rank test (p < 0.001 and p < 0.05 for the two quantities respec-

tively). However, if no seasonal productivity was simulated, MBs

are comparable (scenario CE2NX; Figure 2) and there is no sig-

nificant difference between the two models for the two quantities

(p ¼ 0.561 and p ¼ 0.708, respectively), even though the preci-

sion of C-C is slightly better than of S-C (Figure 2).

Overall, the MBs are smallest for MSY and the relative refer-

ence levels and higher for BMSY and FMSY (Table B2 in the

Supplementary). Absolute levels, however, vary substantially be-

tween the different scenarios and are dependent on the number

of indices per year, their timing and the properties of the seasonal

processes, one of which is their relative pattern: contrasting vs.

identical. While S-C generally outperforms C-C for the contrast-

ing pattern, the C-C model seems to perform better for the iden-

tical pattern (Figure 2). However, the smaller MB in ðB=BMSYÞlast

for C-C is the result of highly overestimated BMSY and underesti-

mated biomass (Figure B4 in the Supplementary). In addition,

the MB in ðB=BMSYÞlast
and ðF=FMSYÞlast

is comparable between

the contrasting and identical pattern for S-C (p ¼ 0.541 and p ¼
0:767 for the two quantities respectively), even though, the sea-

sonal productivity process was overestimated to a larger extent in

some simulations of the contrasting scenarios in comparison to

the identical pattern (Figure 3). In contrast, C-C shows significant

differences between the contrasting and identical pattern of the

seasonal processes (p < 0.001 for ðB=BMSYÞlast
and ðF=FMSYÞlast

).

The relative strength of the seasonal processes is less important

(additional scenarios in Section B of the Supplementary).

Another important factor affecting model performance is the

number of indices and their timings. While there is no significant

difference in the MB of ðB=BMSYÞlast
between 4 and 2 indices (p ¼

0.24 and p ¼ 0.09 for the contrasting and identical pattern, re-

spectively; cf. additional scenarios CE4A and IE4A in Figure B3

and Table B1 in the Supplementary), the MB of ðF=FMSYÞlast

is significantly larger with 2 indices (�5.3%) than with 4 indices

(–0.3%) for the contrasting pattern (p < 0.001) as well as for the

identical pattern with �4% vs. 2.5% for 2 and 4 indices, respec-

tively (p < 0.001). In addition, the number of simulations overes-

timating the seasonal productivity pattern is larger for the

scenario with 2 indices than for the one with 4 (Figure B5 in the

Supplementary). If the timing of the indices does not capture any

peak of the seasonal processes (scenarios CE2X and IE2X), the

MB in both quantities is significantly higher than if both peaks of

the seasonal processes are captured (scenarios CE2N and IE2N in

Figure 2) or when at least one peak is captured (cf. additional sce-

narios CE2B and IE2B in Figure B3 and Table B1 in the

Supplementary). Although the bias in ðF=FMSYÞlast
for scenarios

CE2X and IE2X is smaller than the other scenarios (Figure 2),

Figure B4 in the Supplementary reveals that the bias in the

individual reference levels is highest for these scenarios and the

resulting MB in ðF=FMSYÞlast
is only the consequence of a highly

overestimated FMSY and underestimated F.

Across all scenarios, between 90 and 100% of all simulations

converged, except for scenario CE2X, which shows a high propor-

tion (50.6%) of non-converged runs for the seasonal model

(Table 3). Also C-C shows convergence problems for this scenario

but the convergence ratio was substantially higher (91.4%).

Overall, the proportion of converged non-seasonal fits is higher

than the seasonal fits (Table 3). The CF is generally quite high

with values around 80% for B=BMSY and around 95% for F=FMSY

for most scenarios (Figure 2). The CV is around or below 0.1 and

0.2 for B=BMSY and F=FMSY, respectively and similar across all

scenarios and C-C and S-C (Figure 2). Figure 3 shows that the

seasonal pattern was generally well estimated, albeit with some

outlying simulations, in particular for the scenarios with contrast-

ing seasonal patterns. For CE2NX, the amplitude of the seasonal

process [parameter A in Equation (8)] was with 0.2 (median over

all simulations) estimated to be much smaller than for the com-

parative scenario CE2N (0.73).

Table 4. Results of the Baltic cod assessment.

Quantity

Models

C-C S-C C-Vs S-Vs C-Vg S-Vg

BMSY 14.09 68.39 72.06 65.38 3.58 42.35
0:01� >1e3 11:43� 409:13 40:06� 129:63 38:1� 112:18 < 0:01�> 1e3 18:11� 99:02

Fa
MSY 6.34 0.66 1.29 1.4 19.83 1.68

< 0:01� >1e3 0:11� 4:04 0:73� 2:27 0:8� 2:44 < 0:01�> 1e3 0:71� 3:95
Fb

MSY 0.55 0.64
0:28� 1:09 0:34� 1:21

MSYa 89.29 45.32 92.66 91.13 70.92 71.03
47:31� 168:54 35:24� 58:27 80:3� 106:93 78:81� 105:36 49:47� 101:67 61:21� 82:43

MSYb 39.42 41.86
31:2� 49:81 33:89� 51:72

ðB=BMSYÞlast 3.61 0.68 0.38 0.31 4.47 0.28
< 0:01� >1e3 0:07� 6:54 0:25� 0:59 0:22� 0:45 < 0:01�> 1e3 0:15� 0:52

ðF=FMSYÞlast 0.09 0.83 2.13 2.1 0.25 2.61
< 0:01� 280:54 0:08� 8:64 1:17� 3:87 1:28� 3:47 < 0:01�787:69 1:33� 5:13

LRð2Þ ¼ 15:05; p < 0:001 LRð2Þ ¼ 14:02; p < 0:001 LRð2Þ ¼ 11:28; p < 0:001

Bold numbers represent point estimates with the respective 95% CIs below. For the Vg models, values for the time-variant MSY and FMSY represent averages
over the whole time period. For Vs models, the estimates and CIs of both regimes are presented. The last row shows the results of the likelihood ratio test for
each model pair. The grey columns highlight the most suitable models.
aCorresponds to the first productivity regime (1991–2009) for the Vs models.
bCorresponds to the second productivity regime (2010–2017) for the Vs models.
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Baltic cod
Beside S-C, all models applied to Baltic cod converged and

resulted in reasonable parameter estimates (Section D3 in the

Supplementary) and derived quantities (Table 4). However, esti-

mated CIs for derived quantities (Table 4) of the models C-C, S-

C, and C-Vg span up to five orders of magnitude, indicating that

these models may be unsuitable for the given data. The remaining

three models C-Vs, S-Vs, and S-Vg gave reasonable CIs (maxi-

mum difference between upper and lower CI limits of one order

of magnitude) and show similar biomass and fishing mortality

trajectories (Figure 4) and the same stock perception (Table 4):

over-fishing in terms of biomass (B=BMSY < 0:5) and fishing

mortality (F=FMSY > 2) at the last assessment time point.

The optimum break point of the Vs models was estimated

based on model comparison with different break points

(Figure D14 in the Supplementary), resulting in two productiv-

ity regimes: (i) 1991–2009 and (ii) 2010–2017. The MSY of the

first productivity regime (�91 ktonnes) is more than two times

higher than the second regime (�40 ktonnes) for both models.

The average productivity parameter of the Vg models is �70

ktonnes, however, decreased from �100 ktonnes in 1995 to �40

ktonnes in 2018 (Figure 4f). The uncertainty of the biomass and

fishing mortality trajectories in the S-Vg model are higher than

in the S-Vs model (Figure 4). For the stepwise models, the sea-

sonal and non-seasonal gave similar point estimates and CIs.

For the gradual models, however, the model without seasonality

did not give reasonable results (cf. Section D7 in the

Supplementary) and indicates the opposite stock perception

than of the S-Vg. Although the trajectory of the MSY of the S-Vs

and the S-Vg models are different, the absolute value in the last

MSY MSY

Figure 2. Results of the simulation study for the two quantities ðB=BMSYÞlast and ðF=FMSYÞlast for all scenarios. Dark filled bars and circles
represent seasonal model (S-C), while white bars and circles represent the non-seasonal model (C-C). The boxplots do not include outliers.
The second row shows the CF, where the horizontal line represents the reference line for the 95% CIs at 0.95 with expected uncertainty for
the reference line dependent on the number of simulations as the shaded area. The stars above the boxplots in the first row indicates for
which scenario the differences between the two models (C-C and S-C) are significant based on the Wilcoxon signed-rank test (Table B2 in the
Supplementary).
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assessment year of both models is close: 42 and 37.4 tonnes,

respectively.

The likelihood ratio test indicates that for all nested models

the addition of the two parameters of the seasonal model

improves the model fit significantly (Table 4). All models esti-

mated a similar seasonal fishing mortality pattern, with a maxi-

mum between April and May and minimum around August

(Figure 5a and b). Also the seasonal productivity pattern is simi-

lar between the S-Vs and S-Vg, with the maximum around

May–June and the minimum between November and December

(Figure 5c and d). The slight difference in timing of maxima

and minima between models is also shown in the phase parame-

ter: �0.36 and �0.09 for S-Vs and S-Vg, respectively. The am-

plitude of the seasonal productivity is 1.55 and 0.92 for the

stepwise and gradual model, respectively. The uncertainty of the

seasonal production factors estimated with S-Vs is almost twice

as high as for the gradual model. The C-Vg model gives compa-

rable results to S-Vg if a vague prior for the reversion rate (w) is

used.

Discussion
Productivity is not constant over time, but shows time-dependent

variability due to intra-specific and ecological processes, and en-

vironmental conditions (Caddy and Gulland, 1983; Peterman

et al., 2000; Mullon et al., 2005; Vert-pre et al., 2013; Britten

et al., 2016, 2017). The proposed extensions to a biomass dy-

namic model allow to account for time-variant productivity both

within and between years, i.e. on both short-term seasonal and

long-term inter-annual basis. The new models (S-C, C-Vs, S-Vs,

C-Vg, S-Vg) were simulation tested (Section C in the

Supplementary) and did not reveal any error or dependence on

life-history traits, showing expected declining error and CIs with

increasing length of the time series (Figures C8–C12 in the

Supplementary).

Simulation study
The simulation study reveals that reference levels are not only bi-

ased when neglecting seasonal productivity but that the biases

depend on the properties of the seasonal processes quantitatively

and qualitatively. Thus, not accounting for within year variabil-

ity in productivity might have similar negative effects on man-

agement as it was shown for between years variability in

productivity (Peterman et al., 2000; Britten et al., 2017; Nesslage

and Wilberg, 2019). Furthermore, the simulation study shows

how unaccounted seasonal productivity can lead to large biases

in absolute reference levels (BMSY and FMSY) and states (B and

F), while the bias in MSY and relative reference levels (B=BMSY

and F=FMSY) is relatively small, e.g. for scenario I2EN. This

underpins the recommendation of using the relative reference

levels for fisheries management (Pedersen and Berg, 2017) as

they are the least biased quantities even if seasonal productivity

is not accounted for.

Overall, the biases are smaller with the identical pattern in

comparison to the contrasting pattern. This can be attributed to

the fact that the two seasonal processes are overlapping and that

the effect on biomass (and thus on the observed indices) is multi-

plicative. It appears that it is more complicated for the model to

resolve the seasonal trends in catch and biomass and allocate

them correctly to the seasonal productivity when the patterns are
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Figure 3. Estimated and true seasonal processes. The black line
represents the true seasonal pattern used in the simulation and the
grey lines represent the estimated patterns for each simulation. Fs
indicates the seasonal F process and Ps the seasonal productivity
process.

Time-variant productivity in biomass dynamic models 181

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/1/174/5572245 by guest on 20 April 2024

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsz154#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsz154#supplementary-data


contrasting (more deviations from the true seasonal productivity

curve for the contrasting scenarios in comparison to the identical

patterns in Figure 3). While two indices can be sufficient for the

estimation of seasonal productivity, the simulation study revealed

the importance of the timing of the indices relative to the peaks

of the seasonal processes. Scenarios with the timing close to at

least one peak of the seasonal productivity process perform better

than if the timing is in between peaks. In this case, the biomass

index cannot inform the model about the amplitude or phase of

the seasonal productivity process.

Although, the biases in derived quantities for the best informed

scenario (CE4A, see Section B in the Supplementary) are small

and the distributions include zero, the CF for all quantities (ex-

cept F=FMSY) is smaller than the nominal 95%. The small biases

and low CF can be attributed to the differences of the fishing

mortality process in the simulation and estimation and/or data

limitations. The simulated roller-coaster pattern for the fishing

mortality violates the assumptions of the random walk model

used in the estimation procedure. The maximum likelihood esti-

mator and Laplace approximation might introduce a bias, in par-

ticular for short time series. A time series of 30 years is far from

the asymptotic limit [cf. Figures C8 and C9 in this study and

Supplementary Figure S5 in Pedersen and Berg (2017)] and thus,

might be insufficient in regard to the complexity of the model

additions.

This study contributes to a growing body of research demon-

strating how time-variant parameters in surplus production mod-

els can improve model performance (Prager, 1994; Vert-pre et al.,
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Figure 4. Results of the Batic cod assessment in terms of relative biomass (a, b), fishing mortality (c, d), and catch (e, f) for the regime-shift
(Vs) and gradual models (Vg), respectively. Bold black lines in the two top rows represent the relative mean biomass and fishing mortality
from the seasonal models, respectively, while the grey lines include the seasonal processes. Dashed lines represent estimated trajectories from
non-seasonal models. Shaded areas represent the 95% CIs of the relative mean trajectories of the seasonal models (without seasonality). The
relative biomass trajectory of C-Vg is outside of the plotting region with an average value of 8.4. The third row shows catch trajectories and
estimated MSY of the seasonal models (solid grey and solid black lines, respectively) and of the non-seasonal model (dashed grey and dashed
black lines, respectively). The different symbols represent the observations of the two surveys and catches, respectively.
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2013; Nakayama et al., 2017; Nesslage and Wilberg, 2019), how-

ever, this study is the first to model time-variant parameters of

surplus production models with the Fletcher parametrization

(Fletcher, 1978) rather than the original parametrizations

(Graham, 1935; Schaefer, 1954; Pella and Tomlinson, 1969) and

particularly quantifying short-term seasonal productivity fluctua-

tions. As previous studies, we considered time-dependent vari-

ability in the intrinsic population growth rate (or its analogue ‘m’

in the Fletcher parametrization) rather than the carrying capacity

K. While processes affecting the carrying capacity of fish popula-

tions take place (e.g. habitat contraction; Orensanz et al., 2005;

Worm and Tittensor, 2011), they are more difficult to detect

based on a biomass index time series alone and due to the weak

dynamical connection between biomass and carrying capacity

when biomass is low (Britten et al., 2017).

Baltic cod
The models fitted to Baltic cod show a consistent and clear pat-

tern of long-term changes in stock productivity, with either a

continuously decreasing productivity pattern or a high and subse-

quent low productivity regime and none of the models with con-

stant long-term productivity converged without problems. The

estimated long-term productivity changes of Baltic cod correlate

well with observed changes in the condition of Baltic cod that

started in the mid-1990s (Eero et al., 2015; ICES, 2015). The de-

creasing condition and productivity of Baltic cod can be

explained by the individual processes contributing to stock pro-

ductivity (somatic growth, recruitment, and survival): the peak of

the continuous productivity (and the high first productivity re-

gime) fits to the peak abundance of sprat in the Baltic Sea in the

mid-1990s (Casini et al., 2016), which was the most abundant

pelagic prey in the stomachs of Baltic cod (Neuenfeldt and Beyer,

2003). Although the subsequent decline of sprat abundance does

not have the same reduction rate as the decrease in modelled pro-

ductivity, the increased spatial mismatch between the core sprat

and cod distribution areas in the Baltic poses another cause for

productivity decrease (Casini et al., 2016). Similarly, the sharp de-

cline of the productivity of the Northwest Atlantic cod (Gadus

morhua) stocks at levels of high stock density in 1985 was attrib-

uted mainly to the decline of available forage fish (Shelton et al.,

2006; Rothschild, 2007; Hilborn and Litzinger, 2009). In addition,

according to Casini et al. (2016) the increase in hypoxic zones in

the Baltic Sea since the 1990s (Conley et al., 2011) has affected

cod productivity negatively due to physiological stress, benthos

productivity decrease, and habitat compression. Also the increas-

ing seal abundance and, thus, the increase in seal parasites which

affect the somatic growth and survival of Baltic cod negatively in-

creased over the last two decades (Mehrdana et al., 2014).

As for long-term changes in productivity, seasonal variations

result from seasonal patterns in somatic growth, recruitment,

and/or survival. The feeding level of Baltic cod peaks in the third

and fourth quarter (Baranova and Uzars, 1986). However, the

maximum feeding level does not correspond to the maximum so-

matic growth rate, as the individuals have an energy deficit after

spawning which has to be balanced out before energy can be allo-

cated to somatic growth. The peak in somatic growth is, thus,

delayed and to be expected in the first quarter (S. Neuenfeldt,

DTU Aqua, pers. comm.), fitting well to the estimated pattern in

seasonal productivity. Also the low lipid content of the main pe-

lagic prey species (sprat and herring) from November to March

(Røjbek et al., 2014) matches the pattern of the seasonal produc-

tivity. The second individual-level process, recruitment and, thus,

spawning also shows a seasonal tendency for Baltic cod: although,
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Figure 5. Seasonal processes of the Baltic cod assessment: (a, b) The seasonal fishing mortality processes and (c, d) the seasonal productivity
processes for the regime-shift models (Vs) and the gradual models (Vg), respectively. Shaded areas represent the 95% CIs. The first row
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Baltic cod has a prolonged spawning period from February to

November, spawning peaks in May–August (Wieland, 2000; Bleil

et al., 2009), which is expressed in the estimated seasonal produc-

tivity pattern in two ways: (i) individuals recruiting to the fishery

in May in the third year after spawning (biomass in SPiCT corre-

sponds to exploitable biomass), and (ii) weight-loss after peak

spawning in May–August (S. Neuenfeldt, DTU Aqua, pers.

comm.). Less is known about the third component, seasonal pat-

terns of the survival of Baltic cod, but the natural mortality of

Baltic cod might be high right after spawning (K. Hüssy, DTU

Aqua, pers. comm.).

The assumption of the SPiCT assessment that the Baltic cod

stock is not subject to migration is likely violated as individuals are

not only migrating within the Baltic Sea and mixing with the west-

ern Baltic cod stock (particularly in the Arkona Basin; Aro, 1989;

Nielsen et al., 2013), but the migration rate also varies over time

(Hüssy et al., 2016). Furthermore, we made the assumption that

the seasonal productivity pattern is constant over time although

some inter-annual variability has been observed (Wieland, 2000;

Bleil et al., 2009). This should be seen as an assumption necessary

to facilitate the analysis rather than representing the truth, since we

are approaching the limit of what can be estimated from the data.

Random deviations from a constant pattern would likely increase

the uncertainty but not introduce bias, whereas systematic trends

are likely to introduce biases in the assessment. Extending the

model to allow the seasonal productivity pattern to change over

time is an avenue for future research.

According to the assessments with reasonable fits and uncertain-

ties (C-Vs, S-Vs, S-Vg), the Baltic cod stock is depleted (B < BMSY)

and subject to over-fishing (F > 2FMSY). The models with seasonal

productivity are significantly better at describing the data compared

to models without seasonality, although the estimates of

ðB=BMSYÞlast
and ðF=FMSYÞlast

are almost identical. However, the

simulation study showed that this may not be the case in other

cases. The time-variant reference levels (MSY and FMSY) do not af-

fect the classification of the stock in terms of these relative states his-

torically or in the current year. Taking assessment uncertainty into

account, useful management advice can be given based on the rela-

tive states in the last time step (ðB=BMSYÞlast
and ðF=FMSYÞlast

) as

demonstrated for the original SPiCT (ICES, 2018b).

Conclusion
This study introduces a novel approach to incorporate environ-

mental change into stock assessments without the need of com-

plex and data-demanding (ecosystem) models and defines time-

variant reference levels for fisheries management and advice.

Although the extensions of biomass dynamic models introduced

here, increase requirements for data quality and quantity (sea-

sonal catches and biannual survey indices required), accounting

for time-variant productivity is important as stocks in low-

productivity regimes cannot support the same yield as stocks in

high-production regimes and neglecting seasonality might se-

verely bias estimated reference levels and relative states and,

therefore, management advice. Accounting for a combination of

time-variant productivity on seasonal and long-term scales

improves the assessment of the Baltic cod stock significantly.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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Appendix: Estimation of the non-seasonal
stochastic reference levels and relative states
The non-seasonal stochastic reference levels can be derived by

substituting the corresponding equations in Pedersen and Berg

(2017) with the deterministic reference levels [Equations (12)–

(14)], resulting in:

MSYs
t ¼ MSYd

t 1� n=2

1� ð1� Fd
MSYt
Þ2

r2
B

 !
; (A1)

Bs
MSYt
¼ Bd

MSY 1�
1þ Fd

MSYt
ðn� 2Þ=2

Fd
MSYt
ð2� Fd

MSYt
Þ2

r2
B

 !
; (A2)

Fs
MSYt
¼ Fd

MSYt
�
ðn� 1Þð1� Fd

MSYt
Þ

ð2� Fd
MSYt
Þ2

r2
B; (A3)

where the superscript d refers to the deterministic reference

levels as defined in “Reference levels” section and rB refers to

the standard deviation of the biomass process noise. Similarly,

in the estimation of the relative states (Bt=BMSY and Ft=FMSY),

the seasonal part of the biomass and fishing mortality is omit-

ted as otherwise the quantities were strongly dependent on

the time of the year one chooses to evaluate them. These rela-

tive states are estimated by removing the seasonal components

of mt and Ft (Ŝ
ðmÞ
t and S

ðFÞ
t , respectively) in Equations (1)

and (2).
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