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The approach suggested is in the class of cohort methods; it is a new technique for
processing catch-at-age data on species having short (within a year) periods of fishery.
The method can also be regarded as an approximation to more general conditions
when fishery varies continuously during the year. In many cases it enables a more
complete extraction of information on exploited populations and fishery from the
catch-at-age matrices, including the natural mortality coefficient and terminal fishing
parameters, without using any auxiliary data (survey data, fishing effort series etc.). A
number of numerical experiments using simulated data illustrate the methodology and
demonstrate the merits of the suggested method.
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Introduction
One of the popular approximations of the Virtual Popu-
lation Analysis (VPA), the so-called cohort analysis by
Pope (1972), is based on two simple formulae:

(i=1, . . ., n; j=1, . . ., m) and

Ni, j=(Ni+1, j+1e
M/2+Ci, j)e

M/2 (2)

(i=1, . . ., n"1, j=1, . . ., m"1), where

i – year index,
n – total number of years,
j – index of an age group (j=1 corresponds to the

first age group present in the catch data),
m – total number of age groups in the catches,
Ni, j – abundance (number of individuals) of the j-th age

group at start of the i-th year,
Ci, j – catch from the j-th age group in the i-th year,
Fi,j – fishing mortality coefficient for the j-th age group

in the i-th year,
M – natural mortality coefficient.

Equation (1) expresses the total catch from the j-th
age group, accumulated in the i-th year, if the dynamics
1054–3139/97/040399+13 $25.00/0/jm960188
of the group abundance N and the accumulated catch C
(at time t) during the year are governed by the well
known equations: dN/dt="(F+M)N and dC/dt=FN,
where F and M do not depend on t (indices are omitted).
Equation (2) is traditionally regarded as a discrete
approximation of a continuous process; it becomes an
exact one if the catch, Ci, j is taken instantaneously in the
middle of the i-th year.
However, there are many exploited stocks with such

short periods of fishing that the latter may be regarded
as momentary. In such a case if the period of fishing falls
in the middle of a year, Equation (1) should be replaced
by

Ci, j=öi, jNi, je
"M/2, (3)

where öi, j plays the role similar to that of Fi, j in
Equation (1) but cannot be called a fishing mortality
coefficient. Strictly speaking, it is the fraction of the
abundance of the j-th age group, taken as catch in the
middle of the i-th year. Later on we will study this model,
which may be called Instantaneous Separable VPA, or
ISVPA for short. The word ‘‘Instantaneous’’ means that
the catch is assumed to be taken instantaneously once a
year, while the word ‘‘Separable’’ shows that we accept
the hypothesis of separability (i.e. of age selectivity of
the fishery), similar to that by Pope and Shepherd
(1982). The acronym ISVPA should not be confused
*Corresponding author.
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with that of Integrated Stochastic VPA by Lewy
(1988).
It is clear that in reality the fishing season does not

necessarily fall within the middle of the calendar year.
For the model it means that instead of factors eM/2 and
e"M/2 the Equations (2) and (3) must contain factors
eTM, e(1"T)M, and e"TM, where T is a given constant,
0<T<1 (or even eTiM, e(1"Ti)M, e"TiM). However, when
T does not depend on i, these corrections do not
make the model more general: the use of the original
Equations (2) and (3) in such a case simply means that
the time to which Ni, j corresponds is shifted by T"1/2
with respect to start of the i-th year. That is why below
we will assume T=1/2.
We would like to emphasize that our ISVPA, can be

regarded as being an approximate method for assess-
ment of continuously exploited age-structured popula-
tions. It should be noted that the assumption of a
constant fishing mortality coefficient during a year, that
underlies conventional VPA, is also only an approxima-
tion. These two hypotheses are in fact two opposite limit
cases in the framework of cohort methods.
One should not be suprised by the propinquity of

some of the ideas of our method to those of Separable
VPA by Pope and Shepherd (1982): the hypothesis of
separability causes it. But the simplicity of our approach
and the different mathematical structure of the equa-
tions, allows the estimation of additional terms (e.g. the
terminal fraction ön, m and sometimes the natural mor-
tality coefficient), removing the need for ‘‘tuning’’ (cali-
bration) using auxiliary information (such as survey or
fishing effort data). Testing the suggested approach
demonstrates its applicability to different types of catch-
at-age data.

Formulation of the problem

The hypothesis of separability means in this context that

öi, j=fi · sj, (4)

where fi is proportional to the fishing effort (a year
effect), while sj is the selectivity of the fishery (an age
effect). These two variables are analogues of fishing and
selective patterns in conventional separable VPA. We
will call fi simply an effort, and suppose the selectivity to
be normalized:

The catch-at-age matrix QCi, jQ is given, while the
unknown vectors {sj}, {fi} as well as the matrix QNi, jQ
are to be found from Equations (2)–(5). As for the
coefficient M, two variants are considered: M is a given
function of age, or M is unknown.
Substituting Equation (4) into Equation (3) we obtain
2mn"(m+n)+2 equations for mn+m+n unknown
values, if M is given. If M is to be estimated along
with {sj}, {fi} and QNi, jQ, we have mn+m+n+1 or
mn+2m+n unknowns (for constant M and for that
dependent on age correspondingly). When m and n are
sufficiently large, the number of equations exceeds the
number of unknowns. This means that in general, such a
system of equations has no exact solution; one can only
speak of a ‘‘solution’’ that minimizes a certain loss
function. As by Equations (3) and (4) we essentially
attempt to present the catches in separable form, it
would be reasonable to seek a ‘‘solution’’ that satisfies
Equations (2) and (5) exactly and secures the best fit of
the estimated catches, fisjNi, je

"M/2, to the actual data,
Ci, j, according to the least squares principle (see section
on Iterative procedure).
The number of unknowns is usually large while their

orders of magnitude may be uncertain even if one deals
with the logarithms of true unknowns. This makes
the use of a standard nonlinear minimization method
difficult. A special procedure for determining all the
unknowns as functions of M and fn enables us to reduce
the problem to minimizing a function of two variables
(see section on Method for solving the problem).
When Equation (2) is regarded as containing the

‘‘true’’ catches, Ci, j, the model defined by Equations
(2)–(5) may be called catch controlled. For sufficiently
smooth input data this approach is adequate. Highly
variable data (or data with strong random errors) may
require a certain modification of the method to help
overcome such a variability. For this purpose an alter-
native, effort-controlled version of the model can be
used. It is obtained by substitution of estimated catches,
fisjNi, je

"M/2, into Equation (2) for the ‘‘true’’ ones. In
other words, at the stage of evaluation of the sizes of the
age groups, Ni, j, the following equation resulting from
(2)–(4), should be used instead of (2):

(i=1, . . ., n"1; j=1, . . ., m"1).

Method for solving the problem

Main relationships

The general idea behind our approach is a conventional
one for cohort methods: as soon as the coefficient of
natural mortality, M, and the terminal elements, {Nn, j}
and {Ni, m}, of the matrix QNi, jQ are known, all other
elements, in the catch-controlled version of the model,
can be successively determined from Equation (2). In
such a case the terminal values can only be found from
Equations (3)–(5) (if we cannot or do not want to use
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any auxiliary information). In the effort-controlled
version, the efforts and selectivities are needed for this
purpose in addition to M, and Equation (6) must be
used instead of Equation (2).
Suppose there exists an exact solution of the problem,

i.e. that the expansion of the fraction öi, j into product of
the effort and selectivity (4) is an exact one. Let us sum
up both parts of the Equation (4). Taking into account
the normalization relationship (5) one obtains:

and

These will be the main formulae of the iterative
procedure for determining the series {fi} and {sj}.

Iterative procedure

Within the following procedure M is regarded as being a
given constant or a function of age.
The calculations start with setting the initial distribu-

tions of the effort and selectivity, {fi} and {sj}; the
normalizing condition (5) must be kept. Then the
iterative procedure itself works.
Every iteration consists of the following steps. First,

{Nn, j} and {Ni, m} are evaluated from Equations (3) and
(4), then all other Ni, j are determined through Equa-
tions (2) or (6). After that the matrix Qöi, jQ is evaluated
according to formula (3), and {fi} and {sj} are deter-
mined by means of Equations (7) and (8). To avoid
divergence of the procedure it is convenient to redeter-
mine sm and sm"1 replacing them by their arithmetic
mean:

Finally, to follow the process of convergence, the sum
of squares of residuals for the catches,

(if the error in catch-at-age data may be treated as an
additive one), or for the logarithms of catches (in the
case of multiplicative error structure),
is calculated. Here IT is the iteration index, and
C| i, j=fisjNi, je

"M/2.
The convergence is regarded to be a true one if SS (IT)

becomes stable with the growth of IT, and the asymp-
totic SS value, SS*, is sufficiently close to min SS (IT)
(the experiments carried out demonstrate that SS* is
indeed close to min SS (IT) – see Results and discussion).

Minimization of SS*(M, fn)

As the sizes of the age groups in the last year, {Nn, j}, are
determined through Equations (3) and (4), and then the
fractions, öi, j, are evaluated from Equation (3), the
terminal effort, fn, does not change (i.e. stays equal to
the initial guess) during the iterative procedure
described. By varying fn within a certain interval and
repeating the whole sequence of calculations for every
new fn value, one can find an estimate of fn correspond-
ing to the minimum SS*, obtaining the best description
of the catch-at-age matrix by the model for the given M
(within the region of convergence of the iterative pro-
cedure). This idea works out very often (see Results and
discussion) and can easily be realized using any standard
minimization routine (or even ‘‘by hand’’) as M is
assumed known.
This approach can also be applied to solving the

problem when M is unknown. In such a case, by taking
into account the approximate character of all our esti-
mates and their dependence on the quality of the input
data, it is reasonable to suppose M to be constant (to
make the model more robust) and minimize SS*(M, fn)
as a function of two variables M and fn. For this purpose
any standard two-variable minimization routine can
be used, with our iterative procedure serving as a sub-
routine for determining the loss function SS*.

Treatment of zero catches

When zeros in the matrix QCi, jQ indicate missing values
of the catch-at-age data, formal use of the procedure,
described above, may lead to considerable loss of accu-
racy of the estimates or even to incorrect results. How-
ever, the method described above can easily be
generalized so as to enable ‘‘reconstruction’’ of missing
data and increase of accuracy. For this purpose it is
reasonable to use the effort-controlled version of the
model, based on Equation (6) (though it is possible to
use the catch-controlled version with Equation (2), refer-
ring to Equation (6) only when calculating abundances
corresponding to these deceptive zero catches). Further,
for all missing catches we formally set öi, j to be zero,
but then instead of Equations (7) and (8) we use the
following equations for determination of fi and sj.
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In Equations (11) and (12)

where Ki and Lj are correspondingly the numbers of
missing data in the i-th row and j-th column of the
matrix QCi, jQ. Naturally, as soon as the series {sj} is
computed, its two last elements, sm"1 and sm must be
replaced by their average.
Both the original and the generalized procedures work

when all the terminal catches, {Cn, j} and {Ci, m}, are
non-zero (see section on Iterative procedure). Otherwise
one more simple correction of the iterative procedure
should be made. If a certain terminal element of the
catch-at-age matrix is zero, the last non-zero catch in the
corresponding diagonal should be used in the calcula-
tions as a terminal catch for this cohort. For example, if
Cq, m=0 and Cq"k, m"k is the last non-zero catch from
the corresponding cohort (0<k<q¡n and k<m), then
Nq"k, m"k is determined by Equations (3) and (4),
while all earlier Ni, j are found through Equation (6) (or
(2), see above). Afterwards, the matrix Qöi, jQ (except for
the elements öq"k+1, m"k+1, . . ., ök, m) is evaluated
according to Equation (3) and {fi} and {sj} are evaluated
by means of the pair of Equations (7) and (8) or (11) and
(12). Finally, as soon as the series {fi} and {sj} are
known, we are able to successively estimate the elements
Nq"k+1, m"k+1, . . ., Nk, m of the matrix QNi, jQ through
Equation (6), if necessary (certainly, the corresponding
estimated catches, C|q"k+1, m"k+1, . . ., C|k, m, will
always differ from zero).

Data for testing the model

For the purpose of testing the approach, seven simulated
data sets, DS0–DS6, were utilized. The catch-at-age
matrix DS0 was generated with the use of an operating
model based on the equations:

(i§r+1),

Ni+1, j+1=Ni, je
"M(1"öi, j) (14)

(i§1, j=1, . . ., m"1), and (3)–(5), where

r – recruitment age,
Pi – parental (and exploited) stock in the i-th year

which we will call simply a stock,
R(Pi) – stock–recruitment function (known).
The initial conditions for Equation (14), i.e. the age
distribution of the abundance in the first year, {N1, j}, as
well as the first age group abundance for the next r"1
years, N2, 1, . . ., Nr, 1 (if r>1) were set.
This operating model can be regarded as a reversed

analogue, with respect to time and age, of the initial
effort-controlled model (3)–(6). Here Ni+1, j+1 is calcu-
lated as soon as Ni, j has been calculated, and therefore
we call this a perspective model. Now the vectors {fi},
{sj}, and natural mortality coefficient, M, are given,
while the catch-at-age matrix is one of the results of
simulation. For definiteness, the age of recruitment, r, is
assumed to be equal to the age of maturation, and this is
given the index 1 (though, in fact the model permits the
age of maturation to exceed r). In the course of simula-
tion, the Shepherd (1982) stock–recruitment relationship
was used.
The simulation procedure consisted of two parts. At

the first stage, a carrying capacity steady state of a
non-exploited population containing eight age groups
was simulated by setting zero fishing effort and continu-
ing the computations until the changes in all the model
variables became negligible. Note that the carrying
capacity level in the model (3)–(5), (13), (14) depends
only on M (taken as 0.2) and on the form and par-
ameters of the recruitment relationship. At the second
stage, the harvesting started and continued for 44 years
yielding the matrices QCi, jQ and QNi, jQ (i=1, . . ., 44;
j=1, . . ., 8). The obtained matrix QCi, jQ served as the
‘‘pure’’ input data set, DS0, for ISVPA, while the given
vectors {fi} and {sj}, and the obtained matrix QNi, jQ were
regarded as standards (‘‘true’’ values) for the subsequent
comparison with the results produced by ISVPA.
Data sets DS1–DS4 containing measurement errors

were obtained from DS0 by adding normally distributed
random errors (noise), err(ó)Ci, j, to the catches Ci, j. The
relative error, err(ó), had zero mathematical expectation
and standard deviation ó=0.1, 0.2, 0.3 and 0.4 for DS1,
DS2, DS3 and DS4 correspondingly.
In order to test the ability of ISVPA to reconstruct the

parameters of the population and fishing in the case of
continuous (throughout the year) fishing, two more
simulated data sets, DS5 and DS6, have been utilized.
These are the most noisy data among the six simulated
data sets provided by the ICES Workshop on Methods
of Fish Stock Assessments in Reykjavik in 1988 by
means of a rather complicated operating model based on
the conventional principles; the two data sets are
referred to in Anon. (1993) as Data Sets 5 and 6. Fishing
exploitation of a stock by two trawler and one longliner
fleets, by one fleet with fixed nets, and by three research
vessels, was simulated providing estimates of catch-at-
age data for ages 3–12 for a period of 30 years for each
of seven fleets. Catchability was assumed to contain
trends in the two commercial fleets. Noise was intro-
duced into the data in the form of lognormal and
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gamma-distributed process and measurement errors
(different for different age groups and fleets), while
natural mortality rate was assumed to be 0.2 for all ages
and years. DS5 is characterized by separability of fishing
mortality rate at age, F, for each fleet, while F in DS6 is
not separable. All the details regarding the simulation of
DS5 and DS6 can be found in Anon. (1993).

Results and discussion

Both the catch- and effort-controlled version of ISVPA
were examined in the experiments by using the simulated
data described in the section on Data for testing the
model. The limit (asymptotic) SS (IT) value, SS*, was
indeed rather close to min SS (IT) for both of the criteria
(9) and (10), and the estimates were accurate enough for
the data sets DS1 and DS2 with low level of noise (see,
e.g. Figs 1–3). In the case of ‘‘pure’’ data, DS0, the
estimates of all the parameters of stock and fishery
dynamics completely coincide with the ‘‘true’’ par-
ameters independently of the type of model (catch-
or effort-controlled). Correspondingly, in this case
SS*(M, fn)=0 for both of the criteria (9) and (10).
However, in the cases of considerable noise in the data
(DS3 and DS4), the minimum SS*(M, fn) was better
pronounced when the effort-controlled version of
ISVPA along with the criterion (10) was used. That is
why the main results of the numerical experiments
corresponding to this case are presented below.

Convergence

The iterative procedure, described above converges
within a rather wide range of M and fn values indepen-
dently of the initial distributions of fi and sj, whatever
catch-at-age matrix is taken. The illustrations of conver-
gence, presented in Figures 1 and 2, correspond to the
‘‘best’’ M and fn, those providing the minimum of
SS*(M, fn), and to homogeneous initial distributions
of the selectivity and fishing effort, sj=1/m, fi=1 (at
i¦n"1). All the variables estimated within the iterative
procedure are incorporated in the function SS(IT) given
by Equation (10), and, as it can be seen from Figure 1a
and Figure 2, they converge simultaneously with SS(IT).
This proves that the stabilization of SS(IT) may indeed
be used as a criterion for stopping the iterative process.
It is clear from Figure 1(a) that the higher level of

noise in the catch-at-age data causes higher values of
Table 1. Frequency distribution of the percentage discrepancy between the estimated and true stock
size, DS1.

Range
of discrepancy

Stock-at-age Total
stock1 2 3 4 5 6 7 8

70%¦discrepancy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50%¦dis.<70% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30%¦dis.<50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.0
10%¦dis.<30% 0.0 2.3 2.3 2.3 4.5 9.1 9.1 13.6 0.0

"10%¦dis.<10% 43.2 52.2 61.4 70.5 77.3 72.7 72.7 63.6 72.7
"30%¦dis.<"10% 54.5 45.5 36.3 27.2 18.2 18.2 18.2 15.9 27.3
"50%¦dis.<"30% 2.3 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0
"70%¦dis.<"50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
discrepancy<"70% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2. Frequency distribution of the percentage discrepancy between the estimated and true stock
size, DS2.

Range
of discrepancy

Stock-at-age Total
stock1 2 3 4 5 6 7 8

70%¦discrepancy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50%¦dis.<70% 6.8 9.1 6.8 6.8 6.8 4.5 2.3 0.0 0.0
30%¦dis.<50% 13.6 13.6 11.4 11.4 6.8 6.8 9.1 11.4 0.0
10%¦dis.<30% 25.0 22.7 27.3 22.7 25.0 25.0 25.0 22.7 0.0

"10%¦dis.<10% 45.5 43.2 43.2 47.7 40.9 36.4 29.5 18.2 87.5
"30%¦dis.<"10% 9.1 11.4 11.3 11.4 20.5 27.3 31.8 36.4 12.5
"50%¦dis.<"30% 0.0 0.0 0.0 0.0 0.0 0.0 2.3 11.3 0.0
"70%¦dis.<"50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
discrepancy<"70% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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SS(IT) and, hence, of SS*(M, fn). This is due to a worse
description of the dynamics of the stock–fishery system
by the model as compared with the ‘‘true’’ (i.e.
simulated) dynamics (Fig. 3).
The convergence in the case of DS0–DS3 is very fast

and actually takes 15 to 20 iterations. In the case of DS4,
slowly decaying saw-tooth type oscillations with a 2-year
periodicity can be observed. Although the trends in
SS(IT) and other parameters stabilize rather fast, the
above mentioned oscillations become significant at the
stage of searching for the minimum of SS*(M, fn), and
therefore about 150 to 200 iterations are required.
Convergence of the iterative procedure for data sets DS5
and DS6 was observed after about 250 iterations.
Quality of the estimation

All of the estimated values of the natural mortality
coefficient, M=0.18, 0.22, 0.26 and 0.25 for the data sets
DS1–DS4, respectively, are close to the ‘‘true’’ M=0.2,
though the estimates for DS1 and DS2 are somewhat
more accurate than those for DS3 and DS4. Similarly,
the quality of the estimates of other parameters obtained
by processing the data sets DS1–DS4, in general, falls
with the growth of noise in the catch data (Fig. 3). Both
the estimated efforts, {fi}, and selectivities, {sj}, closely
correspond to the ‘‘true’’ ones. The highest deviations in
the estimated efforts correspond to DS3 and DS4 and
fall mainly in the period from i=17 to i=22 (where they
Table 3. Frequency distribution of the percentage discrepancy between the estimated and true stock
size, DS3.

Range
of discrepancy

Stock-at-age Total
stock1 2 3 4 5 6 7 8

70%¦discrepancy 22.7 18.2 13.6 9.1 11.4 11.4 9.1 4.5 0.0
50%¦dis.<70% 6.8 11.4 13.6 11.4 4.5 2.3 4.5 4.5 4.5
30%¦dis.<50% 15.9 9.1 6.8 11.4 15.9 11.4 9.1 4.5 40.9
10%¦dis.<30% 40.9 38.6 22.7 18.2 6.9 13.6 15.9 22.7 50.0

"10%¦dis.<10% 2.3 13.6 34.2 40.8 43.2 34.1 22.8 13.9 2.3
"30%¦dis.<"10% 9.1 6.8 6.8 6.8 13.6 20.4 25.0 22.7 2.3
"50%¦dis.<"30% 2.3 2.3 2.3 2.3 4.5 6.8 13.6 22.7 0.0
"70%¦dis.<"50% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
discrepancy<"70% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4. Frequency distribution of the percentage discrepancy between the noisy and true catch, and
between the estimated and true stock size, DS4.

Range
of discrepancy

Catch-at-age Total
catch1 2 3 4 5 6 7 8

70%¦discrepancy 9.1 4.5 9.1 9.1 4.5 4.5 4.5 2.3 0.0
50%¦dis.<70% 13.6 15.9 6.8 13.6 11.4 9.1 2.3 6.8 0.0
30%¦dis.<50% 11.4 18.2 20.5 13.6 13.6 15.9 6.8 2.3 0.0
10%¦dis.<30% 6.8 15.9 20.5 9.1 22.7 9.1 11.4 18.2 38.6

"10%¦dis.<10% 29.6 18.3 4.5 22.9 22.7 22.8 15.9 25.0 45.5
"30%¦dis.<"10% 11.4 6.8 13.6 15.9 11.4 25.0 29.5 18.2 13.6
"50%¦dis.<"30% 9.1 13.6 11.4 6.8 11.4 6.8 11.4 18.2 2.3
"70%¦dis.<"50% 4.5 4.5 9.1 4.5 2.3 4.5 15.9 4.5 0.0
discrepancy<"70% 4.5 2.3 4.5 4.5 0.0 2.3 2.3 4.5 0.0

Range Stock-at-age Total
stockof discrepancy 1 2 3 4 5 6 7 8

70%¦discrepancy 22.7 18.2 13.6 13.6 9.1 9.1 9.1 11.4 9.1
50%¦dis.<70% 15.9 15.9 13.6 9.1 4.5 2.3 2.3 2.3 15.8
30%¦dis.<50% 13.6 13.6 18.2 18.2 22.7 15.9 9.1 11.4 18.2
10%¦dis.<30% 18.2 25.0 18.2 15.9 15.9 15.9 11.4 2.3 34.1

"10%¦dis.<10% 11.4 9.1 13.6 15.9 18.2 27.3 29.5 38.6 20.5
"30%¦dis.<"10% 11.4 9.1 11.4 11.4 9.1 2.3 13.6 13.6 2.3
"50%¦dis.<"30% 6.8 9.1 11.4 15.9 18.2 22.7 11.4 4.5 0.0
"70%¦dis.<"50% 0.0 0.0 0.0 0.0 2.3 4.5 13.6 15.9 0.0
discrepancy<"70% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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reach about 40%). The errors in the estimated selec-
tivities are smaller and reach their maximum at the
youngest age groups (25% at j=1 for DS3), while the
highest error at j=8 is only about 8% (DS4).
The frequency distributions of the percentage discrep-
ancy between the estimated and ‘‘true’’ stock-at-age
(and catch-at-age for DS4) values are presented in
Tables 1–6. The discrepancies are determined as
Table 5. Frequency distribution of the percentage discrepancy between the estimated and true stock size, DS5.

Range
of discrepancy

Stock-at-age (M is given) Total
stock3 4 5 6 7 8 9 10 11 12

70%¦discrepancy 6.7 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 13.3 0.0
50%¦dis.<70% 6.7 10.0 10.0 10.0 6.7 6.7 3.3 3.3 3.3 0.0 3.3
30%¦dis.<50% 10.0 10.0 13.3 13.3 16.7 10.0 6.7 0.0 0.0 3.3 3.3
10%¦dis.<30% 23.3 23.3 16.7 13.3 16.7 10.0 20.0 20.0 3.3 3.3 13.4

"10%¦dis.<10% 13.3 16.7 20.0 26.7 16.7 20 13.3 16.7 23.4 10.0 63.3
"30%¦dis.<"10% 33.3 33.3 33.3 30.0 33.2 40.0 36.7 20.0 20.0 20.0 16.7
"50%¦dis.<"30% 6.7 6.7 6.7 6.7 10.0 10.0 16.7 33.3 40.0 23.4 0.0
"70%¦dis.<"50% 0.0 0.0 0.0 0.0 0.0 0.0 3.3 6.7 10.0 16.7 0.0
discrepancy<"70% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0

Range Stock-at-age (M is estimated) Total
stockof discrepancy 3 4 5 6 7 8 9 10 11 12

70%¦discrepancy 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0
50%¦dis.<70% 0.0 0.0 0.0 0.0 3.3 3.3 3.3 3.3 0.0 0.0 0.0
30%¦dis.<50% 10.0 10.0 10.0 10.0 6.7 6.7 6.7 0.0 3.3 3.3 3.3
10%¦dis.<30% 6.7 16.7 16.6 23.3 20.0 20.0 13.3 6.7 0.0 3.3 3.3

"10%¦dis.<10% 26.7 26.7 26.7 20.0 13.3 13.3 10.0 23.3 26.6 10.0 23.4
"30%¦dis.<"10% 26.7 23.3 26.7 26.7 30.0 30.0 30.0 20.0 16.8 20.0 66.7
"50%¦dis.<"30% 23.3 23.3 20.0 20.0 26.7 20.0 30.0 36.7 33.3 23.4 3.3
"70%¦dis.<"50% 3.3 0.0 0.0 0.0 0.0 6.7 6.7 10.0 20.0 16.7 0.0
discrepancy<"70% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0
Table 6. Frequency distribution of the percentage discrepancy between the estimated and true stock size, DS6.

Range
of discrepancy

Stock-at-age (M is given) Total
stock3 4 5 6 7 8 9 10 11 12

70%¦discrepancy 10.0 10.0 10.0 10.0 10.0 10.0 13.3 13.3 13.3 10.0 0.0
50%¦dis.<70% 3.3 3.3 3.3 3.3 3.3 3.3 0.0 0.0 0.0 3.3 6.7
30%¦dis.<50% 3.3 3.3 6.7 6.7 6.7 3.3 3.3 3.3 3.3 3.3 3.3
10%¦dis.<30% 13.3 10.0 10.0 13.4 10.0 16.7 16.7 16.7 3.3 3.3 26.7

"10%¦dis.<10% 33.4 33.4 26.7 23.3 20.0 10.0 13.3 6.7 20.0 6.7 53.3
"30%¦dis.<"10% 30.0 30.0 33.3 30.0 36.6 43.3 30.0 26.7 20.0 23.4 10.0
"50%¦dis.<"30% 6.7 10.0 6.7 10.0 6.7 6.7 13.4 20.0 26.8 16.7 0.0
"70%¦dis.<"50% 0.0 0.0 3.3 3.3 6.7 6.7 10.0 13.3 13.3 23.3 0.0
discrepancy<"70% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0

Range Stock-at-age (M is estimated) Total
stockof discrepancy 3 4 5 6 7 8 9 10 11 12

70%¦discrepancy 6.7 6.7 6.7 6.7 6.7 6.7 3.3 3.3 0.0 10.0 0.0
50%¦dis.<70% 0.0 0.0 3.3 3.3 0.0 0.0 10.0 6.7 13.3 3.3 0.0
30%¦dis.<50% 3.3 6.7 3.3 3.3 6.7 6.7 0.0 3.3 0.0 3.3 3.3
10%¦dis.<30% 3.3 0.0 6.7 6.7 6.7 6.7 6.7 3.3 3.3 3.3 6.7

"10%¦dis.<10% 13.3 16.7 16.7 23.3 20.0 16.6 16.7 20.0 6.7 6.7 26.7
"30%¦dis.<"10% 43.3 43.3 36.7 33.3 33.3 33.3 36.6 13.3 20.0 23.4 56.6
"50%¦dis.<"30% 23.4 16.6 16.6 16.7 20.0 20.0 26.7 33.4 43.3 16.7 6.7
"70%¦dis.<"50% 6.7 10.0 10 6.7 6.6 10.0 10.0 16.7 10.0 23.3 0.0
discrepancy<"70% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 10.0 0.0
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100[(Estimate/Truth)"1], following the recommenda-
tions of Anon. (1993). The deviations of the estimated
total stock size with respect to the ‘‘true’’ increase from
DS1 to DS4 (Tables 1–4), and in the case of DS4 the
maximal deviations are much higher (about 100% at
i=11 and 13) than for the estimates of fishing effort.
Such high deviations can be explained by the occasional
emergence of a number of cohorts with enormously
systematic positive errors in the catch-at-age matrix (see
Table 4). For example, the mean ratio between the noisy
(DS4) and ‘‘true’’ (DS0) catches taken from the cohort,
recruited in the year i=11, is about 1.5 (while the
maximal is 2). As the estimate of the natural mortality
coefficient (M=0.25) was rather close to the ‘‘true’’ value
(M=0.20), the accumulation of these systematic positive
errors in the catches in the course of calculating the
cohort size back from i=18, j=8 to i=11, j=1 became
apparent in the extremely high cohort sizes in the early
years (especially, at i=11), i.e. in the youngest age
groups. This accumulation resulted in the peak at i=11
(DS4) on Figure 3. Similarly, a check up of the peaks at
i=1, 6, 13, 17 and 32 showed that they (and the rise of
the graph within the interval from i=11 to 21) are the
results of accumulation of systematic positive errors in
catches. This effect can also be observed in Table 4. So,
the model actually reconstructs a virtual population
dynamics that corresponds to the noisy catch data in the
best way. The quality of such a reconstruction in the
case of DS3 and DS4 can be judged by comparison of
the estimated catches, fisjNi, je

"M/2, with the noisy data
(Fig. 4). From this point of view the results of processing
DS3 and DS4 look much better.
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Figure 4. The approximation of noisy total catch by the model for (a) DS3 and (b) DS4: 1-noisy catch (——), 2-estimated
catch (· · ·).
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In the case of DS5 and DS6 we analysed both the
problem with the given natural mortality coefficient
(M=0.2, SS* depends only on fn), and the full problem
that includes estimation of M and fn by minimization of
the function SS* (M, fn). The estimates of M in the latter
case are M=0.16 for DS5 and M=0.15 for DS6. The
results of the total stock assessment are presented in
Figure 5. In each of the cases the stock dynamics was
reconstructed rather well (though the results for DS6 in
the first years look somewhat better when M is estimated
equally with fn, while in the last years they are better
when M=0.2 is set). The corresponding statistics of the
deviations are presented in Tables 5 and 6.

Conclusion
Both hypotheses of a constant fishing mortality co-
efficient during the year (which is characteristic for
conventional VPA and standard separable VPA) and
of instantaneous harvesting (ISVPA) are approxima-
tions of the real situation when the fishing intensity
varies during a year. The results of the numerical
experiments demonstrate the ability of ISVPA to pro-
vide a sufficiently good description of the stock–fishery
dynamics (without using any auxiliary information
such as survey results etc.) not only in the case of
instantaneous fishing, but also when the stock is
continuously exploited.
Main difficulties in dealing with VPA techniques are

usually related to uncertainty in natural mortality co-
efficient values and the terminal fishing rate. So, the
capability of the method to determine fn and M (under
certain conditions), proved by the experiments, must be
regarded as one of the merits of ISVPA.
Another problem which one may come across both at

the stage of tuning VPA or interpretation of its results is
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Figure 5. The ‘‘true’’ and estimated total stocks for (a) DS5 and (b) DS6: 1 – ‘‘true’’ stock (——), 2 – estimated at given M=0.2
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connected with determination of a correspondence
between the fishing mortality coefficient and the fishing
effort. It is clear that in the case of ISVPA such a
problem does not arise due to the direct proportionality
between the parameter fi and the fishing effort.
A by-product of our work, the perspective model

(3)–(5), (13), and (14), being combined with the ISVPA
model (2)–(5) or (3)–(6), can serve for constructing
sustainable yield curves, but this deviates from the
subject of the present paper, and the corresponding
results will be published separately.
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