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This paper discusses a method for estimating the parameters of the boundary of a set
of points for which the y variable is bounded above. The boundary may be linear, for
example, in which case a scatterplot of the data may have a triangular appearance.
An example is obtained by plotting cube root of food volume in an animal's in-
completely filled stomach against the animal's length; full stomachs constitute the
upper boundary, while other volumes fall between 0 and the boundary, depending on
how full or empty a stomach may be.

Our method is to fit a mixture of an ordinary regression model and a variate having
an unknown mixing distribution, which represents the variation of another unob-
served factor such as the proportionate fullness of the stomach, for example. The
mixing distribution is discretized and the number of mixing classes is estimated by
Akaike's procedure. The method is found to be stable and reliable for simulated sets
of data, and is illustrated by application to three data sets. Examples of occurrence of
the problem in various areas of ecology, and in other areas, are given.

R. A. Mailer: Department of Mathematics, The University of Western Australia, Ned-
lands, Western Australia 6009, Australia.

Introduction
In certain studies in ecology, and in many other areas,
data of the following type arise. Two variables, y and x,
are related, but the variation of y is restricted by a
boundary (which we take to be the upper boundary).
The boundary may be approximately linear, and the
observations of y for a given value of x may be distrib-
uted over a range from 0 to the boundary, rather than
approximately symmetrically around some value, as in
the ordinary regression model. Thus there is a "varying
factor" (or factors), which tends to move some points
away from the boundary. Such data present a roughly
triangular form when the y and x coordinates of each
data point are plotted on a graph. More generally, the
boundary may be nonlinear and the scatterplot of y
versus x covers a region of the x—y plane.

For such data, interest often lies in estimating the
parameters of the boundary line and in estimating the
variation around it. The boundary may represent a max-
imum or upper bound to y which is achievable when the
varying factor is not present, and be of interest in itself;
or it may be important to compare the boundary lines,
statistically, between two or more sets of data.

Figure 1 of Mailer et al. (1983), reproduced as Figure
1 here, is an example of such a data set, in which y is the
cube root of the observed stomach volume of a western
rock lobster and x is its carapace length (see also Fig. 3

of the present paper). The values of y are distributed
from a maximum value, representing lobsters whose
foreguts were full at the time of capture, to zero, when
lobsters were caught at times before they had com-
menced feeding. These data are typical of the stomach
contents of fish and other animals which are sampled
under field conditions, since there is usually no way to
control for fullness of stomach. It is important in these
studies to identify in an objective way animals which
have a large proportion of the stomach filled, since the
inclusion of animals with small proportions filled could
introduce serious bias or unreliability, e.g., in calculat-
ing dietary components. Statistically, the problem is to
fit a line to the upper envelope of the data.

This type of problem is not restricted to fisheries
research. In forestry, a good example of the kind of data
we are interested in occurs in Ward (1982, Fig. 5), who
plots the relationship between girth and age of junipers.
Given optimum conditions, there seems to be a roughly
linear relationship between girth and age of tree, but
many trees are small for their age (even being only
perhaps 20 % of their apparent optimum size). Here the
"varying factors" represent the often suboptimal envi-
ronmental conditions to which a tree may be exposed,
and the boundary represents the maximum girth ob-
tainable by a juniper having the best possible condi-
tions. Ward comments (p. 922) that the (ordinary) re-
gression of girth versus age should be "done with cau-
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Figure 1. Cube root of net foregut volume (cc) of 543 western rock lobsters plotted against carapace length (mm). Lines shown are
fitted by the trimming method (full line) and likelihood method (broken line). Reproduced from: R. A. Mailer, E. S. de Boer,
L.M. Joll, D. A. Anderson, and J .R Hinde. 1983. Determination of the maximum foregut volume of western rock lobsters
(Panulirus cygnus) from field data. Biometrics, 39: 543-552. With permission from The Biometric Society.

tion" even within localities, and should not be used at
all where there is "extreme variation". The method we
present enables us to estimate girth as a function of age
independent of other varying factors.

The problem we are discussing has been clearly rec-
ognized by Jarvis (1976), in relating stomatal conduct-
ance of leaf canopies to various independent variables
(see Figs. 10 and 11 of his paper). He comments that
"provided enough measurements have been taken to
cover the variable space, the upper limit of a scatter
diagram indicates the response to the particular inde-
pendent variable when the other variables are not limit-
ing". The boundaries in Jarvis' data are nonlinear. An-
other linear example occurs in Wilson et al. (1986,
Fig. 3), who relate yield of tropical grasses sown in
various sites to daily maximum and minimum temper-
atures. Their material "suggests that growth is initiated
at a minimum temperature and is optimum at about
30°C daily maximum temperature". Here the "varying
factor" is (or includes) the "site" of observations, and its
corresponding minimum and maximum daily temper-

atures, while the boundary is again the optimum growth
achievable. Applications of this type of study to growth
of marine plants suggest themselves.

A good opportunity to test our methods came with
some data of Rabinowitz et al. (1985, Fig. 1), who mea-
sured the weight of seedlings of prairie grass as a func-
tion of harvest date. Since not all seeds germinate at the
same time, plants at a given harvest date are a variety of
ages, and a plot of weight versus (chronological) age has
a triangular appearance. Rabinowitz et al. used the
"trimming" method of Mailer et al. (1983) to estimate
the "true" regression of weight on age, and compared it
with the actual regression of weight on age, obtained by
recording also the actual age of a seedling (see Fig. 2 of
Rabinowitz et al. (1985)). Here the "boundary" is the
actual regression of weight on age, and the "varying
factor" is the effect of knowing only the chronological
rather than the actual age of a seedling. Assuming linea-
rity, Rabinowitz et al. obtained excellent agreement be-
tween the two regressions, and we discuss another anal-
ysis of this data set later.
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A beautiful meteorological example is given by Wen-
dler and Kodama (1986, Fig. 1), who plot global radi-
ation flux in Fairbanks, Alaska, as a function of month
of year. The "varying factor" here is cloud cover; on a
cloudless day, maximum flux measurements are
achieved, falling to close to zero fluxes for very overcast
days. The "boundary" for this data is obviously sinusoi-
dal rather than linear. Scott (1979, Fig. 5) has a similar
plot of total radiance at Port Hacking, NSW. For an
astronomical example, see Seki and Hasegawa (1986,
Fig. 1), who plot interstellar polarization against extinc-
tion magnitude for about 1400 stars, obtaining a roughly
linear boundary. Here the varying factor seems to be
mostly degree of alignment of intervening dust grains
with the galactic magnetic field.

Returning to fisheries research, other examples occur
in Salmon and Hyatt (1983, Fig. 5; clutch sizes of fiddler
crabs as a function of female carapace width), in Hines
and Pearce (1982, Fig. 4; depth of refuge versus shell
length of abalones), in Michaletz et al. (1987, Fig. 4;
size of ingested zooplankton prey versus mouth gape for
four fish species), and in Smith (1983, Fig. 4; length of
prey tadpoles versus length of predators). Here the
upper boundaries are fairly obvious physical limitations
in terms of the size of the species studied, and the
"varying factors" are the random factors influencing
clutch size, depth of refuge available, or available prey
size. Similar comments apply to data of Bryant and
Westerterp (1983, Fig. 4), who plot size of insect prey
versus foraging distance of house martins.

In Mailer et al. (1983), two methods for estimating
relationships of the above kind were given. The present
paper is a continuation of that paper, in which the
"mixture method" of that paper is extended, and its use
is demonstrated in the analysis of data. For a general
reference to mixture distributions see Everitt and Hand
(1981).

The model assumed is a generalization of an ordinary
regression model in which a set of points y; with cova-
riate vector X; is related by

y/p = a + Px; + 8; (1)

where a and (3 are parameters to be estimated. In terms
of our previous terminology, the random amount p by
which each point y is displaced downwards represents
the "varying factors", for example the unobserved pro-
portionate fullness of a lobster's stomach. In (1), e,
represents independent normal (0,a2) error terms,
where a2 is unknown and to be estimated. Note that (1)
and the calculations in the following section are easily
generalized to the multiple or polynomial regression
case.

In general, the distribution of p is unknown and must
also be estimated from the data. From this point of view
the problem is one of incomplete data and so falls into a
class of problems identified by Dempster et al. (1977)
and associated with the "EM algorithm".

In Mailer et al. (1983), Anderson and Hinde, follow-
ing Laird (1978), suggested estimating the unobserved
mixing distribution of p nonparametrically, by assuming
that p has a discrete distribution with masses n, at points
rrij, 0<ni| < . . .<mk< 1, where m; are given and ji],...,jik

and k are to be estimated. The likelihood equations
derived from (1) with this mixing distribution were
solved iteratively by an EM method for a fixed value of
k (actually k = 10 was chosen). The procedure seemed
to converge but required a very large number of iter-
ations.

One aim of the present paper is to suggest a computa-
tionally improved method of fitting with faster con-
vergence, which makes it feasible to study simulations
of the data. With these, the distributions of the estima-
tors of P and a2 and especially the choice of the param-
eter k are examined. The Akaike (1973) information
criterion is introduced as a means of deciding on the
optimal number of classes k, and shown to work well in
simulations. The method is also illustrated with two new
data sets on stomach volumes (of ghost crabs and mar-
ron) and with the prairie grass data of Rabinowitz et al.

Numerical procedures
Given (1) and assuming that the distribution of e, is
normal (0,o2), the discretized log likelihood of the sam-
ple y,,...,yn is

logL

= S log((2jia2)-! £ m->exp[-(y1/mrui)
2/2a2]KJ (2)

= 2 log (2jia2)-! 2 m r ' eu "j ' say>

where n, = a+PX|. Maximizing this subject to

(3)

gives for Jij the equations

(4)

which can be used to update a new value of jij on the left
given a previous set of n-v 1 < j < k, on the right. Differ-
entiation of logL with respect to P gives another likeli-
hood equation:

P = (5)
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where

yia = y

and

£
Similarly, equations for a and a2 can be found. Note
that p occurs implicitly in yia, so (5) is not an explicit
solution for p.

Anderson and Hinde's suggested method of solution
was to insert "old" values of p\ jij and o2 on the RHS of
(4), (5) and a corresponding equation for a2, and obtain
"new" values of p\ JIJ; and a2 from the LHS of those
equations. Starting values for the procedure were the
"trimming" estimates given as the other method in
Mailer et al. (1983). This procedure seemed to converge
to a stable set of estimates but required a very large
number of iterations (often more than 300 for the lob-
ster data), and was very time consuming. We suggest an
improvement of this method as follows. Equation (4) is
still used to update new values of n-x on the LHS by
inserting old estimates in the RHS. Given these esti-
mates of Jij, Equation (5) is "solved" for an estimate of
(3 by a Newton—Raphson procedure, to a sufficient
degree of accuracy, and similarly for a2. These values
are then inserted in e ,̂ new values of jtj produced from
(4), and the procedure repeated. Again, the "trimming"
estimates and a simple histogram estimate of the distri-
bution of p are used as starting values. Upon con-
vergence, if it occurs, a set of estimates p\ a2, and jij is
obtained. The new procedure converged in most cases
considered, produced much faster convergence (often
up to 6 times as fast), and also revealed that the old
procedure, although increasing the likelihood of each
step, still had not reached a maximum. Standard errors
of the estimates conditional on the values of jij and k are
now available from the second derivative matrix of the
log likelihood.

The main advantage of the procedure, however, is
that simulations of the model assumed to be generating
the data are now feasible, and we can use these to study
the properties of the estimates. In fact these properties
turn out to be very good, at least for reproducing the
known values in simulated data, and seem to give rea-
sonable estimates for data similar to the lobster data, at
least inasmuch as can be judged by comparisons be-
tween sets of data. The most problematical point is the
choice of k. For this we propose to use the Akaike
(1973) information criterion, defined as

AIC = - 2 log (likelihood)
+2 (number of independently estimated

parameters).

The model with minimum AIC is the chosen model.
The AIC penalizes the likelihood estimate for the num-
ber of parameters, and selects a compromise model,
with the highest likelihood for the least number of pa-
rameters; Stone (1977) gives a useful discussion of the
AIC method and its connection with cross-validation.

We demonstrate that the AIC reaches a minimum for
many sets of simulated data and for the data of Morris
(1977), and Thompson (1988), and provides very good
estimates for the simulated data. In the case of the
Rabinowitz et al. (1986) data, we are able to reproduce
the "actual" estimates very closely.

Simulations
In Mailer et al. (1983) the cube root of foregut volume
(in cc) of the western rock lobster (Panulirus cygnus)
was found to be related to its carapace length (in mm)
approximately as follows:

ys/p = a + (6)

where a = 0, p = 0.02, and E is normal with mean 0 and
variance (0.14)2. In this section, simulations of the
model (1) are examined. For the main set of simula-

Table 1. Results from 1000 simulations of the method applied to y/p = a + p \ + E, where a = 0, P = 0.02, E> is N(0,(0.14)2), and p
has distribution (7). The number of discrete mixing intervals is k, and the standard errors of a, b, and s were calculated from the
simulations.

k

5
6
7
8
9

10
11
21
41
61
81

a

-0.02
-0.01
-0.01
-0.01
-0.01
-0.01
-0.00

0.00
0.00
0.00
0.00

SE(a)

0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03

b

0.0190
0.0195
0.0197
0.0199
0.0198
0.0198
0.0198
0.0199
0.0199
0.0199
0.0199

SE(b)

0.0006
0.0005
0.0005
0.0005
0,0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005

s

0.199
0.175
0.160
0.155
0.157
0.154
0.147
0.140
0.139
0.139
0.139

SE(s)

0.016
0.005
0.005
0.005
0.0O6
0.006
0.005
0.005
0.006
0.006
0.006

logL

-146.5
-102.4
-91.40
-93.68
-93.64
-85.75
-79.39
-76.67
-76.50
-76.49
-76.79

-l(AIC)

-154.5
-111.4
-101.4
-104.7
-105.6
- 98.8
- 93.4
-100.7
-120.5
-160.8
-140.8
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tions, 110 realizations of (6) were chosen with n = 1000,
X, having a uniform distribution on [30, 80] and p having
distribution

0.5 6, + 0.5 U [0.2,1] (7)

where 6, denotes a point mass at 1 and U[a,b] is the
uniform distribution on [a,b]. Thus 50% of the lobsters
had full stomachs, but no stomachs less than 20% full
occurred. Starting values for the iterative procedure
were the true values from (6) and a simple histogram
estimate of the distribution of p.

Table 1 shows the estimates a,b,s of a = 0, p = 0.02,
o = 0.14, their standard errors over the 110 realizations,
and the average log likelihood of the 110 realizations.
The new procedure converged in over 95 % of cases.
The table suggests that values of k < 6 provide biased
estimates, especially for a, while k = 11 produces excel-
lent estimates. These are the minimum AIC estimates.
Q—Q plots showed that the distributions of a and b

were very closely approximated by normal distributions
for k > 6.

The whole procedure was repeated for n = 100 with
similar results, although the variability of the estimates
was correspondingly higher. Here the maximum of
log L occurred for about k = 40. It was noticed that the
average of the estimates of o progressively decreased as
k increased (it was 0.1217 for k = 41), although it was
never significantly less than 0.14. The same trend is
evident in Table 1, although it is small, probably owing
to the increasing number of parameters which are being
estimated as k increases; for samples of the order of
n = 100, there are <5 observations per cell expected
when k > 20. This represents "overfitting", and is penal-
ized by the AIC procedure.

We might expect the mixing distributions to be poorly
estimated by the nonparametric method. Figure 2 shows
the mean, maximum, and minimum mixing cumulative
distributions for 110 realizations of model (6) with
n = 250, fitted with k = 11. The estimates seem reason-

1 .0

n
o

<D

.9

.8

.7

.6

.5

J2 -4-I
E
3

° .3

. 2 -

.1 -

true distribution

average

minimum

1 .2 .3 .4 .5 .6 .7 .8 -9 1.0

Figure 2
tion.

mixing proportion P - •
Maximum, average, and minimum estimated mixing distributions from 1000 simulations, compared with true distribu-

144

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/46/2/140/645344 by guest on 20 April 2024



able although variability is high. (Of course "averaging"
the estimated distributions may not be a good way of
displaying them.) A number of checks on the above
results were done, mostly for the case n = 100. Similar
data were generated with mixing distribution

(8)

i.e., all lobsters were downweighted to some extent.
The fitting procedure was modified to allow a param-
eter for the fitting of some probability mass at 1 (Table 1
was generated in this way) or not. Trying various combi-
nations (data generated with or without mass at 1) x
(data fitted with or without mass at 1) gave predictable
results.

Some of the simulations with N = 1000 were repeated

with different starting values for a, b, or s2. For starting
estimates as far away as a = —0.25, b = 0.016 or
s = 0.12, the Newton—Raphson procedure occasionally
did not converge, especially for small values of k(k < 6).
But usually it did, and the estimates recovered were the
same as those in Table 1 to the order of accuracy of the
fitting procedure (more iterations were required on av-
erage, of course). Convergence in the other data sets
could be obtained by changing the starting estimates; an
adequate choice is usually the "trimming estimates" of
Mailer et al. (1983), which are simple to calculate.

As a final test, the method was applied to a simulated
set of least-squares data with n = 100, a = 0, p = 0.02,
a = 0.14, and with no mixing distribution. The estimates
produced by the procedure varied, as k was varied, over
the ranges 0.002 to -0.001 for a, 0.0202 to 0.0209 for b,

4.0 -

10 5020 30
Carapace Width

(mm)
Figure 3. Cube root of stomach volume (cc) of 136 ghost crabs plotted against carapace width (mm). The line is fitted by the
methods of the present paper.
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0.146 to 0.139 for s, and 50.45 to 50.36 for logL. The
least-squares estimates for the data were a = 0.002,
b = 0.0202, s = 0.148, and the Akaike procedure se-
lected k = 1; exactly these values, to the accuracy of the
calculations.

Applications to data
(1) Figure 3 shows the cube root of stomach volume of
136 male and female ghost crabs as a function of cara-
pace width (Morris, 1987). (The volumes as plotted
have been rescaled by a mesh-size factor of 0.4, which is
irrelevant for our purposes.) Table 2 lists the estimates
of a, (3, and o obtained for various values of k, together
with the maximized likelihood and —J(AIC) for the
data in Figure 3. The minimum AIC occurs at k = 8,
corresponding to estimates a = 0.25, b = 0.077, s = 0.32.
The line with parameters a and b is shown plotted in
Figure 3. A separate regression for females gave
a =—0.45, b = 0.086, suggesting no significant differ-
ences between sexes, as judged by the standard errors
given in Table 2.

(2) Dr Rabinowitz kindly supplied the data on which
her Figures 1 and 2 are based. Rabinowitz et al. (1986)
obtained for the regression of log weight on actual age
the estimates a = 0.54 (SE 0.02), b = 0.856 (SE 0.0008),
s = 0.23, whereas the method of the present paper, ap-
plied to log weight and chronological age, produced
minimum AIC estimates at k = 20 of a = 0.69 (SE 0.03),
b = 0.0855 (SE 0.0015), s = 0.22 (SE 0.01), in excellent
agreement except for a slightly lower value of a in
Rabinowitz et al. estimates. (But they used the trim-
ming method of Mailer et al. (1983) as a "robustifying"

tool in their regression, and this is known to produce
estimates of a which are slightly low (Mailer et al.,
1983.).)

(3) Using as an example some data kindly supplied by
Thompson (1988), we demonstrate how to test for
whether downward displacement of points has actually
occurred. Thompson's data are 92 observations on gut
weight of the marron Cherax tenuimanus, taken as y
variable, versus carapace length of the animal, taken as
x variable.

Fitting by the method of this paper gave k = 4 as the
minimum AIC value, and the estimates for k = 4 to-
gether with the estimates for an ordinary least-squares
regression of y on x (k = 1) are given in Table 3. (Gut
weight was cube root transformed before analysis, and
one outlying value was removed.)

Minus twice the difference in log likelihood between
the two fits has the value 6.10, which we take as approx-
imately x2 with 3 d.f., since there are four parameters
(the four mixing proportions) fitted when k = 4. Since
this value is not significant, the data are adequately
described by k = 1, i.e., a simple regression of y on x.
This is borne out by plots of the data which show little
displacement.
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Table 2. Result of applying the method to the data of Morris (1987). Standard errors of a, b, and s were calculated from the second
derivative of the log likelihood.

k

1
3
4
5
6
7
8
9

10

a

-0.09
-0.17
-0.40

0.04
0.05

-0.21
-0.25
-0.50
-0.29

SE(a)

0.27
0.27
0.28
0.28
0.27
0.20
0.19
0.20
0.20

b

0.048
0.062
0.086
0.056
0.060
0.069
0.077
0.080
0.074

SE(b)

0.008
0.008
0.008
0.008
0.008
0.006
0.005
0.006
0.006

s

0.69
0.56
0.58
0.53
0.45
0.36
0.32
0.36
0.32

SE(s)

0.04
0.05
0.05
0.05
0.04
0.03
0.03
0.03
0.03

logL

-143.0
-132.5
-128.0
-131.4
-125.8
-116.3
-114.1
-118.1
-118.6

-i(AIC)

-147.0
-138.5
-135.0
-139.4
-134.8
-126.3
-125.1
-130.1
-131.6

Table 3. Result of applying the method to the data of Thompson (1988). Standard errors of a, b, and s were calculated from the
second derivative of the log likelihood.

k

1
4

a

0.25
0.26

SE(a)

0.07
0.07

b

0.027
0.028

SE(b)

0.0015
0.0013

s

0.18
0.13

SE(s)

0.01
0.01

logL

29.72
32.77

-i(AIC)

25.7
25.8
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