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This paper describes a method for the analysis of groundfish survey data by
incorporating zero and non-zero values into a single model. This is done by using a
model which modifies the delta-distribution approach to fit into the GLM framework
and uses maximum likelihood to estimate parameters. No prior assumptions of
homogeneity are used for the structure of the zero or non-zero values. The method is
primarily applicable to fixed-station designs, although extensions to other designs are
possible. The maximum likelihood estimation reduces to fitting a GLM to 0/1 values
and another GLM to the positive abundance values. The new model is tested on
Icelandic groundfish survey data. It is seen that the model can be used for evaluating
the effect of different factors on catch rates as well as estimating abundance indices.
Results from different models are compared on the basis of tuned VPA runs.
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Introduction

Groundfish surveys are commonly used for the pur-
pose of obtaining an average catch per tow, to be used
as an indicator of stock abundance. Data from individ-
ual tows have long been known to be notoriously
variable (Thompson, 1928) and, hence, there is quite a
long history of methods relating to the design and
analysis of survey data. The emphasis in this paper
will be on analysis techniques, and the method to
be developed will be applicable in principle to most
designs.
Several entirely different approaches exist for the

analysis of groundfish survey data. Some of these
methods are intricately linked to the design of the survey
and can be classified according to whether the design is
based on randomised or fixed stations. The methods can
also be classified according to assumptions of the spatial
distribution of the species and those made on the
probability distribution of the measurements. Similar
techniques have been developed and tested for acoustic
survey data.
Most methods for the analysis either assume a homo-

geneous population within some regions (or strata) or
estimate a single average within the stratum. Thus,
within each stratum, the assumption is that all the
measurements are of the same average population mean.

When stations are randomized every year, this assump-
tion is true to some extent, although it usually wastes
information by ignoring station location and in no way
acknowledges the fact that there is always an underlying
spatial pattern to the fish density, often with some
year-to-year consistency. On the other hand, a ran-
domized design should be set up in such a fashion as to
incorporate the spatial information at the design stage,
during the definition of strata.
The analysis then boils down to evaluating an average

within each stratum and integrating these averages to
obtain a stock index for the whole region.
Probably the single most common method for the

analysis is the stratified analysis of Cochran (1977),
commonly used for the analysis of data where stations
have been allocated using a stratified random design
(Smith, 1990). Alternatives include the so-called delta-
distribution (Aitchison, 1955; Pennington, 1983) where
zero values are treated separately and positive values are
assumed to follow a lognormal distribution. The Adès
distribution (Perry and Taylor, 1985) can be considered
a relative of the delta distribution. As before, no spatial
pattern is allowed within the strata. The delta-
distribution would be better named the delta-lognormal
distribution as it is perfectly feasible to use a similar
delta-gamma distribution (Steinarsson and Stefánsson,
1986).
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Entirely different approaches have also been tried for
this type of general data, i.e. data on the amount in
numbers or weight of fish caught per tow by commercial
or research vessels. These include the use of models
which assume linearity on a logarithmic scale (Gavaris,
1980; Myers and Pepin, 1986; Large, 1992), kriging
(Petigas, 1993), linear models on a log-scale with
spatially correlated errors (Polacheck and Volstad,
1993), generalized linear models (Smith et al., 1991), and
generalized additive models (Swartzman et al., 1992).
Similarly, several approaches have been attempted for
the analysis of acoustic data, as detailed in Foote and
Stefánsson (1993). In all these approaches, the under-
lying spatial distribution is or can be explicitly modelled
and these methods for analysis have been used for data
obtained from various survey designs. However, these
particular methods tend to have problems with zero
values. In particular, when the data from each tow are
split into age groups, a large number of zero values can
occur. Many of these exist simply because the tows are
taken far away from the potential location of this par-
ticular age group. Other zero values may be important
indicators of small stock size. Thus, one should consider
models where these two types of zero values automati-
cally influence the biomass indices in the right way. It is
usually not possible to limit exactly the area of interest
and this may have severe effects on the stock estimates
for some procedures of analysis. Further, the fact that
the data are best analysed in an age-disaggregated
fashion compounds problems inherent in log-transforms
(Myers and Pepin, 1990), since disaggregation will be
likely to lead to many low abundance values, if there are
several age groups in the stock of interest.
This paper develops a maximum likelihood method

where an explicit formula is written down for the
probability distribution of the catch at each station. This
distribution will incorporate all the considerations men-
tioned above. The resulting model allows formal testing
of what factors influence survey catches as well as the
computation of abundance indices.
Data on haddock from an annual Icelandic ground-

fish survey (Pálsson et al., 1989) will be used to
exemplify the method.

Data sets
The Icelandic groundfish survey has been conducted
annually in March since 1985. Station locations are fixed
in principle although minor variations can occur and,
although the survey design initially included some 600
stations, only 488 have been taken in every one of the 10
survey years giving a total of 4880 observations for the
current analysis. A detailed description of the survey is
given in Pálsson et al. (1989). At each station, most fish
are measured for length and at a number of stations
samples are taken for ageing.

The method to be developed used as the basic datum
the number of fish of a given age group at a given
station. For this purpose, age samples within a stratum
were pooled in order to obtain an age–length key, which
was used to age-disaggregate the total length distri-
bution at each station. The basic strata considered are
given in Figure 1. The data on Icelandic haddock were
obtained by smoothing the age–length key for each of
the 10 areas and applying the resulting key to the length
distribution at each station to obtain numbers at age by
station and year.
Abundance estimates are taken from Anon. (1994).

Since survey data were used to tune the abundance
estimates, the years 1992–1994 were omitted and only
the years 1985–1991 were used for comparing indices
with VPA-based abundance estimates.

The distribution

Overall distribution of numbers per tow

Typical histograms of total or age-disaggregated catches
exhibit considerable skewness and may have a spike at
zero. As seen from the examples of basic data summaries
given in Figures 2, 3, there may be a large number of
zero values and a heavy tail. Hence, it is often advan-
tageous to present data on a logarithmic scale. It is
also often illustrative to consider histograms using
log(x+0.001) or a similar transformation, to see whether
or not the zero values form a natural part of the whole.
The choice of a low additive constant (0.001) is deliber-
ate in this instance since it will isolate the zero points
much more clearly than the use of a value closer to the
smallest data value. In particular, in Figure 2, the zero
values do not seem to be a natural part of the same
continuous distribution as the one producing the
positive values.
When zero values are eliminated, it is seen that the

data may be close to lognormal, which again implies
that a lognormal or gamma density may be appropriate
for positive values, or possibly that a negative binomial
may suffice for the entire data set. The negative binomial
distribution, however, has a built-in linkage between the
probability of zero and the mean of the positive values.
This linkage will not hold when the area under con-
sideration is changed to include more or fewer stations
where the age group does not appear. Thus, the negative
binomial distribution will not usually be applicable
unless considerable attention is given to how zero tows
are included in the analysis. The negative binomial
distribution is a discrete distribution and thus might be
believed to be applicable to count data as obtained in
surveys (Taylor, 1953). However, the data are usually
first scaled to tow duration or length and then disaggre-
gated using proportions at age, and this will immediately
lead to non-integer data.
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The results of Myers and Pepin (1990) suggested that
the use of the gamma density is preferable to the use of
a lognormal density for fisheries data, although this
seems to apply mainly when there is a considerable
probability of small observations, not dealt with other-
wise (Pennington, 1991) and, in other instances, the gain
is minor (Firth, 1988). Although other members of the
exponential family could be used, the gamma density is
what will be used here when the positive values are
under consideration, and it can be seen in Figures 2, 3
that the mean-variance relationship in the data seems to
support the use of this density.
When a small year class appears, its distribution may

change from the average in a number of ways. The
density may stay constant at many points but the extent
of the spatial distribution may diminish. This density
change could thus result in the positive part of the
histogram having the same mean but the number of zero
values would increase. In the exact opposite case, the
spatial distribution may stay the same but the density
may go down at each point, though never to zero. These
different types of changes have been investigated e.g. by
Myers and Stokes (1989). A good mathematical model
for the analysis of groundfish survey data should be able
to accommodate these different conceptual models.

To account for the above considerations, the number
of fish caught at a station, s, in year t may be taken
to follow a distribution with a discrete probability of
obtaining a non-zero count zero and some continuous
density for the positive values. Thus, the cumulative
distribution function (c.d.f.) of the abundance at the
particular station becomes:

Fst(ù)=P[Yst¡ù]=(1"pst)+pstGst(ù)

where Gst is a continuous c.d.f. describing the distri-
bution of positive values. This is an extension of the
general approach of Aitchison (1955), but the current
framework will not assume that the parameters are
constant from one station to the next.
When pst is taken to be a constant within a stratum

and Gst is a fixed lognormal distribution through-
out the stratum, this is the usual delta-lognormal
model (Pennington, 1983). If pst is taken as the
constant one and Gst is the negative binomial, we
obtain another well known approach (Myers and Pepin,
1986). If zero values are omitted so that pst is set to 1
and Gst is taken to be gamma density with a par-
ametrized mean, this reduces to a generalized linear
model (GLM).
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Figure 1. Stations, regions, and statistical squares used in the analysis.
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Figure 2. Data summaries of 2-group haddock abundance (y) by tow from Icelandic groundfish survey. (a) Histogram of
basic data values, y, (b) histogram of logged data values, log(y) for y>0, (c) histogram of logged slightly shifted data
values, log(y+0.001), (d) scatterplot of log-variance vs. log-mean for each statistical square with regression line.
Log(var)=0.16+log(mean)#2.00.
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Figure 3. Data summaries of 3-group haddock abundance (y) by tow from Icelandic groundfish survey. (a) Histogram of
basic data values, y, (b) histogram of logged data values, log(y) for y>0, (c) histogram of logged slightly shifted data
values, log(y+0.001), (d) scatterplot of log-variance vs. log-mean for each statistical square regression line.
Log(var)="1.60+log(mean)#2.23.
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From now on, a gamma density will be assumed for
the positive values. The usual form of the gamma
density function is given by:

but, within GLMs, this is usually rewritten in terms of
the mean, ì=áâ, and one other parameter (the shape
parameter), r, so that:

The likelihood corresponding to the above c.d.f. is
given by

Denote by nst the number of repetitions of station s in
year t, and by rst the number of positive values obtained
at this station. The above likelihood function can then
be written in the form:

It should be noted that, in almost all surveys, nst=1 and
rst is either 0 or 1. When repeated tows are performed at
each station, the above formula must be understood
to incorporate each station only once in the left part,
but every positive number occurs once in the second
product.
In the above formula there are two distinct compo-

nents, the probability of a non-zero value and the
distribution of the non-zero values. These can therefore
be modelled and fitted separately to obtain first a fitted
probability of non-zero tows and then the expected
number of fish, given that some were caught. The fitted
(unconditional) mean value at each station is then given
by pstìst. Thus, the proposed model consists of two
generalized linear models using a Bernoulli and a
gamma distribution, respectively.
A model very similar to this one has been used for

meteorological applications (Coe and Stern, 1982) and
for data on consumption by cod (Waiwood et al., 1991),
although there are differences in model detail, particu-
larly in the following model for the proportion. One
virtue of the current approach in terms of fisheries
applications is that it will allow formal testing of strata
adequacy and several related issues.

Modelling the probability

The probability of a non-empty tow can be mod-
elled quite generally using generalized linear models
(McCullagh and Nelder, 1989), as follows. The data is
first recoded so that for each tow the value 0 is recorded
if no fish are caught and the value 1 is recorded
for non-zero tows to obtain Bernoulli-type 0/1-
measurements. The usual model for probabilities is via
the logit function, so that if the probability of a non-zero
value is thought to depend on the latitude, h, then it
would be appropriate to model the existence of fish
in the trawl as a Bernoulli random variable with
probability p given by:

log(p/(1"p))=á+ãh

or, equivalently

The formal statistical model is now to assume that the
0/1-values are independent results from measurements of
a Bernoulli random variable with the probability, p, of
‘‘success’’, as given above. This model is in the class of
generalized linear models which are available in some
statistical packages such as Splus (Becker et al., 1988;
Chambers and Hastie, 1991).
In this setting, there is no particular reason to limit the

linear predictor to specific variables and functions.
Rather, the model should be thought of in the same light
as ordinary regression models where parameters are
tested for usefulness.

Non-empty tows

In this section, only the non-zero tows are considered, so
this analysis is conditional on the appearance of fish in
the trawl. The basic model that will be used is the
generalized linear model (GLM), where the number of
fish is related to other measured variables through
distributional assumptions.
In the gamma model, the variance is give by ó2=ì2/r,

i.e. the variance is proportional to the square of the
mean response (e.g. McCullagh and Nelder, 1989). It
follows that if a gamma density is assumed, a regression
slope based on a log-log plot of the variance vs. average
abundance within predefined small (homogeneous) cells
should be close to 2. In general, to determine the
appropriate model, a base analysis of the raw data is
required. An important item in such a base analysis is
the above log-log plot, as exemplified in Figures 2, 3.
It is worth noting that the shape parameter r is related

to the CV of the measurements through (CV)2=1/r. This
inverse is commonly called the dispersion parameter for
the gamma family. As for the zero values, the GLM
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approach relates the expected number of fish (ìst) in a
given year and location to other measurements through
a link function, usually taken as log-linear in indepen-
dent variables such as the length of the tow, a location
effect and a year effect:

lnìsl=á+âl+äs+æt

Naturally, factors and continuous variables can be used
in an arbitrary mix in the two GLMs considered here, as
in any GLMs.

Combining the analyses

The resulting overall model for the distribution will be
referred to as the Delta-Gamma (Ä"Ã) model.
Having obtained fitted values for the probability, p, of

a non-zero tow, and for the expected number, ì, con-
ditional on it being positive, the predicted unconditional
number of fish is given by pì and it should be noted
that this quantity depends on whatever model was
used for each of the two. For example, if the model for
the proportion indicates that the probability of a non-
zero tow differs between regions and the model for the
mean of the non-zero values indicates that these depend
on the length of the tow, then the overall mean, pì,
depends on both the region and the length of the tow.
The predicted tow content will be different for different
lengths and regions.

Model properties

It is possible to compute pointwise variances, i.e. the
variance of the abundance at a station corresponding to
fixed levels of the independent variables. The variance
formula is obtained by appropriate (Riemann–Stieltjes)
integration with respect to the cumulative distribution
function, F(x) which has a point mass of 1"p at x=0
and is p times a gamma c.d.f. at positive x values. The
resulting variance is given by

Var(X)=pó2+ì2 p(1"p)=ì2[p(1+1/r)"p2]

and this is seen to be analogous to the results given in
Aitchison (1955), Pennington (1983) and Smith (1988).
It follows that these pointwise variances can be esti-

mated using the corresponding model estimates. It is
seen that the overall variance is related to the overall
mean, as in the simple gamma model, but with a
different constant of proportionality, which depends on
the proportion of non-zero tows.
It should be noted that this variance expression goes

to a binomial variance as r goes to infinity and to
a gamma variance as p goes to 1. When r>1, the
maximum (over p) of this variance is obtained at

where the variance becomes

Var(X)=ì2[1+1/r]2/4

When r<1 the maximum over p is obtained at p=1, with
a corresponding upper bound on the variance given by
the gamma variance,

Var(X)=ì2/r

These bounds are not sufficient to bound the coefficient
of variation which is now defined by ó/pì where ó is the
square root of the above variance. In fact, this CV can
be made arbitrarily large by decreasing the proportion
of non-zero tows.
Ideally, additivity should hold, since a property of

towing is that, for a minor change in tow duration, a
linear change in the abundance in the tow would be
expected as a function of tow duration and the same
overall distribution would be expected to hold for a
long tow as for a short tow. Unfortunately, this is
not the case. This can be seen by considering the
characteristic function of the sum of two Ä"Ã random
variables. The characteristic function for the gamma
density is given by

and it follows that the characteristic function of the
Ä"Ã distribution is given by

The characteristic function of a sum of two independent
random variables is the product of the two characteristic
functions and it is therefore clear that the sum of two
Ä"Ã variables will not in general be a new Ä"Ã
variable. This is also clear if one considers the nature of
the measurements themselves: if two identical stations
are aggregated, then the result will be zero with prob-
ability (1"p)2, drawn from a single gamma density with
probability 2p(1"p), and it is, with probability p2,
drawn from a gamma density corresponding to the
aggregate of two non-empty tows. It follows that the
probability distribution of the sum of two Ä"Ã vari-
ables is quite complex and analytical results are non-
trivial to obtain. This conclusion leaves something to be
desired since it would be useful to have an additive
property for the distribution under consideration,
particularly when considering varying tow duration.
Investigating alternative c.d.f.s with such a property
would seem to be a useful area for future work.
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Details of fitting and interpretation.
Numerical example

The data on age 2 and 3 haddock are summarized in
Figures 2, 3. When fitting models to data it is of
importance to decide appropriately which parameters
are important and, in general, it will be of interest to test
for effects such as diurnal differences in catch rates,
depth, or temperature. In what follows, only depth and
spatial factors will be considered in addition to the year
effect.
Table 1 gives stepwise analysis of variance results for

comparing a sequence of Bernoulli models fitted to the
age 2 haddock data. All effects tested are entered as
factors and the sequence of factors is in the direction of
increasingly detailed splits of the oceanic area, from a
simple north–south split (regions 2–7 vs. 1, 9, 10 in
Figure 1) through the strata in Figure 1, to statistical
squares.
As for other generalized linear models, the deviance is

used in much the same way as the sum of squares is used
in ordinary regression. In particular, the reduction in
deviance is related to the usual concept of r2. It is seen
that the explained variation in Table 1 is not a very large
fraction (40%) of the total deviance, indicating that the
location of 2-group haddock can only somewhat poorly
be explained by the model, but this is considered further
below.
Since the data are 0/1 measurements, a ÷2-statistic is

used to test for significance. In Table 1, it is seen that the
initial (null) deviance of 6528 is reduced by 96 to 6432 by
using a model with only a year effect. Although this
reduction in deviance is small in relation to the total
deviance, it is considerable in comparison to the degrees
of freedom (9) expended and, therefore, it is highly
significant. It is seen that a considerable further reduc-
tion is obtained by accounting for the difference in the
north and south regions, but a further similar reduction
is obtained by going to a 10-region split. The 10 regions

clearly do not capture all the depth information, since
depth is a highly significant addition to the model. In
addition to this, the statistical squares seem to be a
highly significant and important addition to the model.
Notably, there may be a difference between ‘‘significant’’
and ‘‘important’’. The ‘‘importance’’ of a variable can be
determined e.g. in terms of the proportional reduction in
deviance. A statistically significant variable may in some
instances be better left out of the model, if the amount of
variation explained by the variable is small in relation to
the complexity that it adds.
These test results indicate that the finest possible

spatial scale is needed. In fact, the greatest portion of the
deviance is explained at the last step, going from 10
areas to the statistical squares. It is also seen (last line of
Table 1) that it is not possible to drop the depth term
from the final model, as this is still significant, even when
the square effect has been entered.
The final model in Table 1 has a deviance of 4259 on

4766 d.f. which might possibly be taken to indicate an
adequate fit to the data. However, as indicated in
McCullagh and Nelder (1989, p. 119), tests for lack-of-
fit will not be valid based on the current sparse data set
(unless the data can be collapsed into a smaller fre-
quency table for a given model containing only factors).
Table 2 gives test results for the gamma portion of the

model for age 2 haddock. It is seen that the model can be
used to reduce the deviance from 15141 to 8664 and that
for this model a fine spatial scale is also needed. For
these tests, an F-statistic has been used, since the gamma
model contains an unknown scale parameter.
Table 3 and 4 give similar results for age 3 haddock.

The same overall conclusions hold in that a considerable
reduction in deviance can be obtained using the model.
Although the above indicates that the use of a para-

metric model can be used to considerable benefit in
terms of reduction of variability (r2 in the range 0.4–0.5),
it should be noted that there is still considerable residual
variation in the data. Thus, the estimated dispersion

Table 1. Analysis of deviance table for different Bernoulli-based (Delta) generalized linear models fitted
to presence/absence of 2-group haddock by station in Icelandic groundfish survey, 1985–1994. The
models are fitted sequentially and the columns give the residual degrees of freedom for each model, the
residual deviance, the degrees of freedom corresponding to the additional term, the resulting change in
deviance, and the p-value when a ÷2-test is used to test for significance.

Model terms
Residual
d.f.

Residual
deviance

Test
d.f.

Change in
deviance p

1 4879 6528
Year 4870 6432 9 96 <0.001
Year+ns 4869 6096 1 335 <0.001
Year+reg 4861 5540 8 556 <0.001
Year+reg+depth 4852 4540 9 1001 <0.001
Year+square+depth 4757 3761 95 779 <0.001
Year+square 4766 4259 "9 "498 <0.001
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parameters in the gamma models are 4.2 and 3.9 for age
groups 2 and 3, respectively, indicating that the CV of
the positive measurements is about 200% after correct-
ing for the relevant factors and, for practical purposes, r
can be taken to be about 0.25. In this context it is worth
noting that computing the CV based on the raw positive

values yields some 470% in both cases. From the pre-
vious theory, it follows that the variance of the number
of fish in a tow is Var(X)=ì2[p(1+1/r)"p2] which is
bounded by Var(X)=ì2/r. Thus, the CV of the catch will
be no more than √1/pr. Taking the above value for the
dispersion parameter, and considering a region where

Table 2. Analysis of deviance table for different gamma-based generalized linear models fitted to the
abundance of 2-group haddock. Data used consists of those stations with some catches of 2-group
haddock in Icelandic groundfish survey, 1985–1994. The models are fitted sequentially and the
columns give the residual degrees of freedom for each model, the residual deviance, the degrees of
freedom corresponding to the additional term, the resulting change in deviance, and the p-value when
an F-test is used to test for significance.

Terms
Residual
d.f.

Residual
deviance d.f.

Change in
deviance F-value p

1 2975 15 141
Year 2966 13 263 9 1878 69.0 <0.001
Year+ns 2965 13 160 1 103 33.9 <0.001
Year+reg 2957 10 947 8 2213 91.4 <0.001
Year+reg+depth 2949 10 425 8 522 21.6 <0.001
Year+square+depth 2863 8664 86 1760 6.8 <0.001
Year+square 2871 8943 "8 "279 11.5 <0.001

Table 3. Analysis of deviance table for different Bernoulli-based (Delta) generalized linear models
fitted to presence/absence of 3-group haddock by station in Icelandic groundfish survey, 1985–1994.
The models are fitted sequentially and the columns give the residual degrees of freedom for each
model, the residual deviance, the degrees of freedom corresponding to the additional term, the
resulting change in deviance, and the p-value when a ÷2-test is used to test for significance.

Terms
Residual
d.f.

Residual
deviance d.f.

Change in
deviance p

1 4879 5965
Year 4870 5896 9 70 <0.001
Year+ns 4869 5368 1 527 <0.001
Year+reg 4861 4847 8 522 <0.001
Year+reg+depth 4852 4031 9 816 <0.001
Year+square+depth 4757 3116 95 915 <0.001
Year+square 4766 3542 "9 "425 <0.001

Table 4. Analysis of deviance table for different gamma-based generalized linear models fitted to the
abundance of 3-group haddock. Data used consists of those stations with some catches of 3-group
haddock in Icelandic groundfish survey, 1985–1994. The models are fitted sequentially and the
columns give the residual degrees of freedom for each model, the residual deviance, the degrees of
freedom corresponding to the additional term, the resulting change in deviance, and the p-value when
an F-test is used to test for significance.

Terms
Residual
d.f.

Residual
deviance d.f

Change in
deviance F-value p

1 3413 15 108
Year 3404 12 746 9 2362 106 <0.001
Year+ns 3403 12 674 1 71 29 <0.001
Year+reg 3395 10 817 8 1857 94 <0.001
Year+reg+depth 3387 10 155 8 662 34 <0.001
Year+square+depth 3301 8144 86 2012 9 <0.001
Year+square 3309 8526 "8 "382 19 <0.001
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there is more than 50% probability of catching haddock,
the CV of the catch will be no more than 280%, but if
haddock are always caught in a certain location, the CV
will be no more than 200%.
It is also clear from the above examples how the

current approach can be used to test or modify proposed
stratification schemes. In particular, the deviance analy-
ses will illustrate the importance of certain methods
of stratification. Some measured variables may be
important although they are not directly linked to the
stratification method. For example, it is quite possible
that depth, time of day, or other variables may be used
to reduce the amount of variation in the data and thus
potentially increase the usefulness of abundance indices,
for example.
The results from the above analyses can be used alone

to provide year effects (main effects) in the models
indicated. Naturally, if main effects are to be extracted
and used, special care needs to be taken if the models
contain interaction terms with year. The common
approach (Anon., 1992) of extracting the year effect
alone from a log-linear model, for example, can be
replaced by an integral of the fitted model over the entire
region under consideration. This approach yields abun-
dance indices which are equivalent to the year effects
when the model contains no interaction terms. Within
the present model, however, even when the year effect is
only present as a main effect in each piece of the Ä"Ã
model, the overall model will contain a non-linear year
effect. Thus, integration of the fitted response surface is
required to obtain the overall abundance index.
Fitted values from the overall Ä"Ã model are

obtained from the two submodels. These values can be
computed on a grid and then integrated. The present
approach is simply to compute the average fitted value
across stations within each statistical square and the
overall integral is taken as the direct average over all
squares. The resulting indices is analysed along with
other indices of abundance in the following sections.
The binary nature of the Bernoulli part of the model

leads to nontrivial problems in interpretation which are
worthy of some note. In particular, when factors only
are used in the model, it is possible to collapse the data
into a contingency table which leads to an anova-table
which contains different deviance values, although the
test statistics are the same. To give an example, if only
the effect of the north-south stratification is considered
along with the year effect, than Table 5a,b is obtained
based on Bernoulli (0/1) or binomial (collapsed) data,
respectively. It is seen that in the binomial table a
considerable proportion (99%) of the deviance is
explained whereas only a minor proportion (10%) is
explained in the Bernoulli table. It is also seen (by
comparing the residual d.f. to the residual deviance) that
the goodness of fit test results are considerably different.
The reasons for these apparent discrepancies are of

course that the Bernoulli model attempts to explain data
on a much finer scale than does the binomial model.

Other indices
A variety of different methods have been proposed to
compute indices based on marine survey data. The
simplest possible method is simply to compute the
arithmetic mean (AM) over all the stations. Alternatives
include a stratified mean (SM) using e.g. the 10 regions
in Figure 1 and a geometric average (GM) based on

Table 6a,b lists all these indices for age groups 2 and 3 of
haddock, along with the Ä"Ã index and VPA estimates
of year class strength at ages 2 and 3, as given in Anon.
(1994).

Comparisons among indices and
with VPA
The indices can be compared with each other and with
population estimates using virtual population analysis
(VPA) (Gulland, 1965; Anon., 1994) using correlation
analysis and plots. The plots are given in Figures 4, 5
and r2-values are given in Table 7. Also given in Table 7
is the result from predicting VPA values based on simple
scaling of the indices. This is done by computing average
catchability by dividing average VPA by the average
index and multiplying the annual index values by
catchability.

Table 5. Comparison of analyses based on (a) the full data set
(Bernoulli GLM), and (b) a collapsed set (binomial GLM).
Icelandic groundfish survey. Age 3 haddock. Results are based
on adding terms sequentially.

(a) Bernoulli model

d.f.
Change in
deviance

Residual
d.f.

Residual
deviance p (÷2)

NULL — — 4879 5965.41 —
Year 9 69.77 4870 5895.65 <0.001
ns 1 527.24 4869 5368.41 <0.001

(b) Binomial model

d.f.
Change in
deviance

Residual
d.f.

Residual
deviance p (÷2)

NULL — — 19 601.92 —
Year 9 69.77 10 532.14 <0.001
ns 1 527.24 9 4.90 <0.001
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The various indices can be compared to results from
tuned VPA estimates of stock size. In this context it
must be noted that survey data play an important role in
the estimate of stock size. To avoid possible confound-
ing effects, comparisons with VPA are based only on
data from the years 1985–1990.
The tables and figures show that there is no clear

winner in the comparisons, although the Ä"Ã index

does best in terms of predicting VPA values based on
simple catchability scaling. Similarly, the Ä"Ã index
seems to provide very consistent indices for the two
age groups. Although care should be taken not to
over-interpret these results, it should be noted that these
two properties are very important, since an index should
at a minimum be internally consistent and it should
ideally provide a proportional relationship with

Table 6. Indices of abundance of 2- and 3-group Icelandic haddock, based on different methods of analysis by year and year class
(Ycl). DG=delta-gamma, AM=arithmetic mean, SM=stratified mean, GM=geometric mean. VPA=virtual population analysis.

Indices of 2-group abundance

Year 85 86 87 88 89 90 91 92 93 94
Ycl 83 84 85 86 87 88 89 90 91 92
DG 982 1821 3891 594 424 690 2390 4411 1073 1225
AM 604 1674 4816 624 357 615 2761 3820 566 889
SM 583 1671 4777 604 395 625 3092 4214 623 1053
GM 25 47 56 12 8 11 60 95 22 18
VPA 41 88 164 46 26 26 113 167 40 50

Indices of 3-group abundance

Year 85 86 87 88 89 90 91 92 93 94
Ycl 82 83 84 85 86 87 88 89 90 91
DG 260 1580 2917 3508 717 518 836 2649 5320 802
AM 303 1067 3413 3575 732 504 718 2790 4455 622
SM 287 1013 3251 3363 835 560 742 3074 5046 684
GM 17 75 125 110 32 13 41 113 142 35
VPA 16 33 72 132 38 21 21 90 135 33

92

250

0

84

Year class

50

200

150

100

86 88 90

Figure 4. Time series of indices of 2-group haddock, scaled to VPA average. (——)=VPA; (– · – · –)=GB; (· · ·)=SM; (– – –)=AM;
(———)=GM.

586 G. Stefánsson

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/53/3/577/625707 by guest on 20 April 2024



abundance, rather than a non-linear one or one with an
intercept.
As seen from Figures 4, 5, however, the results from

the comparisons with VPA might change if another set

of years were to be used, but this is not possible within
the present framework since the final VPA values need
to be tuned to certain indices.

Conclusions

The approach considered is based on a model which has
considerable intuitive appeal in that it incorporates most
of the concerns usually raised in the analysis of ground-
fish survey data. Results obtained are close to those
obtained by other methods (which is in accordance with
the results in Anon., 1992) but the ad hoc nature of many
other methods is eliminated by using an explicit model
for zero and non-zero values. The model provides an
analysis technique where many problems usually associ-
ated with zero values are alleviated. This includes issues
such as those involving the definition of an appropriate
area for the analysis and those related to log-
transforming values which can be arbitrarily close to
zero. Furthermore, the approach can accommodate
spatial and temporal variability in an explicit model.
Variance estimates for the resulting parameters are

available but should be viewed with caution, since the
real variances of interest are those related to prediction
capabilities and the degrees of freedom vary depending
on the inclusion of zero-catch tows. The actual variances
of interest are probably better obtained by tuning VPAs
with the indices, as in Anon. (1992).
This model has considerable potential for the general

analysis of groundfish survey data, since it can incor-
porate several relevant properties of fish distributions,
including changes in density and range. The usual

90

200

0

82

Year class

50

150

100

86 8884

Figure 5. Time series of indices of 3-group haddock, scaled to VPA average. Key as for Figure 4.

Table 7. (a, b) Explained VPA variation (r2), as obtained from
linear regression of VPA on the various indices using raw or log
scale for 2- and 3-group haddock. Also given is the sum of
squared errors (SSE) based on predicting VPA numbers from
indices using a scale factor alone. (c) Explained variation when
an index for age 2 is used to explain the index for age 3.
DG=delta-gamma model indices, AM=arithmetic mean,
SM=stratified mean, GM=geometric mean.

Index

(a) 2-group (b) 3-group

r2

log
r2

raw SSE
r2

log
r2

raw SSE

DG 0.89 0.97 750 0.86 0.85 1487
AM 0.92 0.96 3573 0.92 0.83 2053
SM 0.91 0.96 3503 0.92 0.82 1906
GM 0.85 0.85 2101 0.75 0.63 3739

(c) r2 between log indices for ages 2–3

DG3 AM3 SM3 GM3 VPA3

DG2 0.92 0.88 0.88 0.80 0.91
AM2 0.87 0.91 0.91 0.74 0.94
SM2 0.86 0.89 0.91 0.71 0.94
GM2 0.93 0.89 0.90 0.86 0.89
VPA2 0.87 0.90 0.92 0.72 1.00
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qualities of GLMs, specifically the potential for incor-
porating, estimating, and testing effects such as diurnal
variations, are also available.
It must be noted, however, that here, as in Anon.

(1992), the actual type of analysis considered does not
seem to be of great consequence to the predictive power
of abundance indices obtained, since even simple
methods of analysis yield results fairly consistent (in a
regression context) with VPA results for the data sets
considered. This conclusion is, however, likely to be
dependent on several factors such as the goodness of
fit of the specific model and the number of stations in
the survey.
One important item to note is that the issues raised in

Pennington and Vølstad (1994) concerning the intra haul
correlation and its effect on the various statistics are not
considered at all in the present paper. The joint consider-
ation of the coarse-scale spatial distribution modelled
here and the finer-scale effects expressed in the intra
haul correlation is of major interest and needs to be
considered further.
Another important area of future work on the analy-

sis of abundance data is in developing and testing
scatterplot smoothers in generalized additive models
(GAMs) as described by Hastie and Tibshirani (1990)
where the abundance in a given location is described as
a smooth function of independent variables such as
location or depth.
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