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The analysis of multiple time series of indices of recruitment to fish stocks by means of
calibration regression is discussed, together with the use of the relationships so fitted
for the prediction of year class strength. A simple method for the combination of the
estimates derived from different index series using inverse variance weighted averages
is proposed, and methods for the estimation of the overall error in the prediction are
discussed. The method used has been shown to perform well in simulation tests, and is
well adapted for use on real datasets with time series of variable length and missing
data. It has been implemented in a computer program (RCT3, superseding
RCRTINX2) which is available for operational use, and has been endorsed by the
ICES Working Group on the Methods of Fish Stock Assessment as being satisfactory
for operational use until more complex methods have been shown to have superior
performance.

? 1997 International Council for the Exploration of the Sea

Key words: Irish Sea Plaice, weighted regression, inverse variance weighting, VPA,
recruitment, prediction.

Received 9 December 1993; accepted 20 January 1997.

J. G. Shepherd: MAFF Directorate of Fisheries Research, Pakefield Road, Lowestoft,
Suffolk, NR33 0HT, UK.

Introduction

The choice of a method for the analysis of recruit index
data, and for the subsequent prediction of year-class
strength, has been a problem for fish stock assessment
(especially the preparation of catch forecasts) for many
years. A variety of more or less ad hoc methods have
been used at various times, without any clear consensus
emerging, and without much discussion in the literature.
The problem was addressed at some length by the
ICES Working Group on the Methods of Fish Stock
Assessment (hereafter referred to as the Methods
Working Group) (ICES, 1984, 1987), with some further
discussion in 1985 (ICES, 1986). As a result of these
deliberations and the recommendations made, a simple
calibration regression and combination method was
implemented in the RCRTINX2 program (now super-
seded by RCT3) and this is now commonly used by
ICES working groups. A description of the method and
its rationale has until now only been available as an
unpublished manuscript (Working Paper No 5 of the

Methods Working Group in 1987), and this paper aims
to provide a fuller and more accessible account of the
method, its use, and the evaluation of the results.
The problem may be regarded as having two parts.

First, the analysis of any individual recruit index series
by a regression method and its use for prediction.
Second, the combination of several such predictions
based on different index series to obtain a best final
overall estimate. This separation is not essential, as will
be mentioned below in discussing alternative methods,
buit it does help to clarify various aspects of the prob-
lem. Such a method is also well adapted to the analysis
of data series of differing lengths, often with missing
values, which is very important for practical use. A
number of other facilities which are very useful in
practice can also easly be provided within the framework
of a weighted regression method, and these are also
discussed.

Analysis and prediction using a single
index series

The particular problem of analysis and prediction of
concern is simply stated as ‘‘given a time series of recruit
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index values and associated VPA estimates of year-class
strength, how may these data be analysed so as to yield
a high quality prediction of future year-class strength?’’
A regression method is an obvious candidate, but there
is room for a considerable variety of choices in selecting
the exact method to be used. Surprisingly, the usual
predictive regression is not usually the best choice. This
is because recruit index data are not usually very precise
– experience suggests that standard errors in the log-
arithmic scale of less than 0.3 are unusual, and that
values of the order of 1.0 are quite common. The
problem therefore involves the analysis of imprecise
data, and a fundamental assumption of predictive
regression, that the explanatory variates are measured
without error, is violated. In dealing with ‘‘noisy’’ data
different choices about apparently small details of the
method can have a substantial effect on the results
obtained. The analysis of high quality data is relatively
straightforward, whilst that of poor quality data
requires very great care. The particular problem of the
analysis of a recruit index data was addressed by the
Methods Working Group (ICES, 1984), relying heavily
on a working paper prepared by E. F. Harding, which
has regrettably not been published in full, although a
brief account is available (Harding, 1986).
The essential features of the data concerned are that:

(a) year-class strength and recruit index values are
non-negative, and have a highly skewed distri-
bution, which may often be well-approximated
by the log-normal distribution (Hennemuth et al.,
1980; Garrod, 1983; Rothschild and Mullen,
1985; Myers et al., 1990);

(b) the relationship between recruit indices and year
class strength (as estimated by VPA) cannot nec-
essarily be assumed to be linear and proportional,
especially not for indices for the youngest age
groups (0 and 1 group);

(c) the measurement errors in recruit indices are
apparently often large, and increase with abun-
dance (as reflected in the index value): a constant
coefficient of variation is a better approximation
than a constant variance, and a log-normal distri-
bution for the errors is a more appropriate
description than a normal distribution.

These features means that standard predictive linear
regression is not immediately appropriate, since it
assumes that the relationship is linear, that the errors
in the explanatory variate (the recruit indices) are negli-
gible, and that those in the dependent variate are normal
with constant (homoscedastic) variance.
Transformations of the data are often employed to

address such problems (Atkinson, 1985). These often
solve one problem whilst making another worse
(Gilchrist, 1984). However, in this case, the above

features may all be allowed for simultaneously by carry-
ing out a logarithmic transformation of both dependent
and explanatory variables. This helps to normalise the
distribution of the data, linearise the relationship
between the variables, normalise the distribution of the
errors, and promote homoscedasticity. Provided that a
power-law relationship between the untransformed vari-
ables is an adequate model for the non-linear relation-
ship, this simple transformation brings the problem
squarely within the framework of conventional linear
regression, although the dominant errors are still in the
explanatory variate. To avoid the problems which occur
when real data sets include zero values (even when they
are otherwise approximately log-normally distributed),
the common (but not very satisfactory) procedure of
adding one to all values before log-transforming has
been adopted throughout.
The appropriateness of a logarithmic tranformation

of both variables to linearise the relationship between
survey index and abundance has not, so far as I am
aware, between studied in detail. However, it is well
known that such a transformation often achieves
approximate linearity for simple non-linear relationships
which are either convex or concave, but not both (i.e.
not wiggly) – see, for example, Carroll and Ruppert
(1988). It has sometimes been suggested that the slopes
of the relationships so obtained tend to be less than one,
so that the power in the power law is also less than
one. This means that the eventual year-class strength,
as estimated retrospectively by VPA, tends to be less
extreme than the raw indices suggest – the big year
classes turn out to be not as big as expected from the
relative size of the indices, and the small ones not so
small. There are many possible explanations for such an
effect, including density-dependent juvenile mortality
rates (Myers and Cadigan, 1993), age reading errors on
older fish, variations of spatial distribution with changes
of abundance (Myers and Stokes, 1989; Swain and
Wade, 1993) possibly coupled with inadequate survey
coverage, and variations of fish behaviour with respect
to survey gear. Such mechanisms warrant further study,
but for practical purposes if there is significant evidence
of such non-linearity, it should be allowed for (e.g.
by the logarithmic transformation adopted here). It
would be unwise to assume linearity (strict proportion-
ality between the index and eventual abundance) if
there is evidence of non-linearity, especially if this is
of the form described above (Myers and Cadigan,
1993). However, slopes much different from one (per-
haps outside the range 0.5 to 2) indicate extreme vari-
ations of apparent catchability, in conflict with the
underlying ideal that an index of abundance should be
proportional to the population size, and such a relation-
ship should be viewed with scepticism, and the causes
and mechanisms for it should be investigated carefully if
at all possible.
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The other main feature of data of this type is that both
the dependent variable which one wishes to predict
(year-class strength) and the explanatory variables (the
recruit indices) are measured with error – the former by
VPA, and the latter by research vessel surveys, etc. In
fact, the conventional assumption is that VPA estimates
of year class strength are precise, whereas the index
measurements are subject to relatively large sampling
errors. This assumption has been confirmed for some
examples by factor analysis of complete datasets
(Rosenberg et al., 1992) though there is, of course, no
guarantee that it is always valid.
The dominance of errors in the explanatory variate

means that the problem approximates to one of cali-
bration regression (Harding, 1986), about which there
has been considerable controversy in the statistical lit-
erature (see, e.g. Brown, 1982). The essential point is
that the best (maximum likelihood) estimate of the
relationship is obtained by regressing the noisy explana-
tory variable on the relatively precise dependent vari-
able. This is the reverse of the normal procedure, but is
actually just a special case of functional regression, as
described by Lindley (1947) and Davies and Goldsmith
(1976): note that the often cited treatment of Ricker
(1973) is incorrect except in rare special cases (Copas,
1972). The statistical properties of a prediction based on
this relationship are however ill-defined, at least in
theory, because the reciprocal of a normally distributed
number is not well-behaved. The problem can be
resolved by a careful treatment of the likelihood maxi-
misation problem (Harding, 1986) but this is not readily
amenable to operational use. A simpler practical solu-
tion is just to estimate the required statistical properties
post hoc, by examining and summarising the errors
arising from actually using the fitted relationship to
predict the dependent variable for the historic data
available. The procedure for doing this is as follows: let
x denote the (error prone) explanatory variable, and y
the (relatively precise) dependent variable, for which a
prediction is required. This choice is usefully mnemonic,
and also accords with the ‘‘natural’’ way of plotting the
data. Using standard software, one needs to regress x on
y, to give a relationship of the form x̂=ay+b, in order to
minimise the errors Ó(xi" x̂)2. This relationship is then
used for prediction in the ‘‘inverted’’ form ŷ=(x"b)/a.
The standard error of this estimate may be obtained
from the residual mean square estimated from the sum
of squares of the residuals of the actual predictions
Ó(yi" ŷi)

2. This is, of course, a sensible practical way of
estimating the prediction errors, whatever method has
been used to estimate the relationship upon which the
prediction is based.
Continuing with this convention (VPAzy, indexzx),

the prediction formula is

ŷ=gx+h (1)

where g=1/a, and h="b/a, and a and b are the slope
and intercept obtained by regressing x on y as described
above. It is easily shown that the residual variance is in
fact

ó2y=g
2ó2x (2)

where ó2x is the value returned by the standard pro-
cedure for the regression of x on y.
The standard error of a further individual prediction

(not that of the fitted value itself) is then assumed to be
given by the usual formula

This estimate is open to question, since the distribution
of the errors is not (under the assumptions made)
normal. The adequacy of this simple ‘‘common-sense’’
approximation in relation to the likelihood based confi-
dence intervals advocated by Harding (1986) warrants
further study.
An overall measure of the quality of a prediction is

required if, as here, it is subsequently necessary to
combine several independent predictions in a rational
way. Therefore, I assume here, following a suggestion by
J. Pope (pers. comm.), that the standard error of predic-
tion is the single best indicator of the quality of a
prediction. It becomes large if the relationship is a poor
fit (so that the residual variance is large), or if the
prediction involves a substantial extrapolation outside
the range of the data (the final term in the formula
above). It may still be undesirably large, even if the
correlation coefficient is high, when the data have a large
dynamic range. Note that the terminology in the litera-
ture for such standard errors is confused, and it is
important to use the three-term expression here, which
includes the residual variance associated with any obser-
vation (the first term in the bracket), as this is clearly a
lower limit for the error of any prediction. Other regres-
sion diagnostics, such as the correlation coefficient and
the slope of the relationship, may also be useful in
evaluating the data, but the bottom line is that if s is
large, the prediction is of limited value. Note that s is a
logarithmic quanitty and therefore independent of the
scale of measurement. As discussed below, practical
experience suggests that datasets yielding values of s
exceeding 0.4 or 0.5 (for log-transformed data) are
troublesome, but may nevertheless have a little value if
recruitment is liable to vary by more than an order of
magnitude.
Apart from the possible dependence of apparent

catchability on abundance, inherent in a power-law
relationship, as discussed above, the simple regression
model used assumes constant catchability (no change
with time, or other external factors). This simple
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assumption could be relaxed if there were evidence that
this was necessary, e.g. by moving to a multiple regres-
sion model. Ideally, for survey-based indices, no such
generalisation should be necessary. To allow for the
possibility of secular changes (e.g. of stock distribution
patterns, or survey methods), which could mean that old
data become progressively less relevant, the practical
implementation of a regression method can allow for a
progressive down-weighting of old data (‘‘tapering’’) by
using a weighted regression – this is discussed below.
The use of a weighted regression formulation is also
convenient, since it allows missing data to be handled
very easily by simply assigning them zero weight in the
regressions.

Combination of estimates from multiple
series

It is a common occurrence to have available more than
one data series which might serve as a basis for predic-
tion. The method of analysis described above may be
applied to each in turn, to obtain a set of predictions,
with estimates of their standard errors. Since one cannot
know a priori which of these will eventually prove to be
the best prediction, it seems sensible to attempt to
combine all the available information in some way. This
is a common statistical problem, and for certain cases
optimal solutions can be derived. Among these is the
technique known as the Kalman filter which may be
applied to the present problem (J. G. Pope, unpublished
manuscript, Working Paper No. R1 to ICES Working
Group on Methods of Fish Stock Assessment 1985).
This technique is, however, more general (and compli-
cated) than is necessary for the present problem, which is
really rather simple, since it is usually possible to treat
the individual estimates as having independent errors. In
such a case, the Kalman filter in fact reduces to some-
thing very similar to the weighted averaging procedure
proposed below.
It is a standard result in statistics that under plausible

assumptions the best (minimum variance, unbiased)
overall estimate obtainable from a set of independent
estimates of known standard errors is a weighted mean
of those estimates, where the weights are taken to be the
inverse of the variance of the individual estimates (see,
e.g. Weatherburn, 1962). Thus, given a set of estimates
ŷ( j) with associated prediction standard errors s( j),
where j indexes the estimates obtained from the different
index series ( j=1,m) the overall weighted estimate of the
mean is

This result may be found in almost any practical statis-
tics text (e.g. Davies and Goldsmith, 1976, Appendix
6A), but a particularly useful treatment is given by
Topping (1962)).
It is also possible to estimate the standard error of this

overall weighted mean. In fact, as pointed out by
Topping (1962, pp. 91–93) one can make two indepen-
dent estimates of the standard error. The first, sext,
referred to as the external standard error, is obtained
from the variance

This estimate is based on the actual deviations of the
individual estimates from the overall mean, i.e. the
observed discrepancies between the estimates, and may
thus be regarded as a posterior estimate.
The second estimate, sint, is obtained from the

variance

This is referred to as the internal standard error, and is
based only on the estimates of the individual standard
errors. It is independent of the actual estimates ŷ( j), and
represents a prior estimate of what we would expect the
error of the final mean to be, taking account of the
known errors of the individual estimates from which it is
constructed. If the s2( j) are all equal, it reduces to the
usual estimate (s/√m) for the standard error of a mean.
This discussion may equally well be phrased in terms

of a hierarchical one-way analysis of variance, or within
sample and between sample variances, if desired (see,
e.g. Davies and Goldsmith, 1976, section 6.3). In either
case, one reaches the conclusion that the ratio

F=s2ext/s
2
int (7)

may be tested as a variance ratio with m and m"1
degrees of freedom. If all is well, it should be close to
one. If it is significantly larger than one, it indicates that
there is evidence of a discrepancy between the estimates
– their deviations from the mean (and each other) are
larger than expected from their previously estimated
errors. Conversely, if it is significantly less than one, it
indicates a suspicious degree of concordance among the
estimates, possibly indicating that they are not indepen-
dent of each other as assumed, or that the data have
been manipulated in an inappropriate way. For practical
purposes, one can adopt the larger of these two esti-
mates as the final estimate of the standard error of the
overall mean prediction.
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Note that in order to maintain the assumptions of
normality (etc) which underlie the optimality of the
inverse variance weighted mean, all these calculations
should be carried out on the logarithmic estimates,
without retransformation: one is therefore constructing
what will (after retransformation) be a weighted geo-
metric mean. It is arguable whether one should apply a
bias correction factor (exp[s2/2]) to the final estimate.
This should be done if one seeks an unbiased estimate
of the ‘‘expected’’ (arithmetic mean) value, but not if
one is content with an unbiased estimate of the median
value for the prediction so that there is an equal chance
of the prediction being too high or too low. This
amounts to a choice of the loss function. The latter
choice (no bias correction) is adopted here. As pointed
out by Laurec and Perodou (1987) if the bias is
large enough to be a problem in practice (more than
10% perhaps) then the overall prediction error will be
dominated by the variance anyway, and will be so large
that the prediction is of dubious value (i.e. s§0.4). Since
the geometric mean is always less than the arithmetic
mean, the absence of a bias correction leads to an
inherent slight tendency towards caution in the predic-
tion, which is of practical significance only if the uncer-
tainty is large, when this may perhaps be regarded as a
useful feature.
The use of weighted means as described above is by no

means the only possible method for combining the
various estimates available. On the face of it, since one
ends up with a linear combination of the individual
estimates (Equation 4), and these are themselves linear
functions of the index values, a suitable estimate ought
also to be that given by standard multiple regession
methods. In practice, this is not a satisfactory method,
because the index series tend to be mutually highly
correlated. This is especially true if they are good quality
indices, in which case they are all highly correlated
with VPA and each other. This leads to the well-
known problem of collinearity, and near singularity
(ill-conditioning) of the information matrix (Davies and
Goldsmith, 1976, section 8.53). The practical effect of
this is that the coefficients of the regression become very
variable, and sensitive to noise in the data. There is a
tendency to get a mixture of large positive and negative
coefficients, so that the overall prediction becomes
dependent on small differences between the individual
predictions. In addition, the coefficients become very
dependent on the precise dataset used, and tend to vary
wildly as extra data are included, so that the weight
attached to a particular index may differ greatly from
one year to the next. All these are undesirable features,
and make the method unsuitable for this application.
The weighted average method may be regarded as being
like a multiple regression in which the coefficients are
constrained to be all positive and fairly consistent from
one year to the next.

Another possible method, which explicitly recognises
that all the estimates of abundance, including both the
indices and VPA, are supposed to be related to a
common underlying factor (the true abundance) is
factor analysis (Rosenberg et al., 1992). Their simulation
tests of this method indicate that in some cases it
performs slightly better than the present method, which
it may eventually come to supersede, once it has been
‘‘field-tested’’ on real data. An important potential
advantage of this method is that it allows for possible
inaccuracies of the VPA estimates of abundance,
whereas most other methods treat these as exact. This
should in principle allow one to detect (and allow for)
the situation where all the indices correctly estimate the
size of a particular year class, but the VPA estimate is
incorrect (because of an error in the catch-at-age data,
or an anomalous value of natural mortality, for
example). It is not yet known whether this is a significant
advantage in practice.
Finally, the use of a formal maximum likelihood

multiple calibration method has been explored by
Laurec (Appendix E of ICES, 1987). For reasons which
are not entirely clear, this method did not perform as
well as the weighted average method in simulation tests
(ICES, 1987), even though it is theoretically preferable.

Practical details

As with many analyses of error-prone data, the practical
details of the implementation of a method may be as
important as the choice of the underlying method.
Several such important details are dealt with below: in
each case these lead to options available to the user.
Fuller guidance on the choice of options may also be
found in the user’s guide to the current implementation
of the method (RCT3) by Darby and Shepherd (in
press).

Weighting: missing data and time tapering

Virtually all real datasets of the type required for this
analysis contain missing data, because the survey/index
series invarably commence in different years, are oc-
casionally not available and become available for the
most recent year classes at different times of the year.
This presents no difficulty for a regression method, since
missing values are simply assigned zero weight, and
thereby excluded from both the analysis (calibration)
and the prediction. This of course requires the use of a
regression routine which allows for weighting (see, e.g.
Davies and Goldsmith, 1976, p. 202, for the appropriate
formulae). Given this facility, it is also possible to
address (to some extent) another practical difficulty, i.e.,
possible changes of catchability with time.

745Prediction of year-class strength



The method described above is based on a power-law
relationship between recruit indices (u) and abundance
(P), in the form u=áPâ, with coefficients á and â which
are constant with respect to time. This means that the
catchability, q=u/P is a function of abundance (unless
â=1), but is not directly dependent on time. It may vary
indirectly with time, of course, if abundance (P) varies
with time, as it usually does. In practice, there are always
a number of reasons why catchability may also vary with
time, even if abundance remains constant. For example,
the spatial distribution of the stock may change with
time because of climatic variations, and in the case of
commercial c.p.u.e. (and possibly even research vessel
surveys) there may be undetected changes in fishing gear
and fishing power which are not fully allowed for.
Furthermore, there may be secular changes in natural
mortality between the times at which surveys are con-
ducted, and the time to which all the estimates are
referenced, because of changes in the abundance of
predator stocks. All these factors could in principle be
allowed for in a more complicated model. A more
practicable alternative is simply to recognise that old
data may no longer be fully relevant to the current
situation, and down-weight, using some appropriate
‘‘tapered’’ weighting function. The tricubic weighting of
Cleveland (1979) was introduced by Armstrong (1985)
for this purpose in the context of VPA tuning. Such
weighting functions generally have a finite range (i.e.
they are strictly zero beyond some maximum range), so
that the effects of outliers are localised in time. Choosing
a 20 year range (for example) means that data more than
20 years old are ignored completely, and that most wight
is given to those for the last 10 years or so. A suitable
weighting formula is

w(y*)=[1"{(y"y*)/D}n]n (8)

for (y"y*)<D, with w(y*)=0 otherwise, where D is the
range, y is the final year, and y* the previous year for
which the weight is to be determined, and n is 1 for
linear, 2 for bisquare, and 3 for tricubic weighting (the
latter being recommended for general use by Cleveland,
1979).
A further facility afforded by weighted regression is

that one may in special circumstances apply a prior
weighting to all the data for a particular survey, perhaps
because this is known to be unreliable for some reason,
or indeed to exclude it entirely from the analysis (by
assigning zero weight) without deleting it from the data
files.
When a weighted regression is adopted, a little ambi-

guity arises over how the standard errors of the par-
ameters and the estimates are to be calculated (M.
Nicholson, pers. comm.). There are essentially two
philosophically different points of view. In one case the
weights are taken to reflect prior knowledge of higher

error variances of the older data. In the other they are
taken to reflect a reduction in the number of (hypo-
thetical) multiple observations at each point. Neither is
necessarily correct, and regrettably the results obtained
differ slightly. The latter approach is adopted here. This
means that the residual variance is estimated as

ó2y=Ó[wi(yi" ŷi)
2]/(Ówi"2) (9)

and the standard error of the estimate is then given by
Equation (3): the positions of n and Ówi are reversed in
the denominators in the alternative interpretation. The
difference is small provided that the weights are scaled to
be of the order of one.

Shrinkage toward the mean

The calibration regression employed in this analysis is a
special case of a functional regression problem (Davies
and Goldsmith, 1976; Chapter 7) in which it is assumed
that there is a real functional relationship between the
variables observed over an indefinite range thereof. No
prior assumption is made about the distribution of
the observations or the range over which they are
distributed, which would correspond to a structural
regression: (Davies and Goldsmith, loc cit, section 7.8;
Snedecor and Cochrane, 1980, section 9.14).
However, for a variate such as recruitment the obser-

vations may normally be described by some reasonable
probability distribution (e.g. a log-normal distribution
with a logarithmic standard deviation of the order of
0.5). Thus, estimates at the extremes of, or outside, the
normal range are surprising, to be regarded with some
suspicion, and possibly to be discounted to some extent.
It would therefore be reasonable to take account of the
expected (prior) distribution of recruitment in construct-
ing individual estimates thereof. This may be done in a
number of ways, including of course a full Bayesian
treatment of the problem, or treatment as a multivariate
structural regression problem, or by factor analysis as
mentioned above. Here, however, we adopt a simpler
procedure which is in the same spirit as these (and
equivalent in some circumstances). This is to include the
historic mean recruitment as an additional estimate,
assigning it a weight corresponding to the observed
historic variance of recruitment about the mean (all after
logarithmic transformation, of course). This has little
effect if high quality (precise) estimates are available,
since the weight attached to the mean is then small. If,
however, the available estimates are imprecise (com-
pared with the historic variability), the effect may be
substantial. The final estimate is always deliberately
biased towards the mean, slightly so given good quality
estimates, and substantially so if they are imprecise. This
bias is incurred in order to reduce the variance of the
final estimate, and is worthwhile because ultimately it is
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the total mean square prediction error (measured as
variance plus bias squared) which best describes the
quality of the estimate.
The general procedure (known as ‘‘shrinkage’’ for

obvious reasons) is discussed in a slightly different
context by Copas (1983). In fact it is easily demonstrated
(A. Laurec, pers. comm.) that when one has only a single
recruitment estimate the procedure of calibration regres-
sion and shrinkage to the mean is precisely equivalent to
doing a predictive regression in the first place. However,
this is not true for multiple estimates. The difference is
easily seen by considering the result of using many sets
of bad data. For predictive regression, one obtains a set
of regression lines of near zero slope, and therefore of
predictions near the mean, with prediction standard
errors similar to the historic standard deviation of the
data. Combining these would lead to a final estimate
very close to the mean, with a moderately small standard
error (1/√n of the individual ones). This standard error
could be made arbitrarily small by including lots more
bad data sets, which is unreasonable. By contrast,
calibration regression on bad data leads to extreme
predictions with enormous standard errors. Combining
these would give a random number with a very large
standard error. Applying the shrinkage by including the
mean leads to a final estimate close to the mean, with a
prediction standard error equal to the historic standard
deviation, which is perfectly reasonable.
The efficacy of calibration with shrinkage has been

confirmed by simulation testing (Rosenberg et al., 1992;
ICES, 1993a), and extensive practical experience since
the method was introduced in 1987. All methods work
well on high quality data, and multiple predictive regres-
sion, and calibration without shrinkage, give poor
results on poor quality data.

Dealing with short time series

It is a matter of common observation that predictions
from short time series are often wrong. For this reason,
it is common practice to disallow predictions from
regressions based on very few points (for example, fewer
than five). This procedure is, however, not entirely
satisfactory. Firstly, the choice of the minimum number
is essentially arbitrary, but may be quite influential if it
causes the results of a particular short time series to be
either included or excluded, especially if it is apparently
well-correlated. Secondly, it is in practice difficult to
justify ignoring data, possibly obtained at great expense,
for five years or more, before suddenly accepting them
as valid and useful. A more progressive and statistically
satisfactory procedure is required.
The reason for the difficulty is well-known: the fitted

model is very sensitive to chance errors in any obser-
vation when few are available. The model fits some of
the noise as well as the signal, and the goodness-of-fit for

the hindcast (the fit to the construction dataset) is
therefore always unrealistically good, compared to that
obtained for the forecast (the fit to the validation
dataset), and the model obtained (being partly fitted to
the noise) is always less appropriate for the future than
one thinks. The estimated residual variance can be
corrected for this. The standard result for least squares
(Seber, 1977) is that the variance should be inflated by a
factor (n+2)/n, but Copas (1983) suggests that (in the
context of multiple regression) this should be modified
to (n"1)/(n"3). This implies that the prediction vari-
ance from a regression based on three points is infinite,
which is surprising, and would imply that such a predic-
tion be discounted completely. An intermediate inflation
factor of n/(n"2) seems more plausible, and may
(optionally) be applied in calculating the prediction
standard errors. This has the effect of downweighting
the results based on short time series compared with
those for longer ones, so that no arbitrary restriction
needs to be placed on the minimum number of points
to be used (other than the fundamental minimum of
three required to estimate a regression and its residual
variance).

Setting a minimum standard error

Even with the adjustment described above, it is still
possible on occasion for the prediction to be dominated
by one data series, because by chance this just happens
to have a very high correlation with VPA for the data
available. This is of course most likely to occur with a
short data series, but even for series of moderate length
(up to 10 years), this can cause considerable variation in
the weights applied to the predictions from different
series from one year to the next, as one or the other just
happens to have the best correlation.
The residual standard errors obtained can also be

unrealistically small. Although the VPA estimates are
treated as exact in this analysis, they are of course
subject to errors because of sampling variability in the
catch data. Various analyses, including separable VPA
(Pope and Shepherd, 1982) and multiplicative models
(Shepherd and Nicholson, 1991) suggest that catch-at-
age data, and therefore VPA estimates of recruitment,
rarely have coefficients of variation of less than 20%, and
often more. It is unreasonable to believe an estimated
residual standard error of a prediction which is less
than the estimated standard error of the VPA recruit-
ment estimates themselves, as the whole calibration is
based on these. To allow for this, it is recommended that
any such small error estimate be replaced by a de
minimis figure, chosen to reflect the probable errors of
the VPA estimates: in the absence of any other infor-
mation the choice of 0.2 (in logarithmic units) reflecting
a 20% coefficient of variation may be a suitable lower
limit. Where the catch-at-age data are of poor quality
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(e.g. because of known low levels of sampling) a
higher choice in the range 0.3 to 0.5 would be more
appropriate.
This modification does introduce an element of sub-

jectivity into the analysis, but the effect is in fact to tend
to equalise the weights attached to the available good
quality datasets, without affecting the downweighting of
the poor quality ones, and is therefore relatively benign.
Experience suggests that this is an important safeguard
against occasional extreme predictions due to chance
configurations of noise.

Exclusion of poor quality datasets

Where a dataset is found to have poor predictive utility,
it is arguable whether or not it should be excluded from
further analysis entirely. To do so however would
require that one set some sort of quality threshold, and
most such thresholds are arbitrary to some extent. An
appropriate selection is not therefore straightforward
(and may be controversial). In addition, if a sharp
cut-off is used (so that a dataset is either excluded or
included with full weight), difficulties may arise over
marginal cases which may be included one year and
excluded the next (or vice-versa). Some form of robust
estimation procedure based on a progressive down-
weighting (see Mosteller and Tukey, 1977) might be
appropriate, and would warrant further investigation.
At present the option to exclude data is avialable,
but should be used cautiously, unless other datasets

of substantially higher utility are available too.
The example discussed below includes several datasets
of dubious utility, which have been retained for illus-
trative purposes, but in practice should probably be
discarded.

Use of method and interpretation of
results

The method as described is implemented by a computer
program named RCT3: copies of this (for IBM compat-
ible PC) are available from the author on request. This is
functionally almost identical to the earlier version
RCRTINX2, widely used by ICES working groups,
except for the inclusion of the forecast/hindcast variance
correction factor (see ‘‘Dealing with short time series’’),
some cosmetic changes to input and output formats,
and some improvements to the user interface. A User’s
Guide for the program is available (Darby and
Shepherd, in press): this gives details of file formats,
and guidance on the selection of user options.
An example dataset is given in Table 1, for the Irish

Sea plaice stock, from ICES (1993b). This dataset
includes a fairly large number of indices, some of which
are poor predictors of recruitment. It has been chosen
because it illustrates the performance of the method in
down-weighting poor data, and employing the shrinkage
toward the mean, and because it was also analysed by
the ICES Working Group (ICES, 1993a).

Table 1. Recruitment indices from Irish Sea plaice stock used to illustrate RCT3 analysis. NWGFS and EWGFS refer to North
Wales Ground Fish Survey and England & Wales Ground Fish Survey, respectively. The age group, month of survey and survey
series name in ICES (1993b) are given for each recruitment series.

Year
class

VPA
age 1

NWGFS
Irish
age 1
May

(irmay 1)

EWGFS

age 0
Oct

(ssoct 0)

age 1
Jun

(ssjun 1)

age 1
Oct

(ssoct 1)

age 2
Jun

(ssjun 2)

age 2
Oct

(ssoct 2)

age 1
Sep

(ewsep 1)

age 2
Sep

(ewsep 2)

1974 11 180 352 473
1975 17 254 308 726 1775 1711 8.18
1976 19 167 78 877 190 1648 650 14.56
1977 23 226 32 641 1110 1744 3018 6.06
1978 20 768 237 348 4046 5588 1161 19.09
1979 15 585 757 3003 2330 1925 1897 3.37
1980 8497 17 98 323 940 844 3.4
1981 21 525 18 585 3125 1371 1538 12.9
1982 21 330 1250 1195 4061 1796 2358 22.18
1983 22 422 262 1983 2995 2208 1683
1984 16 235 508 2635 2649 2281 970 17.9
1985 18 995 430 2520 2246 1959 2145 19.71
1986 20 025 1033 2074 4886 4264 2945 29.71 297
1987 10 945 173 2624 4053 2961 914 38.78 12 727 111
1988 5797 397 506 553 610 134 14.01 5998 69
1989 31 438 271 480 9.65 24 855 140
1990 216 873 8.31 11 052
1991 40.37
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The result of the analysis using the standard default
options is given in Table 2. For each year class for
which analysis is requested, the results of the calibration
regression and resulting prediction are given for each
index series: these are identified by the mnemonic code
at the left-hand side. The slope of the log-log regression
(VPA/index), its intercept, residual standard error, and
the correlation r-squared, are given first, together with
the number of points used. The (log-transformed)
value of each index for the year class in question, the
predicted value, its prediction standard error, and
associated weight in the final overall mean are given
next. Finally, the historic weighted mean over the VPA
series, and its associated prediction standard error and
weighting are given (NB: the prediction standard error
includes the residual error of an individual obser-
vation). Note that all relevant quantities are given in
logarithmic units where appropriate, and that the
prediction weights have been normalised so that they
sum to 1.0.
In evaluating these results, it should be noted that for

a high quality prediction one is ideally looking for a
slope near unity, a small residual standard error, and a
value of r-squared near unity. These conditions are
related but distinct, and may be met in any combination
(or not at all). The acid test is, however, the size of the
prediction standard error, which controls the weighting
process.
In this example, it is clear that none of the indices

performs very well. The slopes for all except the
‘‘irmay’’ series are in the range 0.7 to 1.4, which is
acceptable, but all the residual standard errors except
that for ‘‘ssoct’’ exceed 0.5, which may be taken as
a rough boundary between the useful and the dubious
(a standard error greater than 1.0 may be taken as
indicating that the data are virtually useless). Similarly,
all the r2 values are small (less than 0.5), with even the
best (that for ‘‘ssoct’’) only reaching a little more than
0.4. Not surprisingly, the prediction standard errors
are large, with even the best being about 0.75, corre-

sponding to a prediction of very dubious utility. This is
in fact several times the historic standard error of (log)
recruitment about its mean (0.311), so the mean is
given more weight (0.664) than anything else in the
overall prediction.
The final overall weighted means and their associated

internal and external standard errors (and their variance
ratio) are given in a summary table (Table 3), together
with the historic VPA values for comparison, where
available. The variance ratio may be used as the basis of
an F-test, to determine whether or not the various
indices are consistent or discrepant.
In this case none of the variance ratios exceeds two, so

there is little evidence of discrepancy. Most in fact are
quite small (less than 0.5), indicating a surprising degree
of concordance. This is probably because the indices
include several for different ages from the same survey
cruises (three from October, and two from June). This
may be due to variations between surveys which affect
different age groups similarly (survey effects), which are
quite likely to occur.
Up to 1986 (with the exception of 1980, which was

poorly predicted), recruitment was close to the mean,
and the heavily shrunk predictions (in which the mean is
given a high weight) were reasonably satisfactory. Year
classes since 1987 seem to be below average. The predic-
tions reflect this (except for 1987) but the recent VPA
estimates are of course themselves uncertain.
These results, and those for normal predictive regres-

sion, and unshrunk calibration, are illustrated in Figure
1. The tendency of unshrunk calibration to over-predict
changes is clear, as is that of conventional predictive
regression to yield results excessively close to the mean,
when presented (as here) with multiple datasets of low
predictive utility. The shrunk calibration predictions are
the most satisfactory: Given the low correlations of these
indices with VPA it is not surprising that the results are
not very impressive. For an analysis of more extensive
comparisons with simulated data see Rosenberg et al.
(1992), and with real data, see ICES (1993a).

Table 2. Results of RCT3 analysis for a single year class for the Irish Sea plaice data in Table 1.

Survey
series

Regression Prediction

Slope Intercept
Standard
error R2

No. of
points

Index
value

Predicted
value

Standard
error

Prediction
weights

ssoct 0 0.73 5.85 1.12 0.080 12 5.99 10.24 1.318 0.037
ssjun 1 1.05 2.44 1.12 0.076 13 6.23 8.95 1.325 0.037
ssoct 1 0.85 3.25 0.81 0.136 13 6.32 8.64 1.011 0.063
ssjun 2 1.41 "0.99 0.78 0.150 14 6.42 8.07 1.055 0.058
ssoct 2 0.92 3.01 0.39 0.415 14 4.91 7.54 0.753 0.113
irmay 1 1.70 5.13 1.29 0.061 12 2.71 9.74 1.514 0.028

VPA Mean: 9.75 0.311 0.664
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Discussion

The method described here is conceptually and compu-
tationally simple, and sufficiently flexible that a number
of important practical details can be incorporated with-
out difficulty. It may, if necessary, be implemented using
any regression program or statistics package, but the use
of a specific computer program is more convenient. It
has been tested by simulation methods (ICES, 1987;
Rosenberg et al., 1992), and also by practical application
over more than five years. No serious defects have as yet
been identified, and most of the problems which have
been encountered have been due to inadequate or

misleading data. It is not suggested that this method is
optimal, but it does seem to be adequate for catch
forecasting purposes when the strength of recruiting
year classes is an important factor. It also has the merit
of providing a standard and objective framework for an
analytical procedure in which there are otherwise many
pitfalls for the unwary.
It should be noted that the method assumes that the

errors in the various index series are mutually un-
correlated (the indices themselves are of course ideally
highly correlated), and that the retrospective VPA esti-
mates of year-class strength may be regarded as exact for
practical purposes. In addition, it is assumed that the

Table 3. Retrospective analysis of results from RCT3 analysis of Irish Sea plaice data for several year
classes.

Year
class

Weighted
average
prediction

Log
wtd. aver.
prediction

Internal
standard
error

External
standard
error

Variance
ratio VPA

Log
VPA

1980 19 064 9.86 0.14 0.13 0.86 8498 9.05
1981 17 318 9.76 0.24 0.12 0.24 21 525 9.98
1982 22 476 10.02 0.24 0.17 0.52 21 330 9.97
1983 20 960 9.95 0.23 0.11 0.23 22 422 10.02
1984 21 177 9.96 0.20 0.13 0.44 16 236 9.69
1985 21 935 10.00 0.20 0.10 0.26 18 996 9.85
1986 26 388 10.18 0.19 0.15 0.56 20 026 9.90
1987 2 1004 9.95 0.18 0.15 0.65 10 946 9.30
1988 11 166 9.32 0.25 0.33 1.66 5797 8.67
1989 8798 9.08 0.34 0.35 1.06
1990 14 683 9.59 0.42 0.15 0.13
1991 16 234 9.69 0.45 0.43 0.91
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Figure 1. Comparison of year-class strengths for Irish Sea plaice from RCT3 analysis. (/) VPA, (.) shrunk calibration,
(-) unshrunk calibration, (,) unshrunk prediction.
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catchability (as expressed by the coefficients of the
calibration regression) is constant with respect to time.
None of these assumptions is likely to be precisely
correct, and safeguards against modest violations of the
last two are incorporated, through the down-weighting
of old data, and the imposition of a minimum prediction
standard error.
As with any computational process that has been

deliberately designed for convenient operational use,
there is an inherent danger that it may be treated by the
user as a ‘‘sausage machine’’, paying insufficient atten-
tion to the quality of either the raw materials or the
product. It is therefore most important that users of this
method pay careful attention to the regression diagnos-
tics provided, and seek reasons for anomalous behav-
iour. They should also exercise considerable caution in
accepting predictions from datasets which do not con-
form to the assumptions made in designing the method
(particularly any yielding regressions slopes far from
one, especially if they are negative) and routinely exam-
ine the retrospective analyses of past performance,
which are supplied as a matter of course.
Finally, it should be noted that the procedure used

is closely related to that employed in the calibration
(‘‘tuning’’) of virtual population analysis itself. The
special features are the need to focus on all available
data for particular year classes, especially very recent
data which becomes available shortly before the analysis
is carried out, and to allow for a possible non-linear
relationship (variation of catchability with abundance),
as commonly observed for very young fish. It is arguable
that the same methods would indeed be directly appli-
cable to the VPA tuning problem, and developments
along these lines would probably be worth pursuing.
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