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Stationary fishing gear is employed in a diverse array of fisheries including those for
many high unit-value species. The mode of operation of these gear types (traps,
long-lines, gillnets, etc.) requires special consideration in the development of abun-
dance indices because of gear saturation effects. Specifically, factors affecting the
probability of capture and of escapement or other sources of loss must be addressed.
Here, we describe two models of capture processes in traps that include existing models
as special cases. Deterministic models are first developed to illustrate the basic
principles. Stochastic analogues of two well-known models are then described using
the theory of birth-death stochastic processes. It is shown that the mean of the
stochastic models is identical to the deterministic case for models where closed form
solutions are possible. The stochastic models provide additional diagnostic informa-
tion in terms of the variance and the probability distribution of catch levels.
Illustrations of this approach are provided for experimental observations on ingress
and catch for the American lobster (Homarus americanus).
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Introduction

Fisheries for many high value species, including decapod
crustaceans (Krouse, 1989; Miller, 1990), tropical
(Munro, 1983) and boreo-temperate fish (von Brandt,
1984), and gastropod and cephalopod molluscs
(Hancock and Simpson, 1962), are prosecuted using
traps of various designs. Traps can be highly size- and
species-selective and are both efficient and cost-effective
(Miller, 1990). These devices share with other forms of
stationary gear (e.g. long-lines and gillnets) a passive
mode of capture in which the behavior of the species
sought plays a dominant and critical role. Stationary
fishing gears are typically set at fixed locations and
retrieved after variable immersion (soak) intervals.
Immersion times can vary greatly in these fisheries and
catch is typically not a linear function of the soak
interval. These characteristics must be considered in the
development of relative abundance indices based on
standardized catch and effort series.
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The problem of gear saturation has long been recog-
nized (Hile and Duden, 1933; Kennedy, 1951) and a
number of models have been developed to describe this
process following the seminal studies of Gulland (1955)
and Beverton and Holt (1957). The fundamental simi-
larities in the deployment and operation of various
forms of stationary gear have led to a convergence in
modelling approaches. Indeed, the most commonly cited
model for trap fisheries (Munro, 1974) is generally
expressed in a form identical to the long-line/gillnet
model of Gulland (1955) and Beverton and Holt (1957).
However, the Munro model is based on fundamentally
different assumptions regarding the roles of entry and
escapement in traps.

Our objective is to clarify these differences and to
provide extensions of both models. This discrimination
is essential if these models are to be used in the devel-
opment of standardized measures of abundance. We
also provide contrasts between stochastic forms of these
models to highlight these distinctions and to provide
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additional diagnostic information. We begin by review-
ing the underlying assumptions and derivations of the
Gulland-Beverton-Holt model and Munro’s model to
set the stage for these further developments.

Background

Gulland (1955, pp. 34-36) derived a model for an indi-
vidual long-line under the assumption of a linear decline
in the catch rate with an increase in catch. Escapement or
other sources of loss (e.g. removal by predators) were not
considered. The model can be written:

C=C.(1-e ") ()

where C_, is the maximum catch level, and A is the
rate at which the maximum catch is approached. The
maximum catch is defined for long-line fisheries by the
number of hooks in the set. Gulland derived an expres-
sion for the mean effective effort of an individual
long-line as a function of soak time and demonstrated
that the catch per unit effort is equal to the rate at
which the asymptotic catch is reached. Gulland pro-
posed the parameter A as an index of abundance.
Murphy (1960) subsequently refined this approach with
explicit consideration of the individual processes of
capture, escapement, and other sources of loss for
long-lines (see also Sinoda, 1981). Beverton and Holt
(1957, pp. 94-95) applied a model in the form of
Equation (1) above to gillnet catches. For gillnet fish-
eries, C_, could, in principle, be defined as the number
of mesh openings; however, this undoubtedly repre-
sents an unrealistically high level for the maximum
catch (Beverton and Holt, 1957).

Sinoda and Kobayasi (1969) provided an early appli-
cation of the Gulland-Beverton-Holt model to a trap
fishery. Munro (1974) subsequently proposed a model
for unbaited Antillean fish traps assuming a constant
rate of entry and escapement of a constant proportion of
the catch per unit time. Munro began by specifying a
model identical in form to Equation (1) but further
defined a model which can be written:

C=(C;_,+E)—p(C,_,+E) )

where E is the daily rate of ingress (entry) into the trap
and p is the daily probability of escapement. The change
in catch is therefore equal to the balance between the
number entering (a constant) and the fraction escaping
per day. Note that the escapement coefficient is applied
to the sum of the catch from the previous day and the
new entrants. Munro’s recursion formula can be written:

CF%(l—e"“) A3)
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where R is an instantaneous rate of escapement,
r=exp(—R) and p=(1—r) (see Equation 6 of Munro,
1974). The asymptotic catch is equal to rE/p in this
specification (i.e. the limiting catch is a function of rate
of entry and the probability of escapement). Munro
proposed the entry rate E as an index of abundance. The
interpretation of the factors affecting the asymptotic
catch is therefore entirely different in this model relative
to the Gulland-Beverton—-Holt model. Further, the role
of the coefficient in the exponents of the two models
differs substantially, representing a capture rate in the
Gulland-Beverton-Holt model and an escapement rate
in the Munro model.

Munro’s model in the form of Equation (1) has been
applied to many crustacean fisheries (see Miller, 1990, for
a comprehensive review). However, Munro’s more de-
tailed specification of the underlying basis for his model
(Equations 2 and 3) has often been overlooked (but see
Bennett and Brown, 1979; Robertson, 1989). The Munro
model assumes that the entry rate is independent of the
number of individuals already in the trap and that the
entry and escapement rates are time-invariant. In
the following section, we describe a model where these
constraints are eliminated and contrast this model with
an extension of the Gulland-Beverton—Holt model which
includes an escapement component. Somerton and
Merritt (1986) described an alternative approach to
modifying the Gulland-Beverton-Holt model to include
escapement. Our derivation is a direct extension of
Gulland’s original formulation and leads to a different
result. Somerton and Merritt independently derived a
model which is nearly identical to a model for long-line
fisheries developed by Murphy (1960), again indicating
the fundamental similarity of approaches taken in model-
ling the performance of different forms of stationary gear.

Deterministic models

Models incorporating explicit expressions for trap entry
and escapement are described below. Two forms are
considered for the entry component to encompass the
range of previously published models. For simplicity,
only proportional escapement is allowed. The rate of
change of the catch (in number) is given by:

dC,
d_t[ ={( Ct) - blCl @

where C, is the catch at time t, f(C,) is a function
describing ingress into the trap, and b, is the instan-
taneous rate of escapement (which can vary with time).
The first form of the entry component considered is a
power function model:

f,(C)=aCt (5)
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where a, is a time varying ingress parameter and m is a
shape parameter (which we will assume to be time
invariant although this constraint can be easily
removed). The complete specification for this model is
then:

dC
d_tt =aCr—bC, (6)

where all terms are defined as above. This model is
identical in general form to the well known Richards
growth function. Notice that the instantaneous escape-
ment rate (b,) is applied to C, in this differential equation
and therefore differs from the form used by Munro in his
difference equation formulation (Equation 2). The
parameters a, and b, are allowed to vary in time:

t

a,~fa(t)de (7)
and
bt=jb(T)dT t9)

0

The solution is given by:

a 1/(1—m)
C.={—‘[1—e“m>bﬂ1} ©)
b,

for the initial conditions C,=0, t,=0 (note that m=1 is
undefined). For the special case of time-invariant entry
and escapement rates, this model describes an asymp-
totic catch with increasing soak time; the limiting catch
is a function of the ratio of the capture and escape-
ment rates. Examples of the relationship between catch
and soak time for several levels of the shape parameter
m are provided in Figure la for the time invariant
case. If entry rates decline with time because of
decreased local abundance, loss of effectiveness of bait
etc., or if escapement rates increase with increasing
soak time, the relationship is no longer asymptotic but
rather declines with time (see Fig. 1b for an illustra-
tion). In trap fisheries where escapement is relatively
easy, it is not uncommon to observe catches in baited
traps reaching a maximum and subsequently declining
with increasing soak time (e.g. Bennett, 1974; Munro,
1974; High and Worlund, 1979; Skud, 1979; Sloan and
Robinson, 1985; Somerton and Merritt, 1986; Smith
and Jamieson, 1989). Sundberg (1985) developed a
model assuming a decaying exponential entry rate due
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to loss of effectiveness of the bait (see also Smith and
Jamieson, 1989).

For the case m=0 (representing an entry rate which is
independent of the number in the trap), we have a
variant of Munro’s model for unbaited Antillean fish
traps:

C=t(1—ch)

b, (10)

where the limiting catch is given by the ratio of the entry
and escapement coefficients. For the case m>0, the
model is appropriate for certain gregarious species
harvested in fish and crustacean traps where conspecifics
in the trap attract others (Munro, 1974; Miller, 1990).
This effect has been routinely observed and exploited to
increase capture rates in spiny lobster and blue crab
fisheries (Miller, 1990). Note that in this case, an
inflection in the catch at low soak times is predicted
(Fig. 1a). For the case m<0, the capture rate declines
with increasing catch. This effect has been reported in
many crustacean trap fisheries (Miller, 1990) and reflects
agonistic encounters and displays and/or chemical
signals which reduce entry rates.

For the case of a power function describing the
capture process and no escapement or loss (b=0), we
obtain a version of Austin’s (1977) model:
Ce=[a(1 —mre—m (11)
In Austin’s original notation, a.=[a,(1 — m)]*®~™, S=t,
and (1 — B)=1/(1 — m) giving C=aS®™ ~P as the model.
Austin’s original time-invariant model has been criti-
cized because it leads to a continual increase in catch
with increasing soak time (Miller, 1990). However, this
objection is removed if the parameter a, is allowed to
decrease with time.

We next consider an extension of the Gulland—
Beverton—Holt model to explicitly incorporate escape-
ment. The entry function is taken to be:
f,(C)=k(C*— C) (12)
where C* is maximum catch (a function of the gear
configuration), k, is the (time varying) rate at which the
maximum is approached:

k.=[k(e)de

0

(13)

This is the form underlying the Gulland-Beverton-Holt
model (see Equation 2.9 of Gulland, 1955). It is also
identical to the form underlying the von Bertalanffy
growth model. The full model can be specified:
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Figure 1. (a) Relationship between catch and soak (immersion) time for the generalized Munro model for three values of the shape
parameter (m). (b) lllustration of the effects of time-invariant and time-dependent capture processes for the power function model.
The time dependent model is based on a linearly decreasing capture rate with time.

dC
_t:kt(C* —C)-bC,

it (14)

where b, is the escapement rate as defined above. The
solution is given by:

ke
k+b,

C, (1 —e~ ta™bot) (15)

Note that when b>0 (i.e. escapement is possible), the
asymptotic catch will be below the maximum possible
catch. Examples of the relationship between catch and
soak time for several escapment levels are provided in
Figure 2a for the time invariant case. An illustration of
the effect of a linear increase in the escapement rate with
time is provided in Figure 2b; again the catch decreases
with increasing soak time.

Stochastic models

In this section we describe the development of stochastic
analogues of the deterministic models outlined above
based on the theory of birth—death processes (see Feller,
1957; Cox and Miller, 1965; Bailey, 1964; Karlin and
Taylor, 1975 for overviews). Stochastic models have
previously been developed for hook and line fisheries
using the theory of Markov processes (Rothschild, 1967)
and renewal theory (Deriso and Parma, 1987). Reed
(1986) illustrated the development of a stochastic catch
model and Sampson (1988) described a catch model
based on a pure death stochastic process. These models
directly address the issue of variability in catch processes
and also provide additional diagnostic information on
the probability distribution of the catch and its mean
and variance.

The probability of an individual entering a trap
during a short interval of time t to t+h can be designated
ach+oh; the probability of escapement during this
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Figure 2. (a) Relationship between catch and soak (immersion) time for the modified Gulland-Beverton-Holt model for three
levels of escapement. (b) Illustration of the effects of time-invariant and time-dependent escapement processes.

interval is Bch+o(h) [where o(h) is a quantity such that
lim,_,o o(h)/h=0 (implying that o(h)—0 more rapidly
than h—0)]. The probability of two or more events
(capture and/or escapement) in the interval is taken to be
o(h). The probability of obtaining exactly C individuals
in the catch at time t+h is:

Po(t+h)=Pc(t)[1 — ach — Bch+o(h)]+Pc _ (1)
[oc — 1 h+0o(h)]+Pc.1()[Bc1h+o(h)]+o(h) (16)
The first term on the right hand side gives the prob-
ability of no change given that the catch at time t is
exactly C individuals. The second term represents the
probability of an increase from C — 1 individuals and
the third component is the probability of a decrease
from a catch of C+1 during the time interval. The
probabilities are taken to be independent and therefore
additive. Rearranging and taking the limit as h—0 of
[Pc(t+h) — Pc(t))/h gives:

Pe= = (ac+Bc)Pc(t)+oc — 1Pc—1(t ) +BcsiPcra(t) (17)

where P$=dP/dt and

Po= — 0oPo(t) +B1P4(t) (18)
This is the basic system of equations for a linear
birth—-death stochastic process. Here, the birth compo-
nent is equated with ingress and the death component
relates to escapement or other sources of loss. We
assume that there is no waiting time in the capture
process. The terms o and Bc can, in general, be
specified as functions of catch. Whether the above
system of equations can be solved in closed form
depends on the exact functional forms and the initial
conditions specified. Below, we provide results for the
Gulland-Beverton-Holt model and a variant of the
Munro model. To simplify both the notation and
the discussion, we will consider only the time invariant
case. However, the results easily generalize to include
time-varying parameters as in the deterministic case.
We will first consider a version of the Munro model
(m=0). We then have a-=a and B-=bC, and the basic
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system of equations is:

Pe= = (@+bC)P(t)+aPc _ 1 () +b(C+1)Pc.1(t)  (19)
and
Py= —aPy(t)+bP,(t) (20)

This system of equations is amenable to solution using
the method of probability generating functions. We take
the initial conditions to be P,=1 and P(0)=0 for all
C #0. The probability density function (PDF) for this
model is Poisson:

{(a/b)[1—e ™€

P(t)= {e—m/b)[l —e_b‘]} ol (21)
with mean:
E(C)=r(1—e™) (22)

Recall further that for the Poisson distribution, the
mean and variance are identical. Note also that the
stochastic mean is identical to the deterministic model.
An illustration of the probability distribution of catch
with increasing soak time is provided in Figure 3 for this
model.

For the stochastic version of the Gulland-Beverton—
Holt model we have a-.=k(C*—C) and B.=0. The
catch model is then:

Pe(t) =K[(C* — C)IPc(D) +[K(C* — (C — 1))IPc (1) (23)
where (C+1) cannot exceed C* and

P,= — kC*P,(t) (24)
This model can again be solved in closed form by the
method of probability generating functions. The initial
conditions are taken to be P,(0)=1 and P(0)=0 for all
C+#0 (i.e. the catch at time 0 is 0). The probability
density function for this model is binomial:

PC(t):<CC* >(e—kt)(C*_C)(1_e—kl)C (25)
with mean:
E(C)=C*(1—e~ (26)

and variance:
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V(C)=C*e )1 —-e ") @7)
Notice that the stochastic mean is again identical to the
deterministic solution. An illustration of the form of the
probability density function for this model is provided in
Figure 3. Note that the general shape of the distribution
with increasing soak time differs markedly from the
Poisson model examined earlier. The probability mass
becomes concentrated near the maximum catch value
but, of course, does not exceed the maximum.

Example

Application of these principles are described below for
the American lobster, Homarus americanus. Auster
(1985) set strings of 16 traps in Long Island Sound, USA
and monitored ingress and escapement from these traps
over immersion times of up to 7 d. Observations by
SCUBA were made daily and each individual in the trap
was tagged for subsequent identification. Some entries
could have gone unrecorded if the individual exited the
trap prior to the census, resulting in an underestimate of
the true entry and exit rates (Auster, 1985).

For the purposes of the present analysis, we combined
data from individual sets collected during two distinct
area/time period combinations. Catch levels within these
two area/time combinations were relatively homo-
geneous but were distinctly different between area/time
combinations. The first group, comprising two sets
(n=32 traps) was characterized by relatively low catch
rates. In contrast, the second group of three sets (n=48
traps) had higher catch levels. Daily ingress and egress
from each trap for these sets were available for both
area/time periods. The observational periods for groups
1 and 2 were 7d and 5 soak days respectively. We
assumed that the catch of each trap is independent of
others in the string and can be treated as replicates.

We fit the generalized Munro model to the catch as a
function of soak time by non-linear least squares. The
catch was asymptotic or increasing within the range of
soak times observed and no independent information on
time-varying entry or escapement rates was available.
We assumed that the parameters were time-invariant for
the purposes of this analysis. Although it was possible to
estimate all three parameters simultaneously, we found
that the parameter estimates were highly correlated,
resulting in high standard errors for the estimates. We
therefore fit the model for a range of fixed m values,
varied in increments of 0.05, and estimated the remain-
ing two free parameters (a and b). The model with the
lowest residual mean square error was selected as the
best model. This approach does unfortunately preclude
testing for whether the shape parameter differs signifi-
cantly from zero. However, we have found that the
variability of the estimates for the full parameter model
is generally too high to allow an adequate test for the
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Figure 3. lllustration of the probability distribution of catch levels for stochastic version of the Munro model with increasing soak
time (left) and the probability distribution of catch levels for stochastic version of the Gulland-Beverton—-Holt model with

increasing soak time (right).

shape parameter. Non-parametric bootstrap estimates
(Efron, 1982) of the parameter errors were made.

The entry rates for the first group was relatively
constant and the cumulative entry was approximately
linear over time, although there was clear evidence of
reduced entry on the final day of observation (Table 1 ;
Fig. 4a). In contrast, the cumulative catch was clearly
non-linear with increasing soak time (Fig. 4a). The value
of the shape parameter providing the lowest mean
square error was m= — 0.15, suggesting a slight reduc-
tion in entry with increasing catch. For comparison, we

also provide parameter estimates for m=0 (correspond-
ing to the Munro model; Table 2). We note that the
changes in the residual mean square in the vicinity of
—0.2<m<0.2 are very small. A comparison of the
observed and expected catch with increasing soak time is
provided in Figure 4b.

The cumulative entry for individuals in the second
group was markedly non-linear (Fig. 5a) and the
number of lobsters entering the traps declined sharply
following the first soak day (Table 1). The lowest
residual mean square error was obtained with
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Table 1. Summary of mean entry and catch for each soak day (variance estimate in
parentheses below) for American lobster in Long Island Sound (Auster, 1985) for two
periods (September—October 1982; group 1; n=32 and October-November 1982; group 2;

n=48).
Group 1 Group 2
Soak day Entry Catch Entry Catch
0.188 0.188 0.521 0.521
1 (0.157) (0.157) (0.468) (0.468)
0.188 0.188 0.313 0.667
2 (0.157) (0.157) (0.390) (0.780)
0.125 0.313 0.208 0.708
3 (0.113) (0.286) (0.211) (0.722)
0.156 0.375 0.250 0.750
4 (0.201) (0.371) (0.277) (0.830)
0.156 0.375 0.125 0.792
5 (0.136) (0.565) (0.112) (0.807)
0.188 0.500
6 (0.286) (0.903)
0.063 0.500
7 (0.060) (0.838)

m= —1.30, again suggesting that the presence of lob-
sters in the traps following the initial high entry rate
inhibited the further entry of individuals. This effect was
substantially stronger for group 2 relative to group 1
where catch levels were much lower. A comparison of
the observed and predicted catch with increasing soak
time is provided in Figure 5b. The reduction in entry
rates with increasing catch is consistent with experimen-
tal observations in which lobsters were pre-stocked in
traps (Richards et al., 1982). Traps in which 3 and 8
lobsters were stocked had significantly lower catches
than control traps. Addison (1995) found similar results
for traps stocked with a single lobster (H. gammarus).

We further examined the data for group 1 in the
context of the stochastic catch model. For this set, catch
levels were relatively low and the apparent effect of
individuals already in the trap on entry rates was
relatively small. We compared empirical catch for each
day against expected levels according to a Poisson
distribution for the Munro model. The observed and
predicted probability distribution of number of individ-
uals per trap for the Poisson model is provided in
Figure 6.

Discussion

Trap-based fisheries present unique challenges for the
development of standardized measures of abundance.
Catch rates in these fisheries are determined by the
interplay of factors affecting capture and escapement or
loss from the gear. The exact nature of the capture and
loss processes determines the most appropriate strategy
for development of an abundance index. For stationary

gear fisheries, the behavior of the target species plays a
vital role in the capture process. Physiological and
environmental factors have a dominant effect on the
behavior of the species sought and therefore must be
considered in the development of abundance indices
based on catch rate information. For broad scale
fishery-dependent information, this may require stratifi-
cation based on temporal/spatial units where environ-
mental conditions and physiological state of the target
species can be considered relatively homogeneous. Alter-
natively, models that incorporate these factors explicitly
can be developed.

We have described approaches to modelling the per-
formance of an individual trap. However, further appli-
cation of these models in the development of indices of
abundance requires explicit linkage to local population
size. In particular, we require an index of catch per unit
effort which is proportional to population size: C/f=qN
where C/f is the catch per unit effort, g is the catchability
coefficient, and N is population size. Clearly, the catch
per trap is not proportional to abundance at long soak
times where the limiting catch has been attained. How-
ever, catch per trap for short immersion times before
interactive effects are manifest could be used. For
example, Miller and Hunte (1987) demonstrated that the
catch per trap of selected reef fish at short soak times
was proportional to abundance measured by visual
census in the vicinity of the trap. The choice of this soak
time would, of course, be species-specific. Application of
this general approach will require calibration based on
experiments and/or carefully designed observational
studies in which the effects of factors such as changes in
bait attractiveness, inter- and intraspecific interactions,
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Figure 4. (a) Cumulative entry and catch (mean number per trap) for American lobster in Long Island Sound (Auster, 1985) in
experimental fishing operations during September—October 1982 and (b) observed (closed circles) and predicted mean catch per

trap as a function of soak time.

the effective fishing area of a unit of gear, potential
interference among units of gear, and the effects of local
population depletion can be quantified. The effects of
the existing catch on new entrants and time dependence
of the entry and escapement parameters are likely to be
confounded in field data. It will therefore be crucial to

conduct controlled experiments in which varying num-
bers of individuals are stocked in traps (e.g. Richards
et al., 1982; Castro and DeAlteris, 1990; Addison, 1995)
with entry and escapement continually monitored and
bait freshness or attractiveness controlled over time (e.g.
Miller, 1980; Smith and Jamieson, 1989). In addition,

Table 2. Parameter estimates and associated asymptotic standard errors for trap catch
model applied to American lobster in Long Island Sound (Auster, 1985) for two time
periods: September—October 1982 (group 1; number traps=32) and October—November
1982 (group 2; number traps=48). For both groups, model parameter estimates were made
fixing the shape parameter (m) at zero and by incrementally varying m and selecting the

model with the lowest residual error (see text).

Parameter Group 1 Group 2
0.1457 0.1456 0.8457 0.1209
a (0.0901) (0.0622) (0.2034) (0.1226)
0.2490 0.2162 0.1094 0.1877
b (0.3427) (0.2892) (0.3197) (0.3602)
—0.15
m 0 0 —1.30
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Figure 5. (a) Cumulative entry and catch (mean number per trap) for American lobster in Long Island Sound (Auster, 1985) in
experimental fishing operations during October-November 1982 and (b) observed (closed circles) and predicted mean catch per

trap with m= —1.30 as a function of soak time.

the issue of interference among units of gear as a
function of the spacing between traps needs to be
carefully considered (e.g. Sinoda and Kobayasi, 1969;
Williams and Hill, 1982). It is further necessary to
demonstrate the relationship between the proposed
abundance index and actual abundance (e.g. Miller,
1975, 1978; Yamane and ltaka, 1985; Miller and Hunte,
1987; Recksiek et al., 1991) in calibration studies.
Finally, variation in the catchability coefficient as a
function of environmental factors must be considered
(e.g. McLeese and Wilder, 1958; Paloheimo, 1963;
Morgan, 1974). Given the large number of potentially
interacting factors that can affect trap catches, we con-
cur with Miller (1990) that trap-based measures of
abundance should be based on controlled fishing exper-
iments rather than commercial fishing operations.

We have contrasted a generalized version of the
Munro model with an extension of the Gulland-
Beverton—-Holt model to allow for escapement. We
note however, that the maximum catch (C*) often
cannot be defined unambiguously for traps, limiting

the general utility of the Gulland-Beverton—-Holt
model for trap data. Yamane and Itaka (1985) defined
the maximum catch as the volume of the trap divided
by the space occupied by an individual. A trap clearly
has a maximum physical holding capacity. However, it
is unlikely to be realized because of behavioral inter-
actions of animals inside and outside the trap and
other factors (Miller, 1990). However, Hancock and
Simpson, 1962, and Hancock, 1963, report that traps
for whelks are often filled to capacity and High and
Worlund, 1979, note that king crab traps are some-
times completely filled. We further note that although
a trap may, in principle, be filled to apparent capacity,
this limit will depend on the size composition of the
catch and other factors and will not represent a finite
number of individuals which can be consistently speci-
fied. Von Brandt (1984) described primitive eel traps
used in artisanal fisheries consisting of cylindrical com-
partments (e.g. sections of bamboo) joined together.
Here, the number of compartments in a unit could be
used to define C* (assuming multiple occupancy of a
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1982.

compartment does not occur). We suggest that unless
C* can be readily defined for a trap as in the above
example, that alternative models be considered.

Few published studies to date have provided informa-
tion on the probability distribution of the number of
individuals per trap. Williams and Hill (1982) examined
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catch frequency distributions and variance to mean
ratios for the portunid crab Scylla serrata. The variance/
mean ratios were significantly less than one, suggesting a
non-random distribution of individuals per trap. The
variance and mean are equal for the Poisson distribution
(see Stochastic models) and a variance/mean ratio of one
indicates a random distribution. Williams and Hill
(1982) noted that the presence of a crab in a trap
reduced the probability of additional entries. Addison
(1995) reported similar results for the European lobster,
H. gammarus; the variance was consistently less than the
mean in these studies although the null Poisson distri-
bution could be rejected for only one case. Considera-
tion of the catch distribution and its mean and variance
provides important additional diagnostic information
on the underlying processes affecting trap catches. The
expected probability distribution for the stochastic ver-
sion of the Munro model is Poisson which provides a
useful point of comparison with the observations of
Williams and Hill (1982) and Addison (1995). Although
it does not appear to be possible to obtain closed form
solutions for the PDF of the generalized Munro model
(m+0), numerical solutions can be obtained for a given
set of initial conditions and these can be compared with
empirical observations.

We have not included the effects of interspecific
interactions (e.g. Richards et al., 1982; Addison, 1995)
or intraspecific interactions among size classes (Smith
and Jamieson, 1989) in the development of trap models.
In most stationary gear fisheries, several species may be
caught by the gear, and there may be competitive
interactions that influence the capture process. Richards
et al. (1982) showed that the catch rates of crabs (Cancer
spp.) are reduced in traps stocked with lobsters (H.
americanus) but not the converse. Addison (1995) noted
that traps stocked with H. gammarus caught signifi-
cantly fewer crabs (C. pagurus). It is clear that a trap-
based model for Cancer spp. would require explicit
consideration of lobster catch levels. Castro and
DeAlteris (1990) demonstrated that traps stocked with
Callinectes toxotes caught significantly fewer con-
specifics but no significant interspecific interactions with
its congener C. arcuatus were noted in reciprocal stock-
ing experiments. Smith and Jamieson developed a model
incorporating size-specific intraspecific interactions for
the Dungeness crab (C. magister). Extensions of the
models described in this paper would be necessary to
account for inter- and intraspecific interactions but
would not present any conceptual difficulties.

These considerations highlight the importance of a
detailed understanding of the ethology of the target
species in stationary gear fisheries. Catch rates in trawl
fisheries depend considerably on the behavior of fisher-
men. In contrast, factors affecting the behavior of the
target species dominate catch rates in traps and other
forms of stationary gear. A refined understanding of

M. J. Fogarty and J. T. Addison

these factors is requisite for interpreting catch rates in
fixed gear fisheries.

We are grateful for the helpful comments of M.
Bravington, J. Horwood, R. McGarvey, R. Miller, J.
Polovina, D. Sampson, B. Smith, and D. Somerton on
an earlier version of this manuscript and to P. Auster for
the data used in the lobster example in this paper.
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