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Estimating mortality rates from tag recoveries: incorporating
over-dispersion, correlation, and change points
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In this article we studied the maximum-likelihocd estimation of fishing and natural
mortality rates with a change point from time series of tag recovery data. Qur
slatistical models consider the change in the mortality rates and take account of
over-dispersion and correlation involved in the recovery data. First, we considered a
partial-likelihood approach for the multinomial model. Eaplicit estimators and
variances of the fishing morality rates were dernived. However, the recovery data are
usually over-dispersed, mainly because of aggregation in the population. For this
problem. we considered the normal distribution model as an approximation of the
Dirichlet compound multinomial distribution. When we compare the viability of
different reared groups, it is important to note that the estimated parameters are
correlited, even il they were oblained separalely. This is because those groups were
exposed to the same environments and therefore the resultant recovery data have
correlations. We constructed a joint-likelihood function, taking account of the
correlations among the (ime series of recoveries, Two groups of hatchery-reared red
seabream were analyzed to demonstrate the methodology.
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Introduction

Coastal fishery stock enhancement programs by means
of hatchery releases have been actively conducted in
Japan, Evaluating the effectiveness of the enhancement
programs is important. We can evaluate the impact of
stocking by three measures: recovery rate, the mark ratio
(ratio of marked fish stocked to the total number of
landings), and survival rate. The recovery rate 1s the only
measure for direct evaluation of the eflectiveness. The
method for direct estimation of the recovery rate by
two-stage sampling survey of commercial landings in
fish markets was proposed (Kitada er al, 1992). The
mark ratio estimated in Kitada er af. (1992) is a relative
measure Lo evaluate the ratio of released fish in the wild
population. On the other hand, it is particularly impor-
tant for the improvement of the quality of the hatchery
to monitor the mortality rates of fingerlings for the

1054-3139/94/030241 + 11 308.00/0

periad soon afler release, These mortality rates depend
on stocking variables such as quality, size. number, time
or site of stocking, and the type of tags.

In fisherics, mortality can be atiributed to either
fishing or natural causes. These are usually called fishing
and natural mortality rates. We are able to know the
capture likelihood of fingerlings from the fishing mor-
tality rate. and the viability from the natural mortality
rate. The natural mortality rate of released fingerlings is
expected to be quite high in the short period soon after
release, but settle down after a few days. If we know the
length of this critical period, we can develop effective
methods of conservation for the released fingerlings. In
this study we consider the estimation of fish mortality
rates with some change-point alternatives against
constant mortality rates.

The statistical mode! for estimating the fishing and
natural mortality rates has been based on the
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multinomial distribution (Gulland. 1955). First, we
considered a partial-likelihood approach for the
multinomial model. Explicit estimators and variances of
the fishing mortality rates are derived here. However, the
multinomial model is invalid when the recovery data are
over-dispersed. which is common in field experiments
mainly because of clustering in the population. Taking
the over-disperston into account, we considered the
normal distribution model as an approximation of
the Dirichlet compound multinomial distribution, and
studied the effect of the over-dispersion on the estimates.

It is often also important to compare the mortality
rates between the different release groups. We can get a
high detection power of the difference in the mortality
rates by releasing the different groups of fingerlings into
the same area at the same time. However, the estimalted
mortality rates are correlated because the recovery data
between different groups are correlated. Taking their
correlation into account, we proposed simultaneous
estimation of the moriality rates from tag recoveries of
two groups. As an example, we applied our methods to
the case of red seabream, Pagrus major, in the Seto
Inland Sea. The change-point mortality rates and the
quality difference of fingerlings between two hatcheries
were investigated. The x~ test under a 2 x 2 contingency
table for the hypothesis of the same recovery rates of
two groups is also disussed.

Multinomial model and a change-point
alternative

Suppose that N tagged fish are released at time t=0,
total n fish recaptured at known times t;, s, .. ..t P, is
the probability that an individual tagged fish surviving
until t; _ , will be recaptured at ith time intervat {t; _ ,, t).
and the number of tagged fish actually captured at this
time interval is n,. 1t is assumed that all tagged fish that
are recovered are reported. If the wild and tagged fish
are randomly distributed, the likelihood of the recover-
ies is given by (Seber, 1982):

L(F’ Zlnl’ L} nk+])
k i—1 ,
:H (N_ §J=I n_,) plrg, ™
o N! k

k N-=-n
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where p,(=1—q,) is the probability of an individual
being caught in the ith interval, and is given by:

p,:P,."E.'(p= - Ll Z(u)du}. (2

The general form for P, is given by:

P.= [l' p(t)dt, (3}

L
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where p(t) is the instantaneous rate of recapture; that is:

p(t)=F(t)exp{ - [ Z(u)du] . (4)
4]

F(t) is the fishing mortality rate and Zit)=F(t)+M{t),
where Z(t) and M(t) are the total and natural mortality
rates. These rates are all instantaneous. Many methods
for estimating the fishing and natural mortality rates
have been developed by using this full-likelihood func-
tion as follows. Gulland (1955) derived the explicit
estimators of the constant mortality rates for exact-
time and uncensored recovery data. Paulik (1963) also
considered estimation of constant mortality rates for
censored data which was ungrouped or grouped by
time intervals. Kitahara e/ af (1986) discussed the
estimation of the constant fishing mortality rate with a
few closed fishing seasons. Hearn er al’s method
{1987) is for exact-time data and has no restriction on
the fishing mortality rate when the complete tagging
experiment is assumed. Leigh (1988) derived the vari-
ance of Hearn et al's natural mortality estimator.
Farebrother (1988) considered estimation when the
fishing and natural mortality rates are some function
of time.

The problem of a change-point hazard rate has
been studied in the framework of life testing {Anderson
and Senthilselvan, 1982; Matthews and Farewell,
1982, Nguyen er al, 1984). The hazard function is
defined as:

Z, O=t=uy)
Z(t)={ : (3)

ZZ ([ > ‘r)

where (, indicates a change point and Z,, Z, are hazard
rates. This is called a change-point hazard rate medel
and is often applied to cancer mortality studies. The
hazard rates are supposed to be time-varying but it is
difficult to specify the functional forms. In the fishery
context, the step function model can be a good first
approximation of the time-varying hazard tunction,
considering the variability of data. In our case, there are
two mortality rates; the natural mortality rate, M. and
the fishing mortality rate, F. We define the following
three models.

Model 1: Z=F+Mi0 <t <L)

For Model 1. p(1) and P, is given by:

p(=Fe™ ™, (6)
F
= len B me T, 7

Model 2: Z,=F,+M (0 <t <t)), Z,=F,+M.(1 <t <ty).
For Model 2, p(t) and P, is given by:

Fe *t G=t<t)
p(t)={ . (8)

—Zpy—Zate—1,
er It t ) (11<t < [k)
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Model 3: Z =F+M | (0<t<t ), Z,=F+M{t <1<t
For Model 3, p(t) and P; are given by expressions
similar 10 Equations (8) and (9).

Partial likelihood for multinomial model

First, we consider the approach for estimating Z by the
partial likelihood (Cox, 1975). The merit of using this
approach is its short computation time in our context,
When there are many models 1o compare, such as the
change-point alternatives, the CPU time becomes criti-
cal. The likelihood is decomposed into two factors as:

L(ZFln,. ....n.. )=L(ZIn,, ...,

where L, {Z|n,. .. ., n,,n) is the conditional likelihood of
n,, ... b given the total recovery n, and L, is the
residual.

The information on the total mortality rate is included
mainfy in the conditional likelihood L,, whereas the
residual likelihood L, has the most information on the
fishing mortality. Hence, we have the following two-step
procedure: (1) to estimate Z maximizing L,: and (2) to
obtain estimates of F maximizing L. substituting the
estimales of Z. We can estimate Z only from recapture
times where N is not reguired. The most important
reason for using methods that estimate Z only is that
they are not sensitive Lo constant rates of non-reporting,
death on release, and the like.

For Model 1, we have:

llJn,-!

L,= W{J’ p(t)dl} {l*—.’:p(t)dt}N_n,(IE)

where Q;

ny.n)- Ly(Z,Fin). (10)

(n

1k
=Pi/[ p(t)dt. As the integral of the instanta-
-0

neous mottality rate is given by:

" F
[ PL= (1 =™ %), (13)

-0

we have the conditional probability recaptured at the ith
interval as:

—Zy . -7,

e

Q.=

- ¢

(1<i<k). (14)
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The MLE of Z exists if and only if n,<n and X¥_,
n(t,_ (+t)<nr, and is obtained as the unique positive
root of the equation (Kulldortf, 1961):
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Hence, we have:
nZ
= (amn
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(Kitada and Hirano, 1987).

For the change-point alternatives, we can use the
partial-likelihood approach only in the case where the
fishing mortality rate and the natural mortality rate have
the same change point. Estimation for Model 2 and
asymptolic variances are given in the Appendix.

Over-dispersion and correlation

Use of the multinomial distribution assumes that data
are laken by simple random sampling. However, many
fish species are distributed in patches which are difTer-
entially harvested. The recoveries of these species
therefore may be over-dispersed. The multinomial dis-
tribution model is expected to be robust against over-
dispersion, but the standard errors are negatively
biased. When we test the null hypotheses or when we
compare some statistical models, we tend to select
too-complicated models. The Dirichlet compound
multinomial distribution (Johnson and Kotz, 1969) is
considered as a generalization of the multinomial distri-
bution which takes account of over-dispersion. The
means, variances, and covariances of n(i=1. ..., k) of
this distribution are E[n]=NP,, V[n|=o*NP,(1 — P,) and
Cov[n,.nj]= —a” NPIPJ, where o is the dispersion
parameter. Here. we consider a normal approximation
of the model.

From Lhe first expression of Equation {1), we get the
following normal distribution model.

1

L(n| ---- nk*') (2n G—)“Z( k =1 mPQ)”z
(18)
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where m;=N — pX

=11
Equation (1). we get:

From the second expression of



I

L{n,, )=
(21,1. N 0.2)1:/2 l::l P. 172
(IF=te) (19)
[ 1 (n,— N Py
X exp — ——"——]
2 i1 N PiO"

where n,,,=N-n. P, =1 - 2Z%_|P,. These likeli-
hoods are asymptotically equivalent. Here, we use the
later model. We treat o~ as an active parameter. By
substituting P, of Models 1. 2, and 3 to Equation (19),
we obtain the likelihood function for the change-point
alternatives against the constant mortality model. We
can estimate paramelers under various given change
points, and select the best-fit model by using the Akaike
information criterion (AlC;, Akaike, 1973); AIC=—-2
log T.+2s. where s is the number of free parameters. We
take the change point of the best-fit model as our final
estimate.
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It is important to compare the viability of several
groups of fingerlings. Besides experimental studies in
laboratories. the comparison in the field is indispensable.
A possible statistical procedure of detecting the differ-
ence from the recoveries would be to see whether
eslimated mortality rates are significantly different or
not. However, the different groups of fingerlings were
released simultaneously, at the same place and the same
time, to compare the survival rates under the same
environment. They would make patches, and it is
expected that those patches of different groups are
spatially correlated. Hence, the recovery data of these
groups may be correlated.

Let n'"', n‘® be the recovery dala of two release
groups, and 0,, 8, be the vectors representing their
mortality rates. Even if &, 8, are estimated separately
from each of the recovery data, the estimates 8,=0,(n'")
and 0,=0,(n'?) are correlated, since the data n‘!? and n'®
are not independent.

Taking account of the correlation between the recoveries of the two groups. the conditional likelihood of

n,=(n""n*) given n,, . .., n, _, is expressed by:

]
Linm,, ..

M )= 2 {mPmPpipEgg

@m0y

S S he

(p(1) (ne2)
mip, ) (n]

O1)%2)
{20}
(2) 21)
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where suffix (1), (2). and j refer to the release group. and p is the correlation coefficient. From this conditional

likelihood, we obtain the joint-likelihood function:

1
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Maximizing the full-likelihood function numericaily.
we can obtain estimates of mortality rates, p, and o?,
simultaneously. Standard errors of these parameters

except the change point are also obtained from the
Hessian matrix numerically. The precision of the
change-point estimate could be a topic for further
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Table 1. Tapg recoveries {rom two groups of red seabreams tagged with Red and White tags. The

number released for each group is 20 000.

Number of recoveries

Number of recoveries

Days afier release Red White Duays after releuse Red White
1 338 266 17 74 64
2 274 194 18 39 62
3 193 205 19 8 14
4 296 308 20 82 78
5 169 183 21 4 3
6 176 170 22 26 19
7 67 45 23 25 17
3 9% 102 24 35 38
9 14 14 25 9 7

10 71 71 2 8 14

L1 28 26 27 15 21

12 76 74 28 17 i9

13 82 77 29 4 2

14 5 4 1 19 25

15 124 125

16 44 47 Tatal 2422 2294

discussion. Studies on confidence limits of these kind of
models have started in phylogenic analyses using boot-
strap methods (Felsenstein. [985).

The case of red seabream

Red seabream is an important coastal fishery resource
and its annual catch in Japan was 13 734 tons in 1990.
The demand for red seabream is high, whereas the
annual catch of red seabream has been gradually
decreasing. Aquaculture ol red seabream has made rapid
progress and the annual production reached 31 568 tons
in 1992, However, few suitable sites for aquaculture
remain around the coast of Japan. Red seabream is
therefore one of the main species of the Japanese stock
enhancement programs for coustal marine resources.
Our cuse study deals with the two releases of red
seabream conducted in the same field at the same time.
The objective of this experiment was to compare the
maortality rates of the two groups reared by different
methods. We prepured two groups of fingerlings. They
had been born from the same adult fish but reared in
different hatcheries. We attached red tags to one group
and white ones to the other group (henceforth we call
them Red and White). The mean size was 10 cm in total
length for each group, respectively. We kept tagged fish
in net cages over two nights before release, and dead or
weakened fingerlings were removed. We released 20 000
tagged fish of Red and White, respectively. in the fishing
ground of commercial trawlers in the Seto Inland Sea on
30 September 1989. We conducted the releuse while
sailing our bout to scatter the fingerlings throughout
the area. The Red and White tagged fish were mixed
on release. Before the release we asked fishermen's

co-operatives who fished around the release site for their
co-operation in reporting recoveries.

The number ol recoveries gradually decreased as the
water temperature dropped. hence we censored the
recovery data at the 30th day. The 1otal recovery of Red
was 2422 and that of White was 2294 (Table ). The
recovery rates were 0.121 and 0.115, respectively. The
declining trends in recoveries with time were very similar
for Red and White tags. Fitting the negative exponential
curves to the recovery data, the variation of the recovery
was lurge {Fig. 1). We can see that the recovery declines
rapidly soon after release, but after some time it becones
stable. Hence, we analyze the model with a change-point
alternative,

First. we analyzed the recovery data of Red using the
multinomial model. The estimates and their standard
errors from the full likelthood and the conditional
likelihood took the same values, although the stundard
errors of F, were slightly different (Table 2). Comparing
the ATC values [or model 1, model 2. and model 3 under
various change points, the model 2 under the change
point of 14 days was selected (Fig. 2). On the other
hand. the partial log-likelihood values ( — Log L) gen-
erated a pattern similar to the AIC values of the full
likelihood for model 2 (Figs 2, 3). The CPU time of
calculation of the partial-likelihood model is much
shorter than that of the full-likelihood model. although
we have to evaluate the covariance between Z, estimated
from the partial likelihood L, and F estimated from
the residual likelihood L, to obtain the wvariance of
M. Under the multinomial distribution, the ¥ test for
goodness-of-fit rejected the hypothesis even on the best-
fit model. This is because the variability of the recovery
data was larger than expected assuming simple random
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Table 2. Estimates and standard errors of parameters of Red
tags based on the full likelihood and the partial likelihood of
the multinomial model.

Full likelihood Partial likelihood
Model Estimate S.E. Estimate S.E.
| Z 0.1196 0.0031 01196 0.0031
F 0.0149 0.0004 0.014% 0.0004
M 0.1047 0.0028 0.1047
2 t 14 14
Z, 0.1862 0.0067 0.1862 0.0067
Z, 0.1554 0.0108 0.1554 4.0108
F, 0.0190 0.0007 0.0190 (.0007
F. 0.0613 0.0071 0.0613 {1.0065
M, 0.1672 0.0061 0.1672
M, 0.0940 0.0098 0.0940

sampling rather than because the fitted models were all
too incomplete to explain the data. We obtained the

Change point (day)

Figure 3. The behavior of the partial log likelihood of Red and
White for model 2 of the multinomial model.

change-point estimate for Red as 14, but some other
local minimums of the AlC value existed (Fig. 2). We
could not clearly detect the minimum that shows the
change point because the variability of the recovery data
was underestimated.

Hence, we analyzed the data using the normal
approximation model to take over-dispersion into
account. Before using this model, we tested the goodness
of the approximation for the multinomial model. Under
N=20000, Z=0.01, F=0.02. k=30, we generated the
recovery data of multinomial random variables. We
gstimated Z and F by Equations (1) and (19) and
calcnlated means and standard errors of the parameters
through 100 simulations. The means and standard errors
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Figure 4. The behavior of the akaile information criterion
{AIC) for Red 1ag recoverics for model 1, model 2, and model
3 of the normal approximation modet of 6”>1.

Table 3. Estimates and standard errors for fish with Red tags

for model 2 of 6°= | and o?>1.

o’=1 a->1
Modei Estimate S.E. Estimate S.E.
1, 14 14
Z, 0.1666 0.0062 0.1757 0.0238
Z,; 0.1489 0.0094 0.1754 Q355
F, 0.0183 0.0006 0.0183 0.0025
F. 0.0511 0.06154 0.0563 (.0230
M, 0.1484 0.0057 0.1574 0.0219
M. 0.0978 0.0085 0.119} 0.0324
c* 14.73 416
AIC 589.09 291.80

for Z and F for the multinomial and its approximation
were equivalent.

Using the normal distribution model with o7, the
curve of the AIC value became smoother, and the clear
minimum of the AIC value was observed at the 14th day
{(Fig. 4). The ALC value of the best-fit model with g™> |
was very small compared with the model with o’=1
{Table 3). Point estimates of parameters took almost the
same values for both models, but standard errors were
guite large taking into account the over-dispersion
(Table 3). This indicates that the fluctuation of the
recovery data was _/14.73 times larger than the multi-
nomial distribution. Model 2 was selected with a change
point on the 14th day. but this model assumes that F
and M change on the same day. which may not be
reasonable. Hence, we constdered a fourth model in
which M is constant but F changes on the 14th day. The
AIC value for this model was smaller than that of model
2 (Table 4), suggesting a constant natural mortality rate.

Table 4, Estimates and standard errors far fish with Red tags
for model 4 under ¢?>1.

z, 0.1604 (0.0138)
z, 0.1916 (0.0282)
F, 0.0171 {0.0018}
F, 0.0483 {0.0168)
M 0.1433 (0.0128)
o’ 15.34 (4.32)
AIC 290,45

Table 5. Estimates and standard errors for the best-fit model
{model D) oblained by simuhaneous estimation under model 4.

Red Tags White Tags
Z 0.1700 (0.0152) 0.1593 (0.0166)
Z. 0.1982 (0.0289) 0.1813 {0.0287)
F, 0.0178 (0.0018) 0.0158 (0.0017)
F, 0.0460 (0.0161) 0.0377 (0.0143)
M 0.1522 (0.0141) 0.1436 (0.0155)
a* 2139 (6.46) 2368 (7.19)

1.95 (0,014}

We also obtained the same change-point estimate for
White, and the estimates of other parameters were
simitur. To compare the mertality rates of Red and
White, we considered the likelihood [Equation (22)]
taking the correlation between the recovery data of the
two groups into account, We considered four models
with regard to P, and p:

Model A: P’ = P42 and p=0,
Model B: Pt"' = P'? and p 0.
Madel C: P £P{? and p=0,
Model I); P!"' #P'® and p#0.

The maximum log-likelihood values for models A. B,
C. and D were —284.55 —25427, -286.16, and
— 250.00, respectively. The correlation, p, was estimated
to be over 0.9, and the models assuming no correlation
(models A, C) were rejected. It was suggested that two
groups were mixed and distributed in the same area,
hence we compared model B with model D. The like-
lihood ratio was —2x(—254.27+250.00)=8.54 (p=
0.074 with d.f. of 4). We could not reject the hypothesis
of no difference between the two groups (Table 5). We
concluded that the rearing way of different two hatch-
eries did not influence the quality of the fingerlings.

Discussion and concluding remarks

By means of the %2 test under a 2 x 2 contingency table,
it was possible to test the hypothesis that the recovery
rates of the two groups are the same. The numbers
recaptured and not recaptured were 2422 (2294) and
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17 578 (17 706) for Red and (White), respectively. For
this data we calculate the ¥° statistic to be 3.94, and
therefore reject the null hypothesis (d.[. of 1, p=0.047).
This corresponds to analyzing only by the residual
likelthood L. [Equation (16)] in the partial-likelihood
approach. Denoting the recovery rates for each group by
P and P', the null hypothesis (H,) is P*"'=P*'=P.
The joint residual likelihood function for group 1 and
group 2 is given by:

L=L"Le (23)

if the recoveries of the two groups are independent. The
maximum-likelihood estimates of P, PV, and P*** are
obtained from log L, as {(n'"+n"2(N'""'+N'), nt'Y
N aIIN® | respectively. We obtained the maximum
value for log L, of — 14 508.80 (H,) and — 14 506.83
(H,). The likelihood ratio statistic was equal to 3.93 and
we rejected the null hypothesis (d.f. of 1, p=0.047). This
result was consistent with the ¥~ test for the recovery
rate, and led to different conclusions from former analy-
sis. However, it is invalid because the over-dispersion
and correlation are ignored.

When the recovery period is long enough, this hypoth-
esis means the same value of F/M for the two groups. In
evaluating the quality of fingerlings, it is betler to
investigate both of F and M, because it is supposed that
weaker fingerlings have higher natural mortality rates
and are easily caught. In addition, the essential param-
eters for field experiments such as o° and p can only be
estimated when we deal with serial recoveries.

The problem of over-dispersion has been overcome by
quasi-likelihood approach. The quasi-likelihood esti-
mating equation for the mortality rates of the group j, 8;
is given by:

k+1 ntij)_N pf_i)
U@®,)= .Z=:| Ve, (N P}”)N—st)—=0. (24
The dispersion parameter can also be estimated from:

1 k+1 (n?) -N p%_ﬂ):’.

k—s =t NP

&, = (25)

The variance—covariance matrix of éj is given by:

R < . -
vie)=53,( Z wpw To VPOV (N PO (26)
where T refers to the transposed matrix (McCullagh and
Nelder, 1989). However, the quasi-likelihood framework
does not include the estimation when paired data have
the correlation treated in this paper. This problem is left
for further studies.

Maximum-likelihood procedures are powerful statis-
tical tools for many applications, but proper modeling is
important. We have observed that, when we apply the
multinomial model to field survey dala, the standard

S. Kitada et al.

errors ol the estimates are often negatively biased. To
solve this problem, Dirichlet compound muliinomial
and neganve binomial distributions have been consid-
ered. In this paper we applied the normal distribution
models as approximations of these models to the data in
the framework of maximum-likelihood procedure. We
expect that this approach will prove useful and practical
to field survey experiments in general.
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Appendix
Estimates and asymptotic variances by conditional likelihood

For model 2, conditional rate of recapture at ith interval is given by:

cleln—\ _e*ZHi
— (I<i<q)
le e—?.;l._,_e—z;n (An
1 = Zaly — 1) (T<i Sk)
—e A t

The likelihood functions are given by:

1 L 1 k
L= Jler =1 v (A2)
u . =1 ﬁ ot 1=t+1
1] n,! I n
N! b my 1 m, N N-n
ST T~ Ho pmd‘} H P"’d‘] {" JO P“)d‘] | (A3)

where m, =25 ,n,, m,= 2%, ,n,. We estimate the total mortality rates, Z, and Z,, by dividing the recoveries for
two parts under a given t, between time 0<t_<t, by Equation (15). The estimation procedure of t; is as follows. The
partial likelihood L is divided into two parts:

log L{Z)=logm,!— 3, logn!+ 3, n, log(e 21—~ 2" —n, log (1 —e~ 2y (l<t<1) (A.d)
i=1 1=1

and;

k k
log L {Z;)=1og m,! - Z lognt+Y, n,log (e 24 1—e~ %) —n, log {1 —e~ZM W} T+l <i<k). (A.5)

i=it] i=t+1
The log likelihood for L., is given by:
log L,=log L,(Z;)+log L,(Z,). (A6)

The t, which maximizes this log likelihood is accepted as the estimate of t,.
We estimate F, and F,, from @ log L,/6F, =0 and 3 log L,/3F,={), where:

m =2t T,
lei__ _i(l_e—zm)} ‘ { ¢ F“_efz:urm) .
(N-nmm;!m,! | Z, Z,
(A7)
F e—zlh F N-D
% ]7_“_6‘21‘1 —_ 1 - _Zz(lk*lg]) )
{ Z) ) 7 (1-e )

The estimator of F, and F, is given by:

£ = m,Z,
'UN(l—em Yy (A.8)
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- m22:
ko= Ne~ 2t ] —g~ =ty (A9)
The asymptotic variance of Z are given by:
. 3logL, !
V(Z)=(— ———) . (A.10)
9Z?

For the case of equal unit length of each time interval a. the variance for model 1 is given by (KulldorfT, 1961):

2.Za tﬁez“ -
V(Z)= { - - } . A.ll
(eZu _ I)Z (le. _ 1)‘ ( )

For model 2, we can obtain variances from Equation (A.11) by substituting ¢, for (t, —{.).

The asymptotic variances of F are given by (Hiramatsu and Kishino, 1989)

N PlogL, y ! 3% log L, ' log L . dlogL 3 log L.y !
v(_p'):(ﬁ___L) {(— % ‘)+ 8 2 v(Z £ 2} (—%) . (A.12)

aF? oF F3Z oZaF 3F

Concrete forms of the asymptotic variance of F for the conditional multinomial model are given by the following
equations.

Model 1:
. 3logL. "'y 3%logl, dlogl, . 3 loglL P logL, \ !
v(F)=(—$) {— e Rl R VT Ml 2} (- gﬁ) , (A.13)
3F- oF? aFazZ 3Z3F aF*
where:
3 log L, 1 nN
Forla__ , (A.14)
aF? F* N-n
3log L N2
#:__ (Ztke—th+e—Zlk_ ” (A]5J
9FazZ 72 N-n
Model 2:
R L. 3 log L PlogL,
V(E) Cov(F,, F,) - g, 2 - g =2
, aF? aF 3F,
V= . . - 3 log L, P log L,
Cov(F,. F)) V() - - .
aF oF, 9F2
¥ log L FlogL 3 logL 3% log L .
_ 08 L2 _ og L, B L2 g L; ViZ)) 0
3F? oF 3F, aF 37, 3F,3F,
x 2 2 + 2 2 (A.16)
o9° log L, o log L, 3" log L, 3" log L, 0 V)
3F,3F, 3F2 3F,3Z, 3F.aZ, >
loglL, &loglL, 3logL, B 3? log L.,
9Z,3F, 37Z,dF, 3F2 3F 3F,
X
Plogl, dlogl, _ Flogl,  logl, |

3Z,3F, 3Z,3F, 3F.3F, 3F2
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where:

3 log L, m, N-m,

__m _ A7
3F? F N-n A
¥ log L, m, N—-m
— Z=- 22 L {A.18)
oF3 F; N-n
8% log L. N N-m
g L2 = — 2 (Z e~ Phte™ 2 — ), {A.19)
aF 37, Z2 N-n
3 log L N N-
SR T e, {Zy(1, — t)e ™ P T e m AT Y (A.20)

3F,3Z, Z: N-n



