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Competition for Gear in a Multiple-Species Fishery
By

Brian J. Rothschild

Bureau of Commercial Fisheries Biological Laboratory, Honolulu, Hawaii

The catch-per-unit-of-effort (CPUE) for one species may affect the CPUE of another
species in a multiple-species fishery. This effect is studied by means of a simple stochastic
model. The model provides a "competition free" CPUE which is never less than the CPUE
obtained under competition, is strongly dependent on the empty space on or in the gear,
and varies as a function of the proportion of each species. The multinomial structure of
the mode! enabled the derivation of maximum-likelihood estimators of its parameters.
Estimates of the large sample sampling variances and covariance of the parameters are also
provided. Application of concepts of the model'to other fishery problems is discussed and
it is noted that the model also provides a maximum-likelihood estimate for the well-known
yield equation.

Introduction

Many fisheries simultaneously harvest several species of fish. The unit of
effort expended in a multiple-species fishery is usually applied to the catch of
each species in that fishery. Thus, if 20 units of effort are expended to catch,
simultaneously, 10 fish of species 1, and 30 fish of species 2, the catch-per-unit
of-effort (CPUE) would be computed as 0-5 and 1-5, respectively. The pos-
sibility that the several species taken in a fishery compete for "space" on or in
the gear has been infrequently acknowledged; see, however, KETCHEN (1964)
and GULLAND (1964). Under the postulate of competition for space on or in
the gear, the above values of 0-5 and 1-5 would be underestimates of the CPUE
as an index of density for each species independent of the presence of other
species. This paper considers the concept of competition for gear by more than
one species. The consideration is based on a simple model contrived to de-
monstrate the concept.

Model

The model exploits the analytical simplicity of the known number of hooks
on a longline-type of gear. GULLAND (1955) and MURPHY (1960) also took
advantage of this feature to formulate models for gear competition. In our
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Competition for Gear 103

Figure 1. Diagram of possible routes of passage among the states
for successive instants of time.

model a single, individual hook is placed in the water and examined for
k = 1, 2, ..., M successive instants of time (in reality, however, we can only
examine the hook when we remove it from the water at the end of the M-th
instant of time). During each instant the hook can remain empty, catch species
1, or catch species 2. Furthermore, we assume that the hook can remain empty
for all instants of time, but if species 1 takes the hook it remains on that hook
until the end of the M-th instant, and likewise for species 2. The events that the
hook is empty in any instant, contains species 1, or contains species 2 are
denoted as states So, Su S2, respectively. This set of rules, which delimits the
possible routes of passage among the states through the successive instants of
time, is diagrammed in Figure 1. The probabilities of Si(k — 1) passing to
Sj(k) are qy, which for any i, j is constant for all k. In this particular model
<7oo > 0, ?oi > 0, <7o2 > 0, qn = 1, q22 = 1, all other qtj = 0.

We define the probability that the system is in the f-th state at time M as Qu

P[Si(M)] = i = 0, 1, 2 0)
The probabilities Qt can be estimated from a set of independent hooks (a
collection of hooks such that the probability of any hook containing a fish is
unchanged by the event that any other hook in the collection contains a fish).
The question of independence among hooks was considered by MAEDA (1960)
and MURPHY and ELLIOT (1954). As the hooks are removed from the water at
the end of the Af-th instant, the number that are empty («0), the number con-
taining species 1 («!), and the number containing species 2 («2) provide an
estimate of Qf, viz: Qt = m/N, where N =Zn{. Note that 100 Qx or 100 Q2

is the familiarly reported catch per hundred hooks of the Japanese longline
fishery.

The Qi (i = 1, 2), then, are the probabilities (and also CPUE for the longline
fishery) of species ; being on the hook in the presence of the possibility that
species j could have occupied the hook instead. We now wish to derive from
the QCs the probability of taking species / in an artificial situation where
species j does not exist. This is analogous to the competing-risk-of-death
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104 B. J. ROTHSCHILD

problem, an elementary exposition of which the reader will find in NEYMAN
(1950).

To treat species i independent of species j we imagine, in considering i, that
every time species j takes the hook the fish becomes invisible, thus allowing
the hook to remain available to species /. All other things being equal, the
probability of species / being caught under the fictional condition where species
j is absent is,

/><,<= 1 - (1 - <7oOM, i = l , 2 .

Before we can relate the POi to the Qi, however, each must be defined in terms
of the qtj. Note that the probability of neither species being caught in any
instant is 1 — (qOi + 9o2)> and therefore the probability that the hook will
contain neither species at the end of the A/-th instant is,

P [S0(M)] = 00 = 0 - 9oi - <702)M- (2)

The event that species 1 is on the hook at the M-th instant is

SX{M) = [ S , ( l ) n 5,(2) C\--- r\ SX(M)] u
( (3)

u [50(l) n S 0 (2)n ••• n S0(M - 1 ) n 5,(Af)].
Therefore,

= q0l + 2
k = 2

901 [1 - (1 - <7oi - ?02)M] (4)
902

(i - Go).
9oi + 902

In the same manner we obtain,

22 = „ q"2n V ~ &>)• (5)
<7oi + 902

NEYMAN (1950) gave a method of evaluating these probabilities for a corres-
ponding time-continuous process. A unit of time is divided into M intervals,
each of duration \/M, and the transition probabilities are assumed proportional
to the time lapse I/A/; thus qOi = fa/M. Time continuum is approached by
letting M ->• oo, so that corresponding to Po( we now have

Similarly, the Qi are replaced by

e o * = <
2i* = j ^ r y 2 0 - G o ' ) (7)

Qi* = T - ^ T - (1 - Go')-
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Figure 2. Relation between Po<* (i = 1,2) and Qt* for various fixed values of Go*-

Noting that

we obtain the relation

= Qo*
 l

Ot'

= 1 - Co* 1 - Oo

(8)

(9)

Given the Q\* we can obtain the P0{*. Figure 2 shows the relation between
Qi* (i = 1, 2) and Poi* for various fixed values of Qo*. The figure shows that
Pot* is never less than Qi*, Poi* is strongly dependent on go*, and for any
fixed Qo* the deviation of P0(* from Qt* is not constant, but reaches a maxi-
mum at an intermediate mixture of species 1 and species 2. Thus - according to
the model - in a multiple-species fishery the CPUE as a density index for
species / will tend to underestimate the "true" CPUE because of the presence
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106 B. J. ROTHSCHILD

Table 1

Calculations showing adjustment of CPUE for multiple-species catch. Data are
taken from Murphy and Shomura (1953). Each row represents the CPUE for a
single day of fishing in the vicinity of Canton Island (lat. 3° S., long. 172° W.),

July 1950

Caich/
100 hooks
ycllowfln

tuna

7 1
3-2
7-9
1-3

14-6
0 0

Total
catch/

100 hooks

16-5
7-8

19-7
2-7

22-2
3-9

6,
•071
•032
•079
•013
• 1 4 6
•000

O.

•832
•922
•803
•973
•778
•961

Poi

•076
•033
•084
•013
• 1 5 9

_

Catch/
100 hooks
yellowfin

independent of
other species

7-6
3-3
8-4
1-3

15-9
_

Increase in
ycllowfin
CPUE

0-5
C-1
0-5
0-0
1-3
0 0

13-2 17-8 132 -822 146 14-6 1-4

of species j , which competes with species / for space on the gear. The extent of
underestimation is strongly related to the amount of empty space on the gear
and to the apparent abundance of each species relative to the other. The ten-
dency toward underestimation will be greatest in the years of highest apparent
abundance.

In some fisheries - the Japanese longline fishery, for example - estimates of
Qo may rarely be less than 0.90. Thus the underestimate of CPUE in these
fisheries is likely to be small. The importance of a relatively small underestimate
depends upon the manner in which the statistic is used. For example a seemingly
small change in CPUE induced by correcting for a multiple-species catch might
produce a large change in an estimate of total catch made from the relationship
between total effort and CPUE.

The calculations for a specific example are given in Table 1. The data were
obtained on cruise number 5 of the "Hugh M. Smith" in the vicinity of Canton
Island (MURPHY and SHOMURA, 1953). These particular data were selected for
illustrative purposes because they had a wider range of Q0's than that usually
found for tuna longline data. The species of interest is the yellowfin tuna
(Thunnus albacares); all the other species caught were pooled as species 2.
The data reiterate the conclusion that the most severe underestimations occur
at maximum CPUE's.

Estimation of Parameters

The probabilities, Qt, that the hook remains empty, takes species 1, or 2,
at the terminal instant of time are, under the previously stated independence
assumption, parameters of the multinomial probability law. MOOD and GRAY-
BILL (1963; p. 238) derived the maximum-likelihood estimator for the mean of
this distribution and the large sample variance of the estimator.

It may be noted, however, that the V s are a more fundamental statistic than
the Poi*'s since they can be computed for several components (year-classes, say)
and then added to estimate a composite Pot*, whereas the Pot*'s themselves
are not additive. When one works with components, the A '̂s can be reported as
- log (1 — PQI*). It should be noted that the A4's have the properties of coeffi-
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Competition for Gear 107

cients of instantaneous rates; for example, a At of 1-0 represents an apparent
abundance which is double that of a ).i of 0-5. The maximum-likelihood estima-
tor of the XCs is easily obtained from the m's by applying the invariant property
of maximum-likelihood estimators to the Qt*'s,

If we make the reasonable assumption that large samples of the «4's will have an
approximately multivariate normal distribution, then the variances and covari-
ance of the Aj's are

- Qo

Estimates of Var (A<) and Cov (A], X2) are obtained by substituting the appro-
priate values of ki and Qt into the above formulae.

Emphasis should be placed on the fact that the expressions in (11) are the
sampling variances and the sampling covariance; they measure only the variation
associated with repetitive sampling from a single population characterized by
fixed Ai's. These measures of variability must arise only from repetitive sampling
since the model is constructed so that each Xt is a constant and hence has zero
variance. The constant Xt's follow from the definition of the model where it is
stated that the transition probabilities (the <?y's) are constant for all time
intervals. In practice, samples may be drawn from several populations, each
characterized by a different set of A*'s. The resulting variance, in this situation,
will be composed of at least two components: one owing to the variation
among the several populations and the other owing to the chance variation
which results from repetitive.sampling from the same population. The expres-
sions in (11) provide an estimate of the latter.

Discussion

Unfortunately, the analytic simplicity of a known number of hooks is not
always available. In these circumstances it is possible to conjecture that the
empty "space" of a gear is the complement of the maximum CPUE. This
maximum is not, in general, a well-defined quantity. The maximum catch of a
gill-net, for example, is a fish in every "hole". Although the attainment of this
event is improbable, it is not impossible. Should the "saturated" or "super-
saturated" condition (cf. GULLAND, 1955) be used as a "maximum"? The
concept of tolerance intervals (DIXON and MASSEY, 1957) may be helpful in
establishing a lower bound on the maximum and, since the CPUE statistic is
usually not easily treated parametrically, the table of distribution-free tole-
rance intervals given by MURPHY (1948) will be of use.

Some problems of interpretation may also arise in evaluating the number of
hooks actually fishing in the longline situation. Aside from the obvious pro-
blem of either the bait or the hooked fish falling off of the hook, the relation of
hook depth to fish depth must be considered. The longline is comprised of units
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108 B. J. ROTHSCHILD

which hang in approximate catenaries from float lines. Each catenary contains
several hooks which hang within a range of depths that may be as large as a
few hundred metres. If the fish are excluded - by nature of their environmental
tolerances - from some of the depths which the hooks occupy, then these hooks
are in effect not fishing for the considered species. In the circumstance where
hooks are recorded as actually fishing but are, in effect, not, Qo will be over-
estimated and the effect of competition (i.e. a value of Pot for a particular value
of Qi) will tend to be underestimated.

It is important to note that adjustment of CPUE to account for multiple-
species catches increases the variability of the adjusted CPUE's over the un-
adjusted ones. If environmental variables are important causes of fluctuation in
abundance of any one species and these fluctuations tend to be minimized by
multiple-species catches, then the environmental variables may be unrecognized
or undetectable as causes of the fluctuations.

Finally, the competition model contains concepts that are applicable to other
problems that arise in the study of harvested populations. These conceptual
applications pertain to estimates of yield, estimates of survival rate, and op-
timum fishing strategies.

First, we note that natural and fishing mortality compete for the life of a
fish just as species 1 and species 2 compete for a single hook. To express this
competition we let So denote the state where a fish escapes mortality; Si, where
the fish succumbs to fishing mortality; and S2, where the fish succumbs to death
from natural causes. Placing the problem in a more familiar notation, let
X\ = F (the coefficient of instantaneous fishing mortality) and k2 = M (the
coefficient of instantaneous natural mortality). Rewriting (7), gives

(1 - e - t f + W), (12)
F+ M

which is the well-known expression for the fraction of a year-class taken by a
fishery in a unit-interval of time (annual expectation of death from fishing).
Multiplying (12) by recruitment provides an expression for yield, in numbers.
Thus we have derived, using a probabilistic argument, an expression for yield
that is identical to that which is conventionally derived deterministically. Further-
more, the assumption of an underlying multinomial-probability law enables
estimates of the mean and variance of the A('s which are identical with F and
M. Replacing F and M with their appropriate maximum-likelihood estimators
from (10) gives a maximum-likelihood estimate of (12). The problem, here, of
course, is to obtain data in terms of the number of fish that in some time inter-
val are caught, succumb naturally, and remain alive. Perhaps tagging experi-
ments are the most likely source of data of this type.

Second, survival rates are often estimated by means of a catch curve. Strong
year-classes may arise and compete with other year-classes for space in the
sampling gear. According to the model, the abundance of strong year-classes
will be underestimated. Even under conditions of a stable age structure, several
year-classes could compete with one another for space in the sampling gear. In a
stable population the younger age-groups with the larger numbers of individuals
would exert greater amounts of competition for becoming sampled than would
older age-groups. It is conceivable that under some circumstances survival rate
will tend to be underestimated as a result of competition among age-groups.
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Competition for Gear 109

And, finally, the model suggests certain strategies for the fisherman. Accord-
ing to the model, the single-species CPUE resulting from fishing a fixed density
of that species can be increased simply by setting the gear in a way or location
such that the effect of competing species is reduced. The wisdom of this strategy
is of course contingent on the monetary value of the competitor. Where the
value of the competitor is often nil (e.g., sharks in the Japanese high-seas
longline fishery for tunas) it is to the fisherman's advantage to attempt to
eliminate the competitor completely. On the other hand, the competing species
may also be of value and the foregoing strategy would still increase the CPUE
for the single species, but decrease the total CPUE. Thus, in a gradient of
mixtures of two valuable species, the choice of fishing location would involve
maximizing the monetary return from the combined catch.

Summary

The effect of multiple-species catches on the catch-per-unit-of-effort (CPUE)
statistic for a single species is considered in terms of a simple stochastic model.
The model enables computation for a single species of a CPUE which is inde-
pendent of the effect of competition for space on the fishing gear by a competing
species. According to the model, the adjusted single-species CPUE is never less
than the multiple-species catch, the adjusted single-species CPUE is strongly
dependent on the apparent abundances of the considered species, and the
adjustment is not linear, but varies with the degree of species mixture. Various
applications of the model are discussed and attention is called to the fact that
the model provides a stochastic derivation of the well-known yield equation.
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