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The question of whether growth in bivalves is prediclable in terms of environmental
conditions is addressed direetly by trying to infer juvenile scallop growth from
environmental data wilhin and between two locations in the Baie des Chateurs,
Québec. Using models based on either self-organizing models — the group method of
duta handling (GMDH} algorithm - or on multilinear regressions, scallop growlh was
found 1o be predictable. GMDH medels lead consistently to better predictions thun
multilinear regressions and could thus be a useful alternative toel in managing scatiop
fisheries and aquaculiure. Temperature and food availability were the most profinent
variables included in the GMDH models, emphasizing their importance as physical

determinants of scallop growth.
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Introduction

The increasing importance of bivalves as aquaculture
species has led Lo several attempts to model their growth
rates (Grizzle and Lutz, 1989; Ross and Nisbet, 1950).
For some species, such as Myfilus edulis, a large bady of
information collected both in the field and in laboratory
experiments is available on their physiological ecology.
Unflortunately, many of these data are unsuitable for
modelling functional dependence as the experiments
were not performed with modelling in mind. For other
species, such as the pectinid Placopecten magellanicus,
less inlormation is available and the assgssment of
growth in natural environments requires several seasons
of expensive field experiments. Modelling metheds that
could forecast the mean growth rate of scallops in a
given environment would lacilitate greatly the choice of
“ideal” growth habitats for a species in an aquaculture
context.

The fundamental hypothesis underlying most physio-
logical madels is that 4 set of “'state’ variables linked to
“environmental” conditions completely determine vital
rates such as growth or respiration (Ross and Nisbey,
1990). Many “environmental™ variables have been iden-
tified that influence the growth rate of bivalves, for
example temperaiure. food availubility, food quality and
size spectrum, fouling of the nets. and stocking density
(MacDonald and Thompson, 1985; Waullace and
Reisnes, 1985: Grant and Cranford. 1991 Lesser ¢r af,
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1991: Cate et al., 1993; Claereboudt er al., 1994). This
modelling approach is appealing because it is based on
actual biological functions such as clearance rates. inges-
tion rates, respiration. and energy storage. Unfortu-
nately. the mathematical form of the relations between
these biplogical functions and environmental variables is
often incomplete or difficult to express.

In statistical modelling. linear multivariate modelling
is often used in dependence analysis (muititinear regres-
sions), although the assumption that the processes
involved are linear is rarely met in biology. Non-linear
models based on a careful observation and description
of the processes have been developed (Grizzle and Lulz,
1989). Nevertheless, they rely on un a priori knowledge
of the structure of the system, which is often incomplete.

Self-organizing methods of modelling such as GMDH
(group method of data handling) (Ivakhnenko, 1968} do
not make assumptions about cither the muthematical
form of the relations or even the concepiual structure of
the systermn being modelled. GMDH models exiract the
patterns and mimic the data and nothing else. The most
evident drawback of GMDH models is that they do not
show direct causality links between dependent and inde-
pendent variables. Such analyses temain essentially
empirical tools and as such have been applied to a wide
variety ol pattern recognition problems, including river-
flow prediction {Tkeda, [984). fisheries (Brooks and
Probert. 1984), coral abundance (Green e al,, 1987),
and economics (Scott und Hutchinson, 1984). Although
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the GMDH algorithm has been strongly criticized
{Green er af., 1988), it remains useful in applications in
which the exact form of the model is not known or varies
from case to case (D. G. Green, Australian National
University, Canberra. Australia. pers. comm.}.

The present study examines the use of self-organizing
modelling as a tool in analysing bivalve growth in a
vaniable environment. Shori-term growth rates of juve-
nile Placopecten magellanicus were related to environ-
mental parameters using both the GMDH algorithm
and the more traditional multilinear regression.

Methods
[Data set

At two locations along the north shore of Baie des
Chaleurs {Québec, Canada), at Grande-Riviére, situated
at the entrance to the bay, and at Gascons, =40 km
inside the bay, we monitored the growth of juvenile
scallops in pearl nets from mid-June to late October
1991, and concurrently measured the development of
fouling on the nets (Claereboudt er al. 1994}, The
I.5-year-old scallops were individually marked with
small {2 x 3 mm) 1ags glued to the inferior valve with
5-min epoxy and placed in pear] nets suspended from a
long line at 9. 15, and 21 m below the surface The
scallops inttially measured 20 to 38 mm in shell height
and were stocked at densities of 28 individuals per net.
At approximately monthly intervals. the scallops were
collected by Scuba and transferred to seawater aquaria.
Their shell height was measured o the nearest 0.1 mm
using electronic calipers and they were then returned to
the grow-out site in their onginai pearl net. For each
individual, the daily growth rate between consecutive
samplings was calculated. To manage the unavoidable
individual variability 1in growth and size of the scallops
and to reduce the cost of handling numerous pearl nets,
scallops were grown in four pearl nets per experimental
condition: two with high fouling development and
two with low fouling development (changed at each
sampling). This procedure resulted, unfortunately, in
a strong risk of pseudoreplication between individual
scullops: therefore, all growth increments from a single
pear! net were averaged (Hurlbert, 1984).

At each site, water temperature was continuously
recorded from June to November at the three experi-
mental depths using Ryan thermographs, and weekly
samples of the water column at the experimental depths
were analysed for seston concentration and chlorophyll
a content in (wo size classes {cells<5um and cells
>5um). Samples of water were filtered on GF/F fibre-
glass filters and chlorophyll a concentration was deter-
mined by fluorometry after 24-h extraction in 90%
acetone. Total seston was estimated by the difference in
mass of dried fibreglass GF/F filiers before and after
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filtering 250-ml wuter samples. NaCl was removed by
flushing the filters with isotonic ammonium formiate.
The total fouling of the pearl nets was estimated by
subtracting the mass of a new clean net from the mass of
each of four fouled nets immersed at the experimental
depths for 1, 2. 3, und 4 months, respectively.

Data preprocessing

Carrelation between all pairs of variables was first tested
to avoid possible combinutions of variables that would
cause singular matrices to anse during the GMDH
procedure, Further, the dataset was examined for pos-
sible serious violations of the assumptions of normality
and homoscedasticity of the data. A non-normal distri-
bution of the residuals from the multilinear model
indicated the need for a transformation The square-root
transformution was applied to the growth data and
improved the distribution of the residuals. The environ-
mental data were averaged over the corresponding
period of scallop growth,

Model

GMDH can be best described as a non-parametric
learning algorithm {(Green e al. 1988), The GMDH
procedures generate polynomials of extremely high
degree of the original independent variables to mimic the
variations of the dependent variable. It is generaily not
possible to expand the model in full polynomial form
since this could require literally thousands of terms.
However, the model is well represented as a network of’
simple submodels structured in the form of a pyramid.
(Fig. 1) and leading to successively betier estimated
values of the dependent variable, y. The reference
function R(x,, x,) is a simple function that provides
the basic “building block™ of the GMDH algorithm.
Each submode] uses the same relerence function with a
different set of values for the parameters. In our model,
the reference function was a polvnomial of the form
(Farlow, 1984b; Green er af. 1988):

y=ax] +bxi+ex,x,+dxex, +1

The pyramid of reference functions is created by
iteration (one for each level of the pyramid) as fol-
lows. The data points are first distributed randomly into
either a learning set or a checking set. In the first
iteration, each pair of independent vuriables is tested
sequentially. For each pair x;, 5 the reference function
is fitted 1o the learning set by a multiple regression which
sets the six parameters (a, b. ¢, d, e, and f). The expected
values of v are then calculated for the checking set and
the coefficient of determination, D. is computed as
follows:
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Figure 1. Schematic diagram a GMDH model. Each box represents 1 submodel {polynomial of degree 2). The shaded boxes

represent the polynomials contribuling to the final model.
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where ¥, is the predicted value associated with the actual
value y, of the dependent variable; n is the total number
of observations, and nt the number of observations in
the learning set. If D is less than some predetermined
value (the regularity criterion), the fitted reference func-
tion for the pair i. j is stored, otherwise it is discarded. In
our model. the regularity criterion was adapted at cach
iteration to keep the 20 polynomials that had the lowest
D?. This procedure allowed a shorter processing time
without decreasing the GMDH performance (Green er
al, 1988). When all pairs of variables have been pro-
cessed, the first iteration is complete and a maximum of
(ki)=k(k — 1)/2 regression polynomials are stored,
where k=the number of variables. In the next iteration,
the original training data is replaced by the predicted
values given by each one of the stored reference func-
tions. The ilerative process conolinues until no further
improvement in the predicted values can be achieved.
The reference function of the last iteration that gives the
best fit {the minimum D? is chosen as the final sub-
model at the top of the pyramid. As many of the
polynomial blocks suved during the iterative process do
not contribute to the final model (the white blocks in
Fig. 1). they can now be discarded and the remaining
poiynomials form the pyramidal structure of the
GMDH model (shaded in Fig. 1). Even though the
procedure is simple, the computing time can become
exceedingly long, especially in smull computers, The
nine iterations of our models, including five variables
and 20 polynomials at each iteration. took approxi-
mately 33 min on a Macintosh SE/30. A complete

description of the basic model and some improvements
can be found in Farlow (1984b) and Green ¢! al. (1988),
a FORTRAN listing of the algorithm in Furlow (1984a).
and a cntical review of the model’s behaviour in Green
et al. (1988).

A GMDH program was written in PROGRAPH for
the Macintosh environment. This graphic programming
environment was chosen for its object-oriented structure
based on dataflow rather than variables, allowing an
easy representation of the network structure of the
GMDPDH algorithm as well as a variable-sized stack
implementation. All procedures were computed in
double precision floating-point arithmetic.

Modelling experiments

Three modelling experiments were conducted. The first
compared the modelling abilities of GMDH with that of
a standard multilinear regression in terms of distribution
of errors and goodness of fit. In the second. we tested the
role of each variable in the model resulting from the first
trial. Although the vuriables that affect the prediction of
the growth rale are described by the model itself, the
next question to be addressed is the relative importance
of the different variables. For example. does a typical
Auctuation in temperature have more or less effect than
a comparable fluctuation in fouling abundance or in
suspended particulate matter. Even though the coeffi-
cients of the polynomials are entirely determined. the
complexity of the resulting model forbids the direct
examination of these coefficients. The importance of a
given variable in the model was thus assessed using the
standard fluctuation method (Brooks and Probert,
1984). Standard fAuctuations of each of the variables



M. R. Claereboud!

Tabie 1. Environmental variables measured at Gascons and Grande Riviére at the experimental

depths. Average values for each growth period

Chloro. @ <20 pm

Chlore. @ >20pm

Depth Month  Temp. (*C) (mgm™Y) (mg m™%) Seston (mg 177}
Gascons
9m Tuly 8.0 0.684 0.032 9.1
Aug 13.5 0367 0.027 12.3
Sepl 12.0 0.650 0.050 30.3
Oct 8.1 0715 0.077 3.2
15m July 7.5 0.627 0.068 8.8
Aug 12.0 0.449 0.062 11.7
Sept 11.4 0.617 0.027 18.4
Oct §.2 0377 0.037 3
21 July 11 0.567 0127 94
Aug 9.3 0214 0.092 11.2
Sept 160.2 0.366 0.014 274
Oct 8.1 .304 0.024 kN
Grande Riviére
gm July 7.16 0.773 0.027 9.4
Aug 11.34 0.748 0.074 11.2
Sept 9.3l 0.639 0.307 274
Oct 8.85 0.542 0.058 3.1
15m July 7.01 0.507 0.034 9.4
Aug 11.18 0.690 0.079 11.2
Sept 243 0.496 0.206 274
Oct 8.30 0.428 0.034 3
2lm July 6.89 0.241 0.041 9.4
Aug 11.06 1633 0084 1.2
Sept 8.02 0.353 0.105 274
Oct 7.09 0.325 0.037 31

Table 2. Pearson’s correlation coeflicients between the vanables used in the modelling experiments.

Yariable Fouling Temp. Chl.a <20pm Chl. ¢ >20pum  Seston  Growth
Fouling — 0.22 (132 0.01 038  -0.059
Temperature — — 0.57 -047 0.18 .53
Chlorephyll @ <20 pm — — — - 0.67 - 0.09 0.19
Chlorophyll ¢ =20 um — — — — ~0.06 —0.66
Seston — — — — — — .51
Growth — — — — — —

were introduced in the original data set and the results
compared with that of the unmodified data. A standard
fluctuation of a variable was defined as + 2.5% of the
total variance recorded for that vaniable in the data set.
The importance of cach variable was assessed by the
mean-squared errors between the predicted values com-
puted from the modified data set and the predicted
valves computed from the unmodified data set. The
larger the mean-squared error, the more “impact” that
variable had aon the predicted growth values.

In the last experiment, the predictive abilities of
GMDH were compared to that of a standard multilinear
regression {Zar, 1984). Both models were trained on one
set of data (the growth and environmental data collected
at Gascons) and then tested for goodness of fit with

predictions of growth based on environmental data
coliected at Grand Riviére.

Results
General results

The range of environmental conditions is shown in
Table | for the four periods during which scallop growth
was measured. Since all correlations between variables
were low, values ranging from 0.01 to —0.67 (Table 2),
all variables were included in the data sets used in the
model.

The predictions of scallop growth given by a
GMDH model are presented along with those given by
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Table 3. Analysis of variance (ANGVA) of the multilinear regression of the shell height increments of juvenile giant scallops
(Placopecien magelfunicus) 10 various environmenlal variables from June to Octeber 1991, The non-significant factors (F<4) and

interactions {P>0.2) were successively removed from the model.

Source of vaniation d.r. Mean squares F P
Temperature 1 0.035 24.3 0.0001
Chiorophyll 4 <20 pum i 0022 155 00002
Chlorophyll @ »>20 pm 1 0.065 449 0.6001
Total seston 1 0.050 34.6 0.0001
Tenp ¥ seston 1 0.094 65.4 0.0001
Chlarophyll o <20 pm X seston 1 0.021 14.5 0.0002
Residual 71 0.001

0.25
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Figure 2. Actual and 1deal (lines) predictions of scallop prowth
of: (0) a GMDH model and (by of a multilincar regression
computed from the same dataset.

multilinear regression computed with the same set of
environmental data set Figure 2. The ANOVYA 1table of
the multilinear regression (Tuble 3) indicates that even
though most interaction terms were highly non-
significant, there were interaction effects between seston
and both temperature and large particles. The goodness
of fit (multiple correlation coeflicient r?) was greater for
the GMDH model (r*=1.796) than for the multilinear
regression (r*=0.654). The GMDH methed did con-
siderably better al modelling low growth rates. In
addition, the Irequency distribution of the signed errors
{predicted value-observed value) followed a normal
distribution in the GMDH model (Kolmogorov-
Smirnov test p=0.24), but could not be considered as
normal (Kolmogorov-Smirnov test p=0.0085) in the
mululinear regression (Fig. 3).

Importance of variables

The GMDH algerithm included all five variubles fi.e.
chlorophyll ¢ in large cells and in small cells, total
seston, temperature, and fouling) in the model and
converged after nine iterations. Figure 4 illustrates the
residual mean-squared error generated by standard fluc-
1uations of each variable independently. This 1echnique
indicutes that temperature und total seston rank first und
second in importance in the model,

Predictive abilities

By comparing predictions of growth from an environ-
mental data set for which the model had not been
trained belorehand, it is possible to assess its general
predictive abilities. Figure 3 compares the predictive
abilities of a GMDH model with that of a multilinear
regression built on the same reduced data set. GMDH
had better predictive power than the multilinear regres-
sion. This ability is reflected by the better multiple
correlation coefficent (r*) calculated between observed
and predicted values in the GMDH model (r°=0.77)
compared to the multilinear regression (r’=0.54). In
particular, the multilinear regression was unable to
reproduce the large range of growth recorded in the field
data.

Discussion

In general terms, scallop growth is predictable in terms
of environmental conditions and the GMDH models
result in coeflicients of determination >0.7 between
predicted and actual growth values for juvenile scallops.
This method of forecasting the growth of a bivalve given
a set of environmental parameters appears to be a
valuable tool in aquaculture feusibility studies. GMDH
does not attempt to identify the causes of the variation
observed in the growth rate of scallops in the field but
simply to simulate and correlate this variation with
environmental variables. As Green et al (1988) pointed
out, GMDH models have a tendency to become highly
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Figure 3. Observed distribution and fitted normal distribution

ol the signed errors from predictions of: (a) a GMDH and (b)
a muludinear regression model computed on the same datasel.

unstable outside the range of the source data. Therefore,
if these models are used in forecasting applications they
should be tested thoroughly to ensure adequalte extrapo-
lations outside that training range. In ils present stage of
development, our model was able to simulate success-
fully growth value from environmental data at Grande
Riviére, for which it was not trained, and performed
considerably better than a multilinear model in the same
conditions. suggesting a better ability to extract relevant
patterns in the structure of the data. However, most of
the environmental parameters in Grande Riviére were
within the range recorded at Guscons. In order to test
whether our GM DH model would succeed in predicting
growth in an environment outside the range recorded
in our summer field studies, we ran the model with
environmental values similar to those in the Baic des
Chaleurs but with aubnormally low temperature values
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Figure 5. Actual and ideal (lines) predictions of scallop growth
of: (a) a GMDH model and (b) a multilinear regression
computed from the same dataset. The model wds trained with
data at Gascons and used to predict growth rates at Grande
Riviere.

(actual values — 2°C), In many cases, GMDH lead to
unacceptably high or low values of growth {(mean error
>150%). This confirms its inability to extrapolate out-
side the runge of the original source data. The use of a
larger database (including variables reflecting lood qual-
ity and wider environmental variations, for instance), as
well as the introduction ol a better algorithm in the
processing of the data (Ivakhnenko, 1984), should pro-
vide considerable improvements in the forecasting abili-
ties of GMDH miodels in the case of scallop growth. It
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Figure 4. Relalive jmportance of the five environmental variahles on the predicion of growth rate expressed as residual
mean-squared errar generated by standard fluctuauions of these variables.
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may be likely that statistical models which include
higher-order interactions. changes in variables, or spe-
cially designed non-linear terms could perform as well or
even beiter than GMDH. However. the functional rela-
tionships that are required in the design of such models
are not known and may vary from species to species.

GMDH models provide new methods for data analy-
sis. Since the GMDH algorithm indirectly tests for all
relationships, including non-linear ones, it muy provide
ecologist with a meun of objectively testing the import-
ance or the non-importance of some varables in a
complex system. Its prime limitation is its inability to
represent the actual contribution of each independent
variable to values of the dependent variable. However,
sensitivity analysis can be performed (Brooks and
Probert. 1984) and our GMDH models reflect the
documented dependency of bivalve growth on both
temperature and food availability (MacDonald and
Thompson, 1985; Ciocco. 1991). Furthermore, in many
systems, the complexity and the number of all possible
interactions beiween known variables is so high that
ecological theory does not provide a method to reduce
those variubles to a manageable level. Since GMDH
tests also for non-linear relationships. it represents an
alternative non-linear approach to factor analysis.

The GMDH algorithm is a valid tool to analyse the
complex interactions between the environment and
the growth of bivalves and seems to be superior to at
least the simple multilinear regression. To be applicable
on a large geographical scale, it must be based en a
wide datubase representing the extreme environmental
variations in which bivalves grow.
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