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A natural interpretation of fish catch-at-age data leads to an approximate multi-
plicative model with three factors: year, age, and year class. These factors are
however, interrelated (year class = year - age) and estimates of the parameters of
such a model are not unique. Specific solutions may be obtained by imposing
biologically meaningful constraints on the parameters: for example, by specifying the
trend in the year effect. The choice of error distribution and its parameters is also
important in fitting such models. Examination of the sampling procedures used in
data collection suggests a simple approximate formulation for the error variance of
the log-transformed data. The model may be fitted by standard least-squares methods,
or by a simpler calculation based on log-catch ratios. The model may be applied to
any coherent set of catch-at-age data, representing the total international catch, that
of a single fleet, or a research survey. The method is independent of VPA, but
conceptually closely related to separable VPA. It may be used to estimate the steady-
state age composition (i.e. a corrected catch curve), which is a required starting point
for some assessment procedures, and also to estimate relative year-class strength for
all year classes represented in the data, even those only present as older ages in early
years. The fitted parameters may also be used as the basis of a simple forecast of
catch-at-age for the data set to which it has been fitted.

J. G. Shepherd and M. D. Nicholson: Ministry of Agriculture, Fisheries and Food,
Directorate of Fisheries Research, Fisheries Laboratory, Lowestoft, Suffolk NR33
OHT, England.

1. Introduction Finally, the use of the parameter estimates as the basis

Shepherd and Nicholson (1986) pointed out that much for a simple forecast of catch-at-age is described.
of the variance of catch-at-age data can usually be
explained by a simple multiplicative (log-linear) model,
with three factors representing ages, years, and year
classes. This merely formalizes the conventional wisdom 2. Bas i s OI the m o d e l

of fisheries science: that catch-at-age is primarily deter- u D e r i v a t i o n o f t h e multiplicative model
mined by year-class strength, the overall level of fishing
effort in each year, and the combined effect of selection For many fish stocks subject to routine assessment, data
and survival as a function of age. The use of a formal are available for catch numbers by age group for several
statistical model is useful, however, as it focuses atten- years for both commercial fisheries and research
tion on the necessity for appropriate fitting techniques, surveys. The standard theory of fishing (e.g. Gulland,
preferably taking account of the likely error structure 1983) interprets these as the product of an instantaneous
of the data. fishing mortality rate Fya and the average size of the

In this paper the development of such models is population Pya at each age (a) during the year y.
discussed with emphasis on the practical aspects rather A major determinant of the population size for most
than the statistical ones. The application to commercial marine fish is the year-class strength (i.e. cohort size),
catch-at-age data is considered, and an alternative very which is highly variable. This is denoted here by Rk for
simple method of parameter estimation (based on log- the (k)th year class, where y. a, and k are of course
catch ratios) is proposed. The significance of the para- related linearly.
meters of the model fitted is discussed, and the relation- Fish are subject to a natural'instantaneous mortality
ship with VPA (especially separable VPA) is explored, rate Ma (conventionally assumed constant with time)
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as well as the total fishing mortality Fya. The total
instantaneous mortality rate is then

Zva = Ma + Fva (1)

The average population size in year y is given - to a
good approximation - by

Pya = XyaRk (2)

where xya is the fraction surviving to age a in the (y)th
year and is given by

xya = exp[-cum(Zya)] (3)

where cum(Zya) is the cumulative mortality from recruit-
ment to the mid-point of the final fishing season for the
cohort in question.

Pope and Shepherd (1982) have pointed out that Fya

may often be expressed approximately as a product of
year and age effects,

ya (4)

where Fy is a measure of overall fishing mortality and
Sa is the selection of fish of age a. Thus,

'-'ya

This has the form of a multiplicative model involving
year, age, and year-class effects, and the interaction of
age and year effects. Models of this form, retaining the
interaction term, have been studied by Pope and Stokes
(1989). Here we concentrate on the simplest possible
form, by noting that if fishing mortality were constant,
the interaction term would reduce to a simple age effect.
Assuming that this is a sufficient approximation, and
therefore writing

S' — S x
° a °aAya

for the overall age effect, expressing the effects of both
selection and survival, we obtain

i — FyRkS'a (5)

Equation (5) is exact only if the fishing mortality is
separable and the overall fishing mortality is constant
over the period considered. If either of these conditions
is violated, it becomes an approximation only. Never-
theless, the results of Pope (1979, 1983) imply that the
errors involved should not be of major significance in
normal circumstances - most of the variance of the data
may be explained when the three main effects are fitted.

The development of the simple model of Equation
(5) has been expressed in terms of total fishing mortality,

but it is easy to see that it also applies for the partial
fishing mortality of any individual fleet or survey,
although it is again only exact if the total fishing mortality
and exploitation pattern remain constant. The model
may therefore be fitted to partial data sets when com-
plete data are lacking. This is a considerable practical
advantage over VPA-like procedures, which require
complete total international catch data.

Whether total or partial data are fitted, the results
will be imprecise (biased) if either the total fishing
mortality or the exploitation pattern vary with time.
This would lead to a non-zero year/age interaction (xya

becomes a function of year and age, not age alone),
which could be large enough to be of practical sig-
nificance. Whether or not the resulting biasses of the
parameters estimated are serious in comparison with
other possible biasses and the inevitable variance of the
results will depend on the nature of the data. This could
probably best be studied by simulation tests, and is an
interesting subject for further work. More complete
models, allowing for year/age and other interactions,
have also been applied by Pope and Stokes (1989). In
the present case any such unfitted interaction terms will
also add to the residual error variance.

The results of fitting the model (Equation (5)) are
estimates of the parameters Rk representing relative
year-class strength, S'a representing the combined effect
of selection and survival, and Fy representing relative
fishing mortality, either partial or total, depending on
the data set in question. Note that S'a is in fact an
estimate of the steady-state age composition of the
catch - a 'catch-curve' corrected for fluctuations of year-
class strength and (to a first approximation) for modest
changes of fishing mortality. This may be further ana-
lysed (e.g. by cohort analysis) to give some estimate of
average total fishing mortality. All this information may
be obtained, to what seems in practice to be a useful
degree of approximation, from a single partial data set,
including that from a survey series, provided total fishing
mortality and exploitation pattern do not vary too much.

Much of fish stock assessment revolves around esti-
mating and using these parameters, often employing
complicated and circuitous procedures. The assessment
and subsequent forecasting procedures should be
clearer and simpler if the model (5) is fitted directly to
the data. This also permits the estimation of Rk for early
year classes not fully represented in the data, which is
sometimes of interest.

It is well known, however, that not all of the relevant
parameters can be determined from catch data alone
(Pope and Shepherd, 1982). In the formulation of
Equation (5), the linear model obtained by taking log-
arithms of catches-at-age is in fact indeterminate
because of the relationship between year, year class,
and age. This indeterminacy may be removed, however,
by imposing biologically meaningful constraints on the
parameters, as discussed below.
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The model can be linearized by taking logarithms

ln(Cya) = u + fy + rk + sa (6)

where the lower case fy, rk, sa denote the logarithms of
their uppercase equivalents, apart from some additive
constants collected in a constant term (u). These factors
(f, r, and s) may be defined subject to the usual arbitrary
but convenient normalization

f^r^s^O (7)

and are here subscripted with a = 1 for the youngest
age, y = 1 for the first year, and k = 1 for the earliest
year class, so that

k = y - a + m (8)

where m is the number of age groups, excluding the
plus group (if any), which is not treated by this model.

2.2. Indeterminacy

Equation (6) may be fitted to the data by any of several
least squares procedures, including the use of standard
statistical packages such as GLIM (Baker and Nelder,
1978) or by a simple method described below. The
problem is structurally aliased, however, so the solution
is not unique.

The form of this indeterminacy may easily be demon-
strated. Suppose a solution for u., fy, rk, and sa has
been found. Now k = y - a + m, and therefore
(y - a — k + m) is zero, and any multiple of it may be
added to the fitted value without altering the goodness-
of-fit. Adding (say) 6 times this null expression to both
sides of (6) then leads to

ln(Cya) = n + (m - 1)6 + / y + (y - 1)6 +

+ rk - (k - 1)6 + sa - (a - 1)6

There are thus an infinite number of equally good
solutions corresponding to the parameter values

u + (m - 1)6

fy + (y - 1)6

rk - (k - 1)6

sa " (a - 1)6

These differ from the original solution to the extent
of an arbitrary additive linear trend (0. 6, 26, 36 . . .)
on the effects for each factor.

This indeterminacy may be removed by applying
suitable additional constraints on the parameters.
In general, appropriate constraints may be found by
examining the estimable functions of the parameters

(Shepherd and Nicholson, 1986). The commonsense
approach, however, is that any constraint on the overall
trend of the effects for any factor will serve: one must
in effect apply a constraint which will fix the value of 6.

Various possibilities exist. In practice, we have found
that the most generally useful form of the constraint on
the year effect (fy) is to specify that its trend is equal to
some value, g, determined perhaps from the analysis of
effort data, or assumed to be zero.

The easiest way to do this is simply to require that

fn = f, + (n - 1) g

where n is the number of years. This is particularly easy
to implement when fitting using log-catch ratios as
discussed below. Standard statistical packages do not
usually allow for the convenient specification of
additional constraints on the parameters when fitting
categorical ("analysis of variance") models such as this.
They can usually be tricked into doing what is required,
however, by supplying an additional imaginary data
point corresponding to an infeasible combination of y,
k, and a, e.g. y = 1, k = 1, a = 1. This has the effect of
fixing the grand mean, and thus the value of g: the
required value for the spurious data point corresponding
to a given trend can be found by trial and error.

In special circumstances it might also be of interest
to examine solutions for a specified (e.g. zero) trend in
the year class (recruitment) effect, but this would be of
less general applicability, since recruitment trends are
not generally known a priori, nor can they often be
assumed to be zero with any confidence.

3. Identification of variance structure
In this section we propose an inessential but useful
embellishment of the model, being an approximate
allowance for the error structure of the data. This is a
problem of much wider occurrence, usually ignored,
often because it is tricky to handle. In a directly fitted
model such as that discussed here, there is less difficulty
in doing something sensible. We would however suggest
that the method discussed below could find wider appli-
cation in the analysis of catch-at-age data.

The processes leading to errors in catch-at-age data
are quite complicated, and the error structure is difficult
to specify precisely. In the first place there are process
errors, due to real but unpredictable variations in the
fishing process itself or the behaviour of the fish being
caught. In addition, there are sampling errors, although
in practice these cannot normally be separated from the
process errors. These arise because only a sample of the
catch is usually measured, and a further subsample is
taken for age determination (actually this is often not
even a true subsample). It remains true, of course, that
the larger numbers of fish observed are more precisely
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determined, but because of the multi-stage nature of
the sampling, the extensive use of subsampling (and
therefore raising factors), and the conversion of length
to age, it is very difficult to set down a precise formu-
lation. In addition, the samples taken for measurement
tend in practice to be of more or less fixed maximum
size (in weight or volume, i.e. a basket or a bucket of
fish), so that the improvement in precision as abundance
increases in fact reaches some sort of limit.

It is common practice when analysing catch-at-age
data to ignore all this, and either to make unweighted
fits to the untransformed data (implicitly treating the
data as though it had constant normal additive errors)
or to log-transformed data (implicitly assuming that it
has constant multiplicative errors - a constant coefficient
variation). Clearly, neither assumption is likely to be
realistic. It has often been remarked that unweighted
fits to untransformed data of this type are dominated
by the large numbers, whilst unweighted fits to log
transformed data are dominated by the small numbers.
Something in between these extremes is really required.
Attempts have been made to allow for other error
structures of catch data (see, for example, Fournier and
Archibald, 1982; Deriso, Quinn, and Neal, 1985) but
even these do not fully allow for the gory complexity of
the real situation. We propose a rather rough and ready
approach, which ignores the shape of the error dis-
tribution (thus implicitly treating it as lognormal) but
attempts to allow for the varying precision of the data
as abundance changes. According to Gilchrist (1984),
this should capture the most important features of the
problem.

The argument is given in detail by Shepherd and
Nicholson (1986), but the idea is quite simple. If fish of
a certain age (or size) are scarce, all those present in a
sample are likely to be counted, measured, and (very
likely) aged. If, on the other hand, they are abundant,
they will be subsampled, and only one box, basket, or
bucketful will be measured. In the first case the variance
of the number caught should be roughly proportional
to the mean number caught (not equal to it, because
there is almost always some raising factor involved in
producing the final catch-at-age tables). The coefficient
of variation is therefore inversely proportional to the
square root of the mean. In the second case the coef-
ficient of variation remains fixed at whatever level is
appropriate for the subsample size, since further
increases of abundance do not lead to more fish being
counted and measured, but to a smaller proportion of
the catch being sampled, and a larger raising factor
being applied to the observations (and multiplication
preserves coefficients of variation).

Thus, as abundance increases, we should expect the
coefficient of variation of the numbers estimated to
fall at first, but beyond some threshold abundance to
stabilize at a constant level. This behaviour may be
allowed for by weighting the residuals in the fitting

procedure appropriately. Since we use a logarithmic
transformation to convert a multiplicative model into
a linear one and a constant coefficient of variation
corresponds (approximately) to a constant logarithmic
variance, the appropriate form of weighting is (using
inverse variance weights)

w = C (C < N)

w = n (C 3= N)
(9)

where N is the appropriate threshold abundance (in
final raised units) above which subsampling will have
been implemented.

Clearly, such a weighting scheme accords with com-
monsense, and interpolates nicely between the two
extreme regimes outline above - it could be described
as "asymptotically sensible". Note that the scaling of
the weights is completely arbitrary and of no import-
ance - there is no need to agonize over the correct
constant of proportionality. Also, zero catches get zero
weight, removing a perennial problem with log-
arithmically transformed data.

The remaining problem is the choice of an appropriate
value of n. This is tricky. The true value relates to
something like the probable number of average sized
fish in a box, basket, or bucket, within a factor of a few,
but is thereafter usually veiled in a mist of raising factors
and combinations of data sets. In practice, we suggest
that it should be sufficient to guess a value which sep-
arates abundant age groups from scarce ones - some-
thing like the median of the data as presented, as an
order-of-magnitude estimate. The abundance estimates
usually span several orders of magnitude at least, so this
should be sufficient.

Finally, we remark that this weighting is no more
than an embellishment, and by no means a necessary
part of the model. We feel that it is a useful practical
procedure, but it may be omitted if it offends. However,
one should then choose carefully between omitting it
by letting N tend to zero (thereby accepting a constant
coefficient of variation), or letting it tend to infinity
(thereby accepting a variance proportional to the
mean)!

4. Fitting using log-catch ratios
The model may be fitted using a general purpose stat-
istical package, or standard subroutinesfor least squares
solutions to overdetermined linear equations. In
addition, it may be fitted using row and column sum-
mations of log-catch ratios, in the same way that
ANOVA models may be fitted using row and column
means, provided that the catch-at-age matrix is
complete. A similar procedure is used by Separable
VPA (Pope and Shepherd, 1982) which is closely
related.
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Consider the log-catch ratio

(y,a) = ln(Cy.)- ln(Cy + , . . + l)

= fv — fv + | + Sa — Sa + [ (10)

since the terms involving the mean and the year-class
effect cancel out. Then

sumy{d(y,a)} = f, - fn + (n - l)(sa - s, + l) (11)

where n is the number of years in the data set. And

suma{d(y,a)} = (m - l)(fy - fy + l) + s, - sm (12)

However, we require fn — f| = (n — l)g to control the
indeterminacy and thus

i = sa - sumy{d(y,

and

fy + , = fy - [suma{d(y, a)} - s, + sm]/(m -

(13)

(14)

Given that s, = 0, because of the choice of nor-
malization, and g is specified, Equation (13) may be
applied repeatedly to determine all the other values of
sa including sm, and then Equation (14) may similarly
be used repeatedly to determine all the values of fy,
starting from f| = 0.

This simple procedure takes no account of any weight-
ing of the residuals in the fitting process, but has the
advantage that the computation is simple enough to be
carried out using a spreadsheet program if desired.
The lack of weighting has only a small effect on the
calculation of f and s, because these are determined
mainly by ratios of catches for adjacent ages and years,
which tend to have similar weights. This is not so when
one comes to determine the values of rk which depend
on a wide range of ages and years. The value of rk which

minimizes the weighted sum of squares of log residuals
between estimated and observed catches, i.e.

SSQ = ZZWya{ln Cya - u - rk - f, - sa}
2

is easily shown to be

rk = ZWya(ln Cya - u - fv - sa)/ZWva

(15)

(16)

where the summation extends over all age groups in
each cohort, and the weights are those given by
Equation (9). The constant u is chosen so that r, = 0, in
accordance with the normalization condition. This is
easily done by calculating the rk using Equation (16)
with |i set to zero, and then setting u = r,, and subtracting
|x from all the values of rk. Finally, the sum of squares
of residuals (15) may be calculated and used to give an
estimate of the lack of fit of the model to the data

CV = V(SSQ/S2Wva) (17)

which would be an estimate of the coefficient of vari-
ation of the data if all the lack of fit was due to measure-
ment error and none to model and process error (it
is therefore an upper limit for the measurement (sam-
pling) error). The standard errors of the parameters can
also be estimated together with their covariance matrix,
but the interpretation of these is not straightforward
and will be dealt with elsewhere (Nicholson, to appear).

5. Catch forecast
The estimated parameters of the model may be used to
forecast future catches, using the model equation for
year y = n + 1, n + 2, etc.

rk} (18)

Table 1. North Sea cod: total international catch numbers: 1976-1985.

Year
Age

1
2
3
4
5
6
7
8
9
10
11
12
13

1

5 145
90 263
16 485
6 721
1 661
2 746
836
120
59
57
22
16
1

2

58 279
45 947
22 823
4 300
2 099
757

1029
335
238
23
9
43
35

3

26 368
156 479
13 358
8 386
2 850
980
383
376
141
33
15
22
2

4

35 319
86 133
39 843
3 584
3 188
713
371
131
145
39
2
13
0

5

59 344
98 856
29 578
9 988
1595
1 164
411
191
71
54
18
6
0

6

20 416
177 309
26 739
7 352
3 829
757
571
135
65
37
17
1
3

7

61 191
56 340
50 002
6 639
3 002
1 769
333
204
68
23
10
5
0

8

23 395
118144
16 932
9 869
2 584
1 235
575
142
83
22
16
2
0

9

62 720
60 215
27 801
3 493
3 126
956
413
233
57
43
13
4
0

10

8 086
109 944
15 909
6 745
1 179
1 104
319
158
70
12
18
2
0
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To complete these estimates, values of fy and rk must
be supplied for any future years and year classes, as for
any catch forecast - and, similarly, one or more of the
most recent estimates of year-class strength (those based
on only a few poorly sampled age groups) may need
to be replaced by independent estimates, based for
example on survey indices, or by a recent average value.

Table 2. Analysis by SRMCM2 of North Sea cod: total inter-
national catch numbers: 1976-1985. Delta year effect = 0.0;
CV = 0.205; Constant = 10.22.

Level

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Mean year-class

Assumptions for

1

Year

0.00
0.38
0.41
0.05
0.13
0.03
0.00

effect = 0

Estimated

Age

0.00
1.25

-0.02
-1.32
-2.19
-3.10
-3.89
-4.85
-5.43
-6.56
-7.84
-8.03
-9.53

.09

catch forecast

Year effects
Year
Effect

Year-class effects
Year class
Effect

8
0.00

20
0.10

effects

Year class

0.00
1.91
1.01
0.33

-0.50
-0.04

0.24
0.58

-0.69
-0.41
-0.62
-0.21
-1.07

0.25
-0.14
-0.01

0.62
-0.43

0.80

9
0.00

21
0.10

When fishing mortality is high, or recruitment is highly
variable, this will be a crucial part of the calculation, as
it is for any catch forecast (see, for example, Shepherd
(1991)). If an average is used, the most recent values
should of course be excluded, because they are based
on a few points and have high standard errors. The
values of fy required must as usual be based on assump-
tions about the level of fishing mortality. These again
are relative values, but since such assumed values are
usually based on recent values increased or decreased
appropriately, this usually causes no difficulty.

The forecasts obtained are of catch-at-age, as for a
standard age-based catch forecast, and may be con-
verted to catch weights by forming sums of products with
appropriate weight-at-age estimates. It is interesting to
note that the forecast is obtained without VPA-like
retrospective estimation of fishing mortality or absolute
population size, and is based entirely on fitted (and
therefore somewhat averaged) parameters and not at
all on raw data, and should thus be relatively insensitive
to sampling errors in recent catch data.

6. Example: Applications to real data
An example of the application of the model to a survey
data set was given by Shepherd and Nicholson (1986),
and real-life applications to both survey and commercial
data have been given by Cook (1988) and Borges (1990).
Cook's application to a very heterogeneous data set
with missing data is particularly interesting.

An application to a standard total international com-
mercial data set is given here. The data (for North Sea
cod from 1976 to 1985, taken from Anon. (1986)) are
given in Table 1, and the results, assuming no trend of
year effect in Table 2, and assuming an increase of 0.1
per year (referred to as "delta year effect") in the
logarithmic year effect in Table 3. The results for the
year, year class, and age effects for both assumptions
are given in Figures 1 to 3: these make it clear that the
only difference between the two interpretations is an

Age

1
2
3
4
5
6
7
8
9

10
11
12
13

1

9 358.5
77 809.3
14512.4
4 857.6
1 541.6
2 196.2

711.1
204.2
71.6
53.1
28.7
59.3

1.0

2

51 393.9
47 762.7
31 949.0

5 755.0
2 982.9

907.8
1 464.1

396.3
167.0
33.4
20.9
34.9
18.8

Fitted catch numbers

3

36010.4
184 675.1

13 808.5
8 921.2
2 488.1
1 236.8

425.7
574.5
227.9
55.1
8.8

17.6
7.3

4

28 709.8
88 009.4
36314.5
2621.9
2 623.1

701.3
394.3
113.0
224.6
51.0

9.9
4.7
1.9

5

57 957.5
108512.9
26 763.7
10 665.9
1 192.0
1 144.0

345.8
162.3
68.1
78.2
14.6
8.7
0.4

6

18 422.8
182 462.3
27 486.3
6 547.3
4 040.3

432.6
470.0
118.4
81.5
19.2
18.8
10.6

1.0

7

61 191.0
62 435.2
49 752.2

7 238.3
2 669.6
1 580.1

191.0
173.5
63.9
24.9
4.4

14.9
1.5

Forecast

8

30 291.6
213561.7

17 532.0
13 493.6
3 039.5
1 075.0

720.0
72.2
96.7
20.0
6.2
3.5
2.6

9

30 291.6
105 721.5
59 970.4
4 754.5
5 666.7
1224.1

489.7
274.1
40.0
30.7

4.8
4.9
0.0
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Table 3. Analysis by SRMCM2 of North Sea cod: total inter-
national catch numbers: 1976-1985. Delta year effect = 0.1;
CV = 0.205; Constant = 11.42.

Estimated effects

Level Year Age Year class

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0.00
0.48
0.61
0.35
0.53
0.53
0.60

0.00
1.15

-0.22
-1.62
-2.59
-3.60
-4.49
-5.55
-6.23
-7.46
-8.84
-9.13

-10.73

Mean year-class effect = -0.81

Assumptions for catch forecast

Year effects
Year 8
Effect 0.60

Year-class effects
Year-class
Effect

0.00
1.81
0.81
0.03

-0.90
-0.54
-0.36
-0.12
-1.49
-1.31
-1.62
-1.31
-2.27
-1.05
-1.54
-1.51
-0.98
-2.13
-1.00

20
-0.80

9
0.60

21
-0.80

the short-term fluctuations are closely paralleled after
year 2 (especially for delta year effect (DYE) = 0.1),
but the overall trend is more closely matched for DYE =
0.0. The recruitment pattern is very closely reproduced,
with the overall trend again more closely matching that
for DYE = 0.0. The corrected catch curves (Fig. 3) are
remarkable for their smoothness and systematic pattern,
which are in no way enforced by the method. The slope
of the right-hand limb of the curve for DYE = 0.0
corresponds to a total mortality of 1.0 over the age
range 2 to 11, with a suggestion of a higher value of
about 1.3 for ages 2 and 3. This is close to the con-
ventional interpretation (Anon., 1988).

The data have in fact been fitted for seven years only
(1976 to 1982), in order that the forecast catch-at-age
may be compared with the out-turn for subsequent
years. The fitted and forecast values of catch-at-age are
given in Tables 2 and 3, for a simple forecast assuming
that the year effect remains at its most recent level (i.e.
a status quo assumption) and that year-class strength is
equal to the mean (including the most recent ones even
though these have high standard errors).

It is easily seen that the fitted values are, as expected,
identical for the two assumptions. The forecasts differ,
however, particularly for the younger age groups. The
results are plotted in Figure 4 for 1983, together with
the observed catch-at-age for that year (Anon., 1988).
For ages greater than 3 the agreement is excellent, and
extends through to age 7 and beyond, as may be seen

Fitted catch numbers Forecast

Age 1 8

1
2
3
4
5
6
7
8
9

10
11
12
13

9 358.5
77 809.3
14512.4
4 857.6
1541.6
2 196.2

711.1
204.2

71.6
53.1
28.7
59.3

1.0

51 393.9
47 762.8
31 949.0
5 755.0
2 982.9

907.8
1 464.1

396.3
167.0
33.4
20.9
34.9
18.8

36 010.5
184 675.1

13 808.5
8921.2
2 488.1
1 236.8

425.7
574.5
227.9

55.1
8.8

17.6
7.3

28 709.8
88 009.4
36314.5
2621.9
2 623.1

701.3
394.3
113.0
224.6
51.0
9.9
4.7
1.9

57 957.6
108512.9
26 763.7
10 665.9
1 192.0
1 144.0
345.8
162.3
68.1
78.2
14.6
8.7
0.4

18422.8
182 462.5
27 486.3
6547.3
4 040.3

432.6
470.0
118.4
81.5
19.2
18.8
10.6
1.0

61 191.0
62 435.2
49 752.2
7 238.3
2 669.6
1 580.1

191.0
173.5
63.9
24.9
4.4

14.9
1.5

74 506.7
193 238.6

15 863.5
12 209.4
2 750.2

972.6
651.4

65.3
87.4
18.0
5.5
3.1

74 506.7
235 288.6

49 099.5
3 892.5
4 639.4
1 002.0

400.7
224.2
32.6
24.9
3.8
3.9

-0.2

increasing additive offset as the ages, years, and year
classes progress: the residual CV is identical at 0.205.
The relative overall fishing mortality and year-class
strength, as subsequently estimated by VPA (Anon.,
1988), are also plotted in Figures 1 and 2 for comparison.
It is clear that the interpretation is very close to that
obtained by more conventional methods. The year
effects are small (relative to the residual error of 0.205):

in the logarithmic plot (Fig. 4a). For catch forecast
purposes, the absolute numbers as displayed in Figure
4(b) are more significant, however. The agreement for
ages 3 to 5 is excellent. That for age 2 is less satisfactory,
because the estimates of year-class strength are deter-
mined solely by one data point (for the youngest age
group). The estimates for the newly recruiting age group
1 are poor, since the estimates are based on averages
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North Sea Cod
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Figure 1. Estimated year effects for two attempts at fitting total international catch data for North Sea cod, with the logarithm
of mean standardized fishing mortality from VPA, for delta year effect (DYE) equal to zero and 0.1 per year.

- 3

North Sea Cod
Multiplicative Model Analysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 2. Estimated year-class effects and logarithm of standardized recruitment for the same analyses as for Figure 1.
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DYE=0.1

DYE=0.0

10 11 12 13

Aae

Figure 3. Estimated age effects for the same analyses as for Figure 1.

only. Clearly, it would in practice be necessary to esti-
mate the size of recruiting year classes from a careful
analysis of pre-recruit data, as usual.

7. Discussion
The distinctive features of the method are that (unlike
VPA) it allows for the possibilities of sampling error
in catch-at-age data, and may be applied to data for
individual fleets as well as to total international data. It
also permits estimation of (relative) year-class strength
for any cohort represented in the data, and the steady-
state age composition (i.e. an average catch curve cor-
rected for the effects of varying recruitment and fishing
mortality). This may be used to estimate total mor-
talities directly, and is the necessary starting point for
the method of Jones (1961), which permits the usual
long-term yield and biomass calculations to be carried
out very simply. In addition, however, since year-class
effect is also estimated, the parameters may be used
(with an appropriate assumption about future year-class
strengths and fishing mortality - e.g. that any trends
detected will continue) to construct short-term catch
forecasts as well. In this context the method is essentially
a generalization of the leapfrog and ANOVA methods
of Pope (1983), but uses the data more efficiently and
should be more stable, since recent catch data are not
taken to be error-free (except for the last year class
represented).

It is interesting to note that the method has only
one degree of indeterminacy, compared with separable
VPA, which has two. This is because the multiplicative
model only estimates its factors relatively, whilst sep-
arable VPA uses the essential additive feature of VPA
(that a sum of catches is a dimensional estimate of
population) to arrive at absolute estimates of population
and fishing mortality. If a pseudocohort analysis of the
age effect is made, to obtain absolute estimates of fish-
ing mortality, then the extra level of indeterminacy
re-appears in the form of the terminal F for the
pseudocohort.

The use of a multiplicative model may be regarded
as intermediate between a simple catch-curve analy-
sis and a VPA. The former assumes that year-class
strength, fishing mortality, and exploitation pattern are
all constant (and therefore well estimated by their aver-
ages). Such an analysis is therefore very parsimonious -
perhaps dangerously so, particularly in respect of vary-
ing year-class strength. This particular assumption is
relaxed by the multiplicative model, and the first-order
effects of varying partial fishing mortality are also
allowed for by the year effect (although the second-
order effect due to varying total F expressed by the
year/age interaction is still ignored). In a full VPA,
all these parameters (year-class strength, exploitation
pattern, fishing mortality) are allowed to vary
arbitrarily, at the expense of severe indeterminacy,
associated with no statistical degrees of freedom.
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13 -i
Multiplicative Model Analysis

Actual

DYE=0.1

DYE=0.0

North Sea Cod : Forecast Catch Numbers
Multiplicative Model Analysis

Actual
250000 -i

200000 -

150000 -

100000-

50000 •

DYE=0.1

DYE=0.0

3

Age

Figure 4. (a) Forecast of catch numbers for North Sea cod using the multiplicative model, compared with the actual catches, on
a logarithmic scale, (b) As (a), but on a linear scale, to emphasize the age groups of greatest practical importance.

There is therefore a clear trade-off between the gen-
erality and plausibility of the model, and the inde-
terminacy and lack of stability of the estimates. The
multiplicative model, like separable VPA to which it is
closely related, is an attempt to find a middle way, with
a reasonably general (and plausible) model, and only

modest indeterminacy. The choice between the multi-
plicative model and separable VPA then depends on
whether or not total catch data are available, and
whether or not absolute estimates of population size
and fishing mortality are required. Separable VPA can
provide the latter (given total catch data), but only at
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the expense of one extra indeterminate parameter, and
inability to use standard statistical software. The most
appropriate choice depends on the circumstances.

The other main point is that any of the parsimonious
models (the catch-curve corresponds to fitting the main
age effect only) leave an estimate of the residual error,
and some degrees of freedom, so that some estimate of
the quality of the fit, and the precision of the parameters
estimated, can be made. These features are absent
with pure VPA, which trades them for a plausible but
excessively general model.

The precision of the method used for catch fore-
casting has been tested by simulation studies (Sun and
Shepherd, 1991) and found to be intermediate between
that of traditional analytical methods and very simple
ones (Shepherd, 1991), as might be expected, and it
may therefore be useful when only a very short time
series (say, three to five years) of data is available, so
that more traditional methods cannot realistically be
applied.

In addition, however, the method may be used rather
generally for the analysis of incomplete data, survey
data, and even weight-at-age data, in a rather straight-
forward and informative way, and may therefore also
be applicable to more diverse data sets.

Acknowledgements
The authors would like to thank the editor and an
unnamed referee for their constructive criticism of
earlier drafts of this paper.

References
Anon. 1986. Report of the North Sea Roundfish Working

Group. ICES CM 1986/Assess: 16.

Anon. 1988. Report of the North Sea Roundfish Working
Group. ICES CM 1988/Assess: 21.

Baker, R. J.. and Nelder. J. A. 1978. The GLIM system,
Release 3. Generalized Linear Interactive Modelling
Manual. Numerical Algorithms Group. Oxford.

Borges, M. de F. 1990. Multiplicative catch-at-age analysis of
scad (Trachurus trachurus) from western Iberian waters.
Fisheries Res.

Cook, R. M. 1988. Sections 16.5 and 16.6, pp. 23-24 in Report
of the North Sea Roundfish Working Group. ICES CM
1988/Assess: 21.

Deriso, R. B., Quinn. T. J. (II). and Neal. P. R. 1985. Catch-
at-age analysis with auxiliary information. Can. J. Fish.
Aquat. Sci., 42: 815-824.

Fournier, D., and Archibald, C. P. 1982. A general theory for
analysing catch-at-age data. Can. J. Fish. Aquat. Sci., 39:
1195-1207.

Gilchrist, W. 1984. Statistical modelling. J. Wiley, Chichester/
New York. 339 pp.

Gulland.J. A. 1983. Fish stock assessment: a manual of basic
methods. Wiley-Interscience, Chichester/New York. 223
pp.

Jones, R. 1961. The assessment of long-term effects of changes
in gear selectivity and fishing effort. Marine Research, No.
2 (DAFS, Edinburgh). 19 pp.

Pope, J. G. 1979. Population dynamics and management:
current status and future trends. Investigacion Pesquera, 43:
199-221.

Pope, J. G. 1983. Analogies to the status quo TACs: their
nature and variance. Can. Spec. Publ. Fish. Aquat. Sci., 66:
99-113.

Pope, J. G., and Shepherd, J. G. 1982. A simple method for
the consistent interpretation of catch-at-age data. J. Cons,
int. Explor. Mer, 40: 176-184.

Pope, J. G., and Stokes, T. K. 1989. The use of multiplicative
models for separable VPA, integrated analysis and the gen-
eral VPA tuning problem. Am. Fish. Soc. Symp.,6: 92-101.

Shepherd, J. G. 1990. Simple methods for short-term fore-
casting of catch and biomass. J. Cons. int. Explor. Mer
(submitted).

Shepherd, J. G., and Nicholson, M. D. 1986. Use and abuse
of multiplicative models in the analysis of fish catch-at-age
data. The Statistician, 35: 221-228.

Sun, M., and Shepherd, J. G. 1991. Simulation testing of the
performance methods for fish stock assessment and short-
term catch forecasts. To appear.

294

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/47/3/284/601167 by guest on 23 April 2024


