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The Theoretical Effectiveness of
Towed-Net Samplers as Related to Sampler Size

and to Swimming Speed of Organisms

By

Richard A. Barkley

Bureau of Commercial Fisheries Biological Laboratory, Honolulu, Hawaii

Introduction

One of the vexing problems which confront the marine biologist is that of
evaluating the effectiveness of towed nets as samplers of the marine biota; the
obverse of this problem is that of designing towed nets to sample specific
portions of the marine community. Studies of sampling effectiveness have
thus far been based primarily upon statistical analysis of samples obtained in
the field, often on an a posteriori basis; net design has been based upon past
experience and trial and error. In the present analysis we shall depart from this
pattern to consider, in a rather elementary way, the physical factors which
ulimately limit a net's ability to catch a single organism. The results provide a
basis for estimating the minimal effectiveness of existing towed nets and for
improving net designs.

Method
Figure 1 shows the relationship which exists when a towed net approaches an

individual organism. The organism is assumed to sense the oncoming net and
to react to it by attempting to dodge. When it begins to react, the organism is
located at point p, which is a distance x0 ahead of the net and another distance
rQ away from the axis of motion of the net, which has a radius of M and is
being towed at some speed U. The reaction of the organism carries it through
the water at some speed w, in a direction which is at some angle 0 to the net's
axis of motion. As a result, the organism will either be outside or inside the
rim of the net when the net catches up with it; if it is inside, it is assumed that
the organism has been captured.

Since the objective of towed-net sampling is to obtain the maximum possible
catch from the water column through which the net is towed, the net should be
designed to minimize the effects of dodging; it will be seen that this can be
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Effectiveness of Towed-Net Samplers 147

Figure 1. Coordinate system and notation used, showing conditions at the instant when
the organism, at point p, begins to react to the presence of the net.

For full description see text.

done by making the radius of the net's opening as large as possible and by
towing at the highest possible speed. However, these two conditions conflict,
because with a given amount of power a large net cannot be towed as fast as a
smaller one, owing to drag effects. The problem can be stated thus: what is the
optimum size of a towed-net sampler; what are the characteristics of this
optimum-size net in terms of its efficiency in capturing organisms which can
attempt to dodge it; and how can these characteristics be improved?

The problem stated above has been subjected to a mathematical analysis.
The analysis is given in the Appendix, while the argument on which the analysis
is based and its results, which are of more immediate interest, are discussed
in the body of this paper. For the sake of simplicity it will be assumed that the
net allows all the water in its path to pass through its opening. In practice a
correction may have to be made for the fact that the net may push some of this
water aside, so that R represents the effective filtering radius of the net. This
effective filtering radius would depend, inter alia, upon the shape of the net,
its mesh and cordage sizes, and the speed of the tow. It could be determined by
experiments in towing tanks or flumes.

Results
In the Appendix an equation is derived which gives the minimal escape

velocity (we) relationships for an organism in terms of its reaction distance (x0)
and initial offset (r0), as well as the speed («) and direction (0) of the organism
and the speed (£/) and radius (R) of the net. This relationship can be shown in a
vector diagram, in which distances are proportional to speeds; Figure 2 shows
such a diagram for each of two similar cases, together with schematic drawings
showing the relative positions of the nets in each example. In Figure 2, examples
A and B differ only in that in the first case the initial offset of the organism is
zero, while in the second the initial offset is 25 cm; the values of the other
constants are: radius of net R = 100 cm, reaction distance xo = 250 cm,
speed of tow U = 150 cm/sec (2-9 knots). The escape velocity is proportional
to the distance between the starting point of the organism, p, and the line ue,
which is the locus of the escape velocity vectors. Two cases of particular
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~ --...X-AXIS

Figure 2. Escape velocity relationships for a net of 100 cm radius, moving at a speed of
150 cm/sec toward an organism which reacts at a distance of 250 cm. Initial offsets (ro) of
zero (example A) and 25 cm (example B). Escape velocity is proportional to the distance

between point p and the line marked «e.

interest are shown explicitly as vectors: the cases where the escape velocity
equals the towing speed (ue — U) and the case where the escape velocity is at
a minimum, that is, where the vector is perpendicular to the curve ue. This
minimum escape velocity will be referred to by the symbol ue*. The angle
corresponding to this minimum escape velocity is 0*. It is worth noting that
the escape velocity equals the velocity of the net when the organism swims
parallel to the net's axis of motion (6 = 0) or when it swims at an angle equal
to 26*; at intermediate angles the escape velocity is less than the speed of the
net, and at larger angles it is greater than the towing speed.

For every set of values of R, U, x0 and r0 there is a minimum value of the
escape velocity, ue*. It is possible to use this value to determine the minimum
effectiveness of a net already in use, or as a criterion for improved net designs;
that net having the highest value of ue* is desirable in that it has the highest
threshold against escape by dodging. Equation 7 in the Appendix shows the
way in which the minimum escape velocity varies with changes in the other
variables in the problem; in general, the escape velocity increases propor-
tionately with an increase in either the towing speed or the net radius, and
decreases in proportion to increases in either the reaction distance or the
initial offset of the organism.
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R(CM.)

Figure 3. Assumed relationship between towing speed U and radius of net R, from equa-
tion (9) (Appendix), for three cases: Upper line, relatively powerful ship (or winch) or
low-drag net design. Middle line, ship of medium power or medium-drag net design.

Lower line, relatively low-powered ship or high-drag net design.
See Appendix for a full discussion.

This suggests that both U, the towing speed, and R, the radius of the net,
should be increased to increase the effectiveness of the net. But there is a limit
to the advantage to be gained from such increases, since the towing speed
cannot be greater than the maximum speed of the ship or the winch which
does the towing, and this speed is in turn dependent upon the drag of the net,
which increases with an increase in the net's radius. Figure 3 shows the maximum
towing speeds which would result from changes in the radius of a single net
design, for ships or winches of three ranges of power, or for nets of high,
medium, and low inherent drag with one ship or winch. The towing speed is
dependent upon the maximum speed of ship or winch without the net (5),
the speed with the net in the water (£/), and the size of the net's opening (R);
the relationship which is assumed to exist between these factors is discussed
in the Appendix.

It is obvious from the relationship shown in Figure 3, with towing speed
dropping off with increased radius of the net towed, together with the
relationships in equations (5) and (7), in the Appendix, where catch effectiveness
(as measured by the escape velocity) increases with an increase in R, that there
must be some combination of speed of tow and size of net which yields the
highest, or optimum, value of ue*, the minimum escape velocity. Figure 4
shows examples of such relationships for a vessel of medium power (middle
curve in Figure 3, where a = 1 X 10~8) and various combinations of x0 and r0.
Each family of curves in Figure 4 shows the values of minimum escape velocity
ue* as a function of net radius R for one value of r^ and various values of XQ.
In each case it is evident that there is an optimum net radius such that ue* is
at a maximum.

Two important conclusions are evident from the curves presented in Figure 4.
First, the minimum escape velocities decrease rapidly as R decreases below the
optimum values, so that it is most inefficient to reduce the net opening to low
values, because the gain in speed of tow is more than offset by the ease with
which the smaller net may be avoided. Second, the importance of minimizing
the reaction distance x0 is obvious; a net which cannot be detected (x0 5 0)
would have a minimum escape velocity equal to or greater than, the towing
speed, while minimum escape velocities for nets detectable at 10 metres are
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Figure 4. Minimum escape velocities («»*) as
functions of net radius (/?), from equations (5)
and (11) (Appendix), for a vessel or winch of
medium power or a medium-drag net design,
with various values of initial offset ro and re-
action distance x0. Initial offsets are expressed
as constant values (Panels D, E) or in terms
of fractions of the net's radius (Panels B, C).
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small fractions of the towing speed even at their optimum size, except under
the most favourable conditions for extremely large nets.

Table 1 presents a comparison of the minimum escape velocities for nets of
50 cm radius (the well-known 1-metre net), 300 cm radius, and the optimum
radius. It suggests that a net with 300 cm radius is several times more effective
than the 50 cm net, and only slightly less effective than the optimum sizes,
which tend toward completely unmanageable dimensions.

One final aspect of the present analysis deserves further consideration. In
Figure 2 A, the locus of all values of the escape velocity ue was presented as a
line for one set of values for U, R, and x0, when r0 equalled zero. If x0 and r0

remained unchanged, and only R were allowed to vary, a series of lines,
similar to those of Figure 2A, loci of ue, would result, one for each value of R.
If these were arranged in sequence by increasing values of R, the result would
be a surface representing the field of values for ue for a series of similar nets
of varying size. Figure 5 is an example of such a surface, together with a
schematic drawing of the sampling nets to the same scale in isometric projection,
showing the assumed physical relationship between the organism (at the
origin ue = 0 when / = 0) and various possible sizes of net. The constants
used in calculations for Figure 5 were: r0 = 0, x0 — 400 cm, S = 500 cm/sec,
and a = 1 X 10~8 cm^/sec. Isotachs (solid heavy curved lines in Figure 5)
are shown as intersections of cylinders of radius 100, 200, 300, 400 and 500
cm/sec with the surface of ue. The point on the dashed curve marked with an
encircled x represents the maximum value of we* for the surface depicted in the
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ion distance

1,000 cm
600
400
200

1,000
600
400
200

1,000
600
400
200

Minimum escape velocities
50 cm

25 cm/sec
41
62

125

0
0
0
0

10
20
30
60

300 cm

110cm/sec
170
225
310

75
120
170
260

55
90

130
220

Optimum

135 cm/sec
185
235
315

120
170
200
275

80
120
155
230

"opt

(680) cm
(525)
(410)
(275)

(850)
(660)
(520)
(390)

( > 1,000)
(780)
(600)
(410)
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Table 1
Minimum escape velocities for nets of various radii (50 cm, 300 cm, and optimum)

as a function of reaction distance for various amounts of initial offset

0 cm

100 cm

0-75 R

figure. Figure 4A shows the same curve (in two dimensions) of ue* versus R,
for XQ = 400, as that shown in isometric projection on Figure 5. One most
interesting relationship shown in Figure 5 is the range of values of ue resulting
from each of various values of the radius R. Considering only values of the
angle 8 between 0° and 90° we find, for example, that a net with radius 50 cm
has a range of escape velocities from about 500 to 60 cm/sec, depending upon
the value of 6, the direction in which the organism swims in attempting to
escape. Similarly, at R = 400 cm, we observe that the escape velocity ranges
from maximum values of 330 cm/sec at 6 = 0° and 90°, to 230 cm/sec at
6 = 0*. Evidently the net with a radius of 400 cm is far less subject to the
effects of changes in escape angle than is that with a radius of 50 cm, at least for
the case where 0 does not exceed 90°; that is, in those cases where the avoidance
reaction does not involve swimming toward the oncoming net. Presumably,
then, the effectiveness of a net of 400 cm radius would be only slightly affected
by varying behaviour patterns of organisms with respect to their choice of
direction for dodging the oncoming net; its selectiveness would then be largely
a function of swimming speed. Comparison of catches with nets of different
radii may make it possible to estimate both swimming speed and preferential
directions of dodging for a number of species of organisms.

Discussion
The analysis thus far has assumed a circular net opening and a speed of tow

limited only by the power available for towing, and it has treated only the
capture of single organisms. Clearly such an analysis cannot begin to elucidate
all of the complex problems involved in sampling the marine biota with towed
nets. It can only indicate the magnitude of the limiting physical factors involved
in the sampling process, suggest means for avoiding inherently poor physical
designs, and point the way toward fruitful avenues for research on towed nets.

Some extensions of the simple theory are obvious: a net of noncircular
opening can be treated by redefining R to mean the least distance between the
centre of the opening and the rim of the opening, and by substituting A, the
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frontal area of the net, for R2 in equation (9) in the Appendix. But this is a
trivial substitution, because the frontal area of any net, regardless of shape,
will vary as the square of the linear dimensions of the opening when the net
design is scaled up or down in size.

The analysis might be extended to the case where the net is towed at less
than the maximum possible speed. In this case the maxima in escape velocities
as shown in Figure 4 would simply be truncated at the level where ue* is equal to
the restricted towing speed.

A more fundamental extension of the theory would be that of considering a
number of encounters instead of conditions for a single capture. This will
require making assumptions about the distribution of organisms in the water.
For example, it can be calculated that a randomly distributed population in
the net's path would encounter the net in such a way that the initial offset r$

n

would have an average value r0, equal to —-, because this is the radius of a
V2

circle whose area is one-half that of the net with an opening of radius R;
one-half of the organisms encountered would be found inside of ?o, and one-
half between r0 and R. This elementary result assumes, of course, that there is
no interaction between the organisms.

By these and other means it should be possible to determine the minimum
escape velocities of a variety of net designs. More immediate tests of the
conclusions reached would require systematic comparative trials of nets, such
as that reported for smaller nets by KUNNE (1929 and 1933), but over wider
ranges of net size. An example of intercomparison of larger nets similar in
design but differing in size is ARON'S (1962) recent survey of equipment used
for sampling the larger plankton. ARON (1962) concludes that the Isaacs-Kidd
midwater trawl appears to be the best all-around device available today for
sampling the larger plankton and small nekton. It is reasonable to assume that
this conclusion is at least in part due to the near-optimum size of the Isaacs-
Kidd trawl, as well as its ease of handling.

In addition to simple changes in size, the analysis suggests that there is much
to be gained by greatly decreasing the distance ahead of the net at which
organisms begin to react to its approach, as by reducing its visibility or making
it move more silently. This idea is by no means novel, but its quantitative value
is made evident here for the first time.

Finally, one of the most significant conclusions reached is that nets of non-
optimum size are relatively sensitive to the direction in which an organism
moves in attempting to avoid the net. In the absence of such effects, a towed
net would select its catch primarily on the basis of swimming speed. Elimination
of swimming direction as an important variable in sampling is itself a strong
argument for increasing the size of sampling nets to more nearly optimum
dimensions than the 0-5 m and 1 0 m nets now in common use.
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Summary

1. The "dodging" problem is analysed in geometic terms by determining the
swimming velocity which an organism must attain in order to escape a net of
given radius towed at a known speed.

2. For every set of conditions there exists a minimum escape velocity the
value of which can be computed and used as a criterion for the design and
evaluation of towed-net sampling gear.

3. Under the assumption that the net is towed at the highest possible speed,
it is shown that for nets of too small a radius the ease with which the net may
be avoided more than compensates for the fact that small nets can be towed at
high speed.

4. Similarly, it is shown that too large a net results in a loss in towing
speed which more than makes up for the difficulty an organism might have in
avoiding a large net.

5. Accordingly, there exists an intermediate, optimum net size such
that the minimum escape velocity is as large as possible.

6. For nets of optimum and near-optimum size, catch selectivity should be
primarily a function af swimming speed; for non-optimum net sizes the direction
in which an organism swims may be as important a factor as swimming speed.

7. The analysis suggests that the greatest penalty is incurred when a net is
made much smaller than optimum size, rather than much larger.

8. Marked increases in effectiveness can be expected from new types of nets
which are difficult to detect, so that the distance at which organisms begin to
react to their approach is minimized.

APPENDIX

Mathematical Analysis

Figure 1 shows the geometry of the problem and the coordinate system and
notation used. The coordinate system is a cylindrical one, fixed with respect to
the water. The A'-axis coincides with the axis of movement of the net. The
origin is fixed at the location of the centre of the net opening at the instant
when the organism begins to react to the net's approach, at time to- At time to
the organism is located at a distance XQ ahead of the net and a distance /-Q
from the A'-axis. At a later time, /', the net overtakes the organism so that both
the net opening and the organism are at a distance x' from the origin; at this
same time, the organism is located at a distance r' from the A'-axis. If capture
is to occur, it is evident that r must be less than R, the radius of the net's
opening. In the time interval between to and t', the net moves along the A'-axis
with an average velocity of U, while the organism moves with an average
velocity of u at an angle 0 measured counterclockwise from the direction of
the A'-axis. We are thus not concerned with the details of the movement of the
organism, but only with the initial and final conditions.

In the time interval t' — to, the net moves a distance XQ plus the distance
travelled by the organism in the A'-direction during this same period of time,
given by u cos d (t' — t0):

U(t' - t0) = x0 + u cos 6(t' - to) (1)
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At the same time, the organism has moved through a distance u sin 6(t' — to)
perpendicular to the A'-axis, so that its final distance r' is given by:

r' = ro + u sin d{f - t0) (2)

which, for capture to occur, must be less than the radius of the net R. Re-
arranging equation (1) and dividing it into (2) yields:

•K > ^ = r0 + u sin d(t' - t0) , „
x0 x0 {U — ucosd)(t' — t0)

where the inequality sign indicates the condition for capture. If we replace R
in (3) by Rmin, and u by Mmax to represent the maximum speed with which an
organism can move and still be just within the rim of the net opening when
overtaken, we obtain the following expression for the minimum radius of a
net which will always enclose an organism moving with a speed Mmax at an
average angle 6, from a start at position (x0, r0), and having a time interval
(?' — t0) in which to react to the net's approach at a speed U along the A'-axis:

— -i_ ("max sin 6) . .
{U — Mmax COS 6)

For a discussion of the effectiveness of a net, it is instructive to solve equation
(4) for Wmax, which we may re-name the escape velocity, ue, if we assume that
this escape velocity is infinitesimally greater than the maximum velocity for
capture Mmax, as defined above. Equation (4) then becomes:

«. = , - x U (5)
sin 6 + cos 6

Equation (5) gives the escape velocity for an organism as a function of the
parameters of the problem. Equation (5) is the equation for a straight line
which represents the locus of all values of ue corresponding to one set of values
for R, U, x0, and r0.

In each case there exists a minimum value of ue, which will be referred to as
ue*, the minimum escape velocity. This value is illustrated in Figure 2; it
corresponds to the perpendicular from point p(x0, r0) to the line of equation (5).

It should be remembered that equation (5) only yields one branch of the
locus ue, namely that portion between the A'-axis intercept and the value of
6 where 6 = 0 (see Figure 2). The A'-axis is an axis of symmetry, and those
portions of the locus of ue which lie on the side of the A'-axis opposite of that
where point p is found are solutions without physical meaning, although they
are mathematically correct. In Figure 2B these invalid solutions for ue are
shown as broken lines. The branches of the curves shown in Figure 2 which lie
below the A'-axis were obtained from considerations of symmetry about the
A'-axis.

To determine ««*, equation (5) is converted to the general form of a linear
equation in Cartesian coordinates, Ax + By + C = 0, and thence by dividing
by VA2 + B*, to the normal form, x cos 0 + y sin 0 — p = 0, whec p is the
perpendicular distance from the origin to the line ue and 6 has the value of 6*
(see, for example, ESHBACH (1952), p. 2-80, or any other handbook's section
on analytic geometry). This procedure yields the equations
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(R - ro)x + xoy - U(R - r0) = 0
and

= 0

where the X- and 7-axes are centred on the position of the organism at
time t0, replacing the polar coordinate system used previously. The term with
U in equation (6) is the desired value of the vector ue*:

y " . CO
1+

(R -
while the angle d* is given by

cos6*=y W

To design an effective net, it is necessary to determine the way in which ue*
varies with changes in R, the radius of the net. We shall, therefore, consider the
way in which U varies with changes in R, since U and R are the only variables
in equation (7) which are assumed to vary with changes in R. Up to now the
discussion has been completely general, applicable to all nets having a circular
opening, or to nets which are not circular, in which case R is merely one-half
the minimum diameter of the opening. It will be necessary, however, to
introduce some assumptions to carry the analysis further. These assumptions
are:

1. That the net is towed at the maximum possible speed, so that the major
effect of increasing the net's radius is to increase the drag of the net, thus
slowing the towing vessel down, and

2. That the drag of the net is proportional to the area presented by the net
opening, and to the square of the velocity of tow.

The second assumption is based on the results of theoretical and experimental
work on the drag of a body submerged in a moving fluid. Although it would be
most desirable to study the details of fluid flow and drag for various towed-net
designs, there is little reason to doubt the validity of the second assumption for
present purposes. The assumptions lead to the following equation for U as a
function of R:

U=S-aR2U2 (9)

where 5 is the speed of the ship with her engines set for towing, but without
encumbrances, R is the radius of the net towed, U is the speed of tow with a
given net, and a is an empirical constant combining the dimensions and
numerical values of drag coefficients, the power exerted by the vessel, and
other similar variables which are independent of R. It is possible to determine
a for a given net by running the vessel over a measured distance to determine S,
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then setting the net and determining U, the speed of tow, over the measured
course. The value of a is then given by:

which is readily derived from equation (9). With units of centimetres and
seconds, it will be found that for most vessels a is of the order of magnitude of
10~8 sec/cm3, with larger values for less powerful vessels or nets with inherently
higher drag and vice versa. Figure 3 shows curves of towing velocity as a
function of net radius, for three values of a, computed from equation (9) in
the following form:

remembering that only positive values of U have physical meaning in the present
context.

The above approach is of course valid not only for the case where the ship's
main engines furnish the motive power, but also in cases where a winch, or a
combination of winch and main engines furnish the power.
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