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Accurate acoustic characterization of zooplankton species is essential if reliable
estimates of zooplankton biomass are to be made from acoustic backscatter measure-
ments of the water column. Much work has recently been done on the forward
problem, where scattering predictions have been made based on animal morphology.
Three categories of scatterers, represented by theoretical scattering models, have been
identified by Stanton et al. (1994): gas-bearing (e.g. siphonophores), fluid-like (e.g.
euphausiids) and hard elastic-shelled (e.g. pteropods). If there are consistent differ-
ences in the characteristic acoustic signatures of each of these classes of zooplankton,
it should be possible to solve the inverse problem by using acoustic backscatter data to
infer mathematically the class of scatterer. In this investigation of the feasibility of
inverting acoustic data for scatterer-type, two different inversion techniques are
applied to hundreds of pings of data collected from broadband ensonifications
(2350 kHz–750 kHz) of individual, live zooplankton tethered and suspended in a
large tank filled with filtered sea water. In the Model Parameterization Classifier
(MPC), the theoretical models for each scatterer-type are represented as either straight
lines with slope and intercept parameters or rectified sinusoids with frequency and
phase parameters. Individual pings are classified by comparison with these model
parameterizations. The Empirical Orthogonal Function-based Classifier (EOFC)
exploits the basic structure of the frequency response (e.g. presence of a resonance
structure) through decomposition of the response into empirical orthogonal functions.
Small groups of pings are classified by comparing their dominant modes with the
dominant modes representative of the three scatterer-types. Preliminary results
indicate that the acoustic classification of zooplankton ensonifications into categories
representing distinct scatterer-types is feasible. Ultimately, it may be possible to
develop in situ acoustic systems that are capable of inverting for the types of organisms
sampled, thereby bridging the gap between acoustic backscatter measurements and
estimates of zooplankton biomass.
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Introduction
The acoustic characterization of various species of zoo-
plankton is essential if biologists wish to use volume
backscatter measurements of the ocean as indicators of
zooplankton type, size, and biomass. Traditional acous-
tic biomass estimation methods have employed single-
frequency acoustic measures in conjunction with either
theoretical models (e.g. Greenlaw, 1979) or empirical
regression relationships between the acoustic back-
scatter data and the biomass collected in simultaneous
net samples (e.g. Flagg and Smith, 1989). However,

biomass estimates based on simple regression curves or
on single-frequency echo energy measurements may be
subject to large errors. For example, Wiebe et al. (in
press) found that although volume scattering at 420 kHz
was 4–7 times higher at two stratified sites versus a
mixed site on Georges Bank, MOCNESS-collected
biovolumes at these sites were not significantly different.
Greenlaw (1979) noted that the volume scattering from a
region containing a single 22 mm fish was the same as
that from a region containing 260 similar-sized
euphausiids. In fact, Stanton et al. (1994) observed that
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the relative echo energy per unit of biomass measured
from animals ranging from elastic-shelled gastropods to
fluid-like salps varies by a factor of ~19 000 to 1. This
huge species-dependent variability in echo energy per
unit biomass has important implications for the
interpretation of acoustic survey data. Attempts to
equate larger acoustic returns to the presence of more or
larger animals (and thereby conclude that the higher the
echo energy, the greater the biomass in the ensonified
region) could lead to gross errors in biomass estimates
by several orders of magnitude (Stanton et al., 1994).
The solution to the forward problem involves predict-

ing the properties of the acoustic return from a scatterer
based on knowledge of the physical and geometric
properties of the scatterer as well as the specifications of
the sonar system used to ensonify it. Various theoretical
models have been developed to predict acoustic scatter-
ing from zooplankton based on animal morphology
(Greenlaw, 1979; Stanton, 1989; Chu et al., 1993;
Stanton et al., 1994, 1996). To develop and corroborate
scattering models, target-strength measurements (most
at one or a few discrete frequencies) have been made of
zooplankton, both experimentally constrained (e.g.
Demer and Martin, 1995 – tethered; Foote et al., 1990 –
encaged), and in situ (e.g. Hewitt and Demer, 1991).
Recently, Stanton et al. (1994) made target-strength

measurements of single organisms over a broad range of
frequencies simultaneously by ensonifying tethered
zooplankton representative of the species from Georges
Bank with broadband chirps. Comparison of the data
with theoretical scattering models has resulted in the
division of these zooplankton into three acoustic
types: (i) GB gas-bearing (e.g. siphonophores); (ii) FL
fluid-like (e.g. euphausiids); (iii) ES elastic-shelled
(e.g. pteropods). Examples of zooplankton from these
scattering classes and theoretical models used to describe
the acoustic scattering from these organisms are shown
in Figure 1. The characteristic acoustic signature of each
of these classes is unique. As a result, it should be
possible to invert acoustic backscatter data for the class
of scatterer.
The inverse problem is concerned with predicting the

properties of the scatterer based on knowledge of
the acoustic return from that object. In bioacoustical
oceanography, some work has been done on identifying
fish from their acoustic returns (e.g. Zakharia and
Sessarego, 1982). Holliday et al. (1989) have estimated
the size distribution of a zooplankton assemblage based
on volume scattering data from a multi-frequency sonar
system using 21 discrete frequencies. If the acoustic
sampling includes a broadband signal with a continuous
(or virtually continuous) range of frequencies and if the
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Figure 1. Examples of zooplankton from the three acoustic scattering classes. Plotted below are simplified theoretical models that
describe the acoustic scattering from these three classes of animals under certain conditions. The details of these models are
included in Stanton (1989) (gas-bearing) and Stanton et al. (1996) (fluid-like and elastic-shelled).
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echoes from individual zooplankton are resolvable (e.g.
Stanton et al., 1994), a different type of inversion is
possible. A spectral decomposition may be performed
on the echo time series from each individual scatterer,
and each zooplankter may be classified according to its
frequency-dependent scattering characteristics. This
type of classification inversion strives to identify individ-
ual scatterers based on their acoustic signatures, and can
be carried out with or without relying on theoretical
scattering models. The development of such a classifi-
cation inversion of marine zooplankton based on single-
ping broadband ensonifications is described in this
paper.

Methods
Data collection and processing

The data used in the inversions were collected on a
cruise to Georges Bank and the Gulf of Maine on RV
‘‘Oceanus’’ from 27 September to 6 October 1993.
Organisms were captured in both vertical and oblique
tows with a meter net (335 ìm mesh) with a codend
bucket (32 cm diameter by 46 cm long), and sorted into
large containers for short-term storage under refriger-
ation to maintain seawater temperature. Prior to ensoni-
fication, a detailed sketch was made of each animal and
measurements were made of animal length, width, size
of shell (pteropods), and size of gas inclusion (siphono-
phores). Individual organisms were tethered with an
acoustically transparent monofilament strand, and sus-
pended in a 2.44 m diameter by 1.52 m high tank filled
with filtered (through 64 ìm mesh) sea water on-board
the ship. Acoustic experiments included broadband
ensonification (center frequency 500 kHz, ~350 kHz–
750 kHz) of each live animal: the return echoes from 50
acoustic transmissions were collected for each of nine
siphonophores (Agalma okeni) and eight pteropods
(Limacina retroversa), and 1000 returns were collected
for a single euphausiid (Meganyctiphanes norvegica). An
FFT was taken of the time series for each acoustic
return; the ping was then represented by a 241-point
sample of the echo spectrum.

Development of classification algorithms

Two types of classification algorithms were developed.
The Model Parameterization Classifier (MPC) depends
on comparison of the data with theoretical scattering
models, whereas the feature-based Empirical Orthogo-
nal Function-based Classifier (EOFC) is independent of
the models, exploiting only the inherent characteristics
of the acoustic returns. Both the MPC and the EOFC
algorithms were applied to a data set of 1850 pings from
18 animals.
The MPC involves two stages of classification (Fig. 2).

In Stage I, the gas-bearing model is parameterized as a
straight line with slope (m) and intercept (b) parameters.
A straight line is fit through each echo spectrum (SPEC)
by linear regression (y=mx+b) and the SSR is computed
for each return by taking the sum of squares of the
residuals: SSR=Ó(y(i)"SPEC(i))2. Pings are classed as
GB (gas-bearing) if SSR¦t, where t is an arbitrarily
chosen threshold that gives the best classification of a
sample data set. The GB model space consists of 25 bins
that quantify the SSR associated with each ping. Pings
not classed as GB enter the second stage of classifica-
tion. In Stage II, the FL (fluid-like) and ES (elastic-
shelled) models are simplified by parameterizing them as
a rectified cosine with frequency (null spacing) and phase
shift parameters. To construct the model spaces, several
model realizations of rectified cosines, differing in null
spacing and phase shift, were created. The ranges of
these two parameters for FL and ES model realizations
were determined by examining the appropriate theoreti-
cal model as well as several dozen pings for each type.
To include the range observed in the data, nine different
null spacings (linearly spaced from every 130 to every
370 kHz) were chosen for the FL model realizations.
For ES, five different null spacings (linearly spaced
from every 60 to every 100 kHz) were used. The
possibility of phase-shifted returns was also accounted
for in the model spaces, resulting in 81 different FL
model realizations and 25 different ES model realiza-
tions. The echo spectrum of each ping was correlated
to the model realizations; maximum correlation
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rectified cosine models:

best-fit <= FLlimit?

yes

no

Straight-line fit:
SSR <= cutoff ?

STAGE II Model Space

GB
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Figure 2. Summary of the MPC classification scheme. This classifier is based on a parameterization of the scattering models
illustrated in Figure 1.
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indicates best fit. Classification of a ping involves
determining to which model space the best-fit model
belongs.
The EOFC depends on properties of the frequency

response that are independent of the theoretical
scattering models. The EOFC matches the echo
spectrum to the scattering class based on an empirical
orthogonal function decomposition. The frequency
spectra are decomposed into modes that represent the
variation of the data from the mean value. This is
accomplished by computing the eigenvalues ëi and
eigenvectors (EOFs) öi of the covariance matrix
(K=ATA), where A is a matrix in which each row
represents a mean-subtracted echo spectrum. The
modal decomposition hinges on the fact that Köi=ëiöi.
The eigenvector corresponding to the maximum eigen-
value is the dominant mode. The model space for a
given scattering class is then represented by the domi-
nant modes (based on 50-ping data sets) of each
individual in that class. For classification, an EOF

decomposition is performed on ensembles of five pings.
The five ping-ensemble dominant mode is then corre-
lated to the model space, which includes the modes for
all scattering classes. Classification involves determin-
ing to which model space the best-fit dominant mode
belongs.

Results
Examination of the acoustic returns from these animals
revealed considerable variability in the spectra, both
between separate ensonifications of a single zooplankter
as well as between different individuals in the same
scattering class. This is illustrated with examples of the
frequency responses from each of the three scattering
classes plotted together with the corresponding theoreti-
cal models (Fig. 3); some returns resemble the theoreti-
cal models more than others. In addition, noise
contamination was more evident in returns from some
animals than others. To assess the performance of
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Figure 3. Target strength versus frequency for selected examples of the three scattering classes. Ping-to-ping variability in
spectra from the same animal as well as animal-to-animal variability are illustrated. Pings in the gas-bearing category (GB) are
from a single siphonophore (Agalma okeni), fluid-like (FL) pings are from a decapod shrimp (Palaemonetes vulgaris) (top), and
a euphausiid (Meganyctiphanes norvegica) (middle and bottom), and the elastic-shelled class (ES) is represented by two
pteropods (Limacina retroversa) (bottom 2 from same animal). The superimposed curves are based on the theoretical scattering
models plotted in Figure 1. These data and associated models are presented and discussed in more detail in Stanton et al.
(1996).
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the classifiers with the best quality data, a 150-ping
sample, consisting of 50 acoustic returns each of a
siphonophore Agalma okeni (Animal 18), a euphausiid
Meganyctiphanes norvegica (animal 33, run 5), and a
pteropod Limacina retroversa (Animal 29), was
extracted from the entire 1850-ping data set. This subset
represents the highest signal-to-noise ratio (SNR) data,
and the classification results for the MPC and EOFC for
this 150-ping sample are illustrated in Figure 4. The
MPC correctly classified about 95% of these pings,
and the EOFC correctly classified about 87%. Table 1

summarizes the classification results for both classifiers
for the complete data set.

Discussion

Signature variability

The observed variability in the frequency spectra of the
acoustic returns within and between individuals in a
scattering class (Fig. 3) can be attributed to differences
in the behaviour and morphology of the animals.
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Figure 4. Classification results for the MPC and the EOFC for a selected subset of the highest quality data. The data set consisted
of 50 pings each of a siphonophore (Agalma okeni) (Animal 18), a euphausiid (Meganyctiphanes norvegica) (Animal 33), and a
pteropod (Limacina retroversa) (Animal 29). The MPC classifies each acoustic return separately, whereas the EOFC classifies based
on 5-ping ensembles.
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Changes in the orientation of the animal during
ensonification may lead to ping-to-ping variability in
the acoustic returns from a single target. For example,
the spectra of fluid-like zooplankton can exhibit differ-
ent null-spacings depending on the animal’s orientation
relative to the acoustic beam. Differences in orientation
may explain why echoes from some elastic-shelled
individuals contain several tightly spaced nulls,
whereas echoes from others exhibit a flat spectrum.
For certain orientations, Lamb (circumferential) waves
may propagate and scatter back toward the receiver,
yielding an oscillatory spectrum as a result of the
interference between the direct return (from the front
interface of the shell) and the Lamb wave. For other
orientations, attenuation of the Lamb waves by the
opercular opening may eliminate the interference pat-
tern, and the spectrum may be flat (Stanton et al.,
1996). Variability in the frequency response between
different animals of the same species or in the same
scattering class can also be attributed to differences in
apparent animal size (which may change as orientation
changes). For fluid-like and elastic-shelled scatterers
there is an inverse relationship between apparent
animal size and null spacing in the frequency response.
Although gas-bearing animals appear to exhibit

predominantly flat spectra, some structure has been
observed which may be attributable to interference
between returns from the small gas inclusion and the
large fleshy body, depending on the relative size of the
inclusion (unpubl. data). Development of a successful
acoustic classification scheme for zooplankton relies on
the design of classification algorithms that are robust
to the potentially confounding variability in the fre-
quency spectra of the acoustic returns.
In order to better characterize the variability in the

acoustic returns of animals in the three scattering
classes, some statistics were compiled on various fea-
tures of the spectra from the three high-quality 50-ping
data sets. A mean level (mean TS, averaged in dB)
was computed for each ping. This feature did not appear
to be a good discriminator between M. norvegica
("73.4 dB) and L. retroversa ("71.7 dB), but may be a
good way to distinguish A. okeni ("64.9 dB), since
average levels for this organism seem to be higher. The
distribution of mean TS may be a good discriminator,
since it appears to be much tighter for L. retroversa
(s.d.= 0.29) than for the other two data sets (s.d.=3.33,
A. okeni; s.d.=2.71, M. norvegica). Similarly, the distri-
butions of null spacing and phase shift appear much
tighter for L. retroversa than forM. norvegica. This type

Table 1. Summary of the classification results for the 18 animals ensonified during the experiment. For
the MPC, n represents the number of pings, whereas for the EOFC, n is the number of 5-ping
ensembles.

Species
Animal
no.

Run
no.

MPC results EOFC results

n % correct n % correct

Agalma okeni 13 1 50 58 10 70
14 1 50 50 10 80
16 1 50 10 10 80
17 1 50 66 10 80
18 1 50 92 10 60
19 1 50 10 10 20
20 1 50 12 10 60
21 1 50 48 10 40
22 1 50 12 10 40
Total 450 40 90 59

Limacina retroversa 23 1 50 20 10 100
24 1 50 16 10 100
26 1 50 2 10 90
27 1 50 66 10 100
28 1 50 40 10 50
29 1 50 100 10 100
30 1 50 0 10 70
31 1 50 54 10 90
Total 400 37 80 88

Meganyctiphanes norvegica 33 1 50 92 10 70
33 2 300 86 60 77
33 3 300 79 60 77
33 4 300 86 60 88
33 5 50 94 10 100
Total 1000 85 200 81

All animals Total 1850 64 370 77
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of feature is a promising discriminator; since it is based
on statistical analysis of several echoes from the same
animal, its utility is dependent on the feasibility of
collecting these data.

MPC performance

Those acoustic returns that fit the theory poorly will be
more difficult to invert correctly with a theoretical
model-based inversion scheme. Although the MPC
performed remarkably well with the high-quality sub-
sample, it was less successful in classifying some of the
other data sets in which many of the pings did not
closely resemble the theoretical models. In particular,
the MPC was less successful with the Agalma okeni and
Limacina retroversa data, and it is likely that this is a
direct result of the variability in the frequency responses
for these two scatterer types, as well as the presence of
noise contamination.
Stage I of the MPC relies on the fact that spectra from

scatterers that are well represented by a straight-line
model will have considerably smaller SSR than spectra
exhibiting deep nulls. The variability in A. okeni returns
from animal to animal could be due to the presence
of multiple-bubble gas inclusions in some of the
experimental animals; individuals with multiple closely
spaced inclusions, as can result from embolism upon
being removed from depth too quickly (Pugh and
Youngbluth, 1988), may exhibit a multiple-bubble
interference pattern and a spectrum with nulls. Pre-
ensonification visual inspection of the siphonophores in
this experiment revealed multiple bubbles in all but two
individuals (Animals 17 and 20), whereas the majority of
the specimens contained only one bubble after ensonifi-
cation. It is uncertain how many bubbles were present
during ensonification, or whether the presence of
multiple bubbles is the sole mechanism for the observed
oscillatory spectra, since interference between returns
from the body and a single bubble may also introduce
spectral oscillations (unpubl. data). It is believed that
these animals may exhibit both flat and oscillatory
spectra. Most of the misclassified A. okeni were classed
as FL by the MPC.
The spectra of L. retroversa individuals were of two

general types: those characterized by multiple, closely
spaced nulls of more than 20 dB (e.g. Animal 29), and
those with more or less flat spectra (e.g. Animal 30).
Since the model parameterization used here does not
account for possible attenuation of Lamb waves, the flat
spectra are misclassified by the MPC. Much of the
L. retroversa data also has lower SNR than data from
the other two species. Because the MPC relies on
matching the acoustic return to parameterizations of the
theoretical models, noise contamination is particularly
troublesome for this type of classifier.

EOFC performance

A feature-based classifier should be more robust in
classifying returns that do not match the theoretical
models, and if the signatures possess strong features, this
type of classifier should also be less sensitive to noise
contamination in the signal. The overall performance of
the EOFC was considerably better than the MPC,
particularly for A. okeni and L. retroversa returns.
Because the model spaces are independent of the theo-
retical models, alternative orientations of L. retroversa
resulting in different types of spectra are classified
correctly as ES, resulting in a drastic improvement in
performance over the MPC for these animals (MPC:
37% correct; EOFC: 88% correct). The modal feature,
which represents the dominant variability in the signal,
appears to be much stronger than the noise contami-
nation in the L. retroversa data, contributing to the
improved performance of the EOFC over the MPC.
In fact, most of the five-ping ensembles for a given
L. retroversa were assigned to the same dominant mode,
indicating that returns from an individual share the
same signature components. For A. okeni returns, the
EOFC was able to discriminate the oscillatory spectra as
GB even though the MPC classed them as FL, indicat-
ing that the dominant mode of variability for A. okeni
was different than that for M. norvegica. Incorporation
of higher order modes along with consideration of their
energy content should further improve EOFC perform-
ance, particularly with scatterers that exhibit more than
one type of characteristic acoustic return.

Field application

Successful implementation of a classification scheme
which will result in an accurate estimate of animal
biomass in the water column through the inversion of
acoustic returns from zooplankton relies on the mode
and quality of ocean sampling. Specific considerations
are the type of acoustic data required to apply the
classification scheme, including the minimum data set on
which these inversions could be carried out, as well as
the technological developments necessary to acquire this
data set. Field application will require more than one
single-target broadband ensonification per individual.
Spatial resolution adequate to resolve individuals may
be achieved by casting the echosounder through zoo-
plankton aggregations. Technological challenges include
variable beam width and SNR over the bandwidth of
current broadband sources, although development of
constant beam width broadband transducers is under-
way by others. These issues must be addressed to drive
acoustic sampling technology in a direction that
will facilitate the implementation of this acoustic classi-
fication approach for the purposes of increasing the
accuracy of in situ zooplankton biomass estimates.
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Summary and conclusions
Laboratory and theoretical investigations show that
there are distinct differences in the spectral character-
istics of broadband acoustic echoes from individual
zooplankton in three scattering classes. This study
outlines the application of two different classification
algorithms (the MPC and the EOFC) in the inversion of
1850 broadband acoustic returns for scatterer class.
Preliminary results for both classification algorithms
with this limited data set are encouraging. For high SNR
returns that correspond well to the theoretical models,
the MPC correctly classifies the vast majority of data. In
instances of degraded signal quality or noise contami-
nation, the EOFC is more robust. There is potential for
improving the results obtained with these algorithms by
incorporating more sophisticated scattering models into
the MPC and considering the information contained in
the higher order, lower energy modes for the EOFC.
Although this laboratory data set may not be fully
representative of in situ acoustic data (e.g. in situ animal
behaviour differs from tethered behaviour), the
approach outlined in this paper illustrates the potential
of exploiting class-specific differences in acoustic
signatures for the purposes of automatic acoustic
classification of zooplankton.
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