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Calanus agulhensis is the dominant large copepod on South Africa’s Agulhas Bank,
and is an important food item for pelagic fish. This paper reviews current knowledge
and understanding of its biology and ecology and includes comparisons with other
Calanus species. Its distribution is influenced by the prevailing hydrography, being
advected from the eastern to the western Agulhas Bank and then north along the edge
of the west coast shelf. Highest biomass of C. agulhensis is on the central Agulhas Bank
in the vicinity of a cool ridge of upwelled water that is thought to enhance local
retention. Daily vertical migration on the Agulhas Bank is linked to food concen-
tration, with a strong correlation between the extent of migration of large stages
(C4-female) and food abundance in the chlorophyll-rich layer. A diel feeding rhythm
has been observed, independent of whether or not animals are migrating vertically.
Females offered natural assemblages show a preference for the larger particles of the
dominant size classes. Development time from egg to adult (20.3 d at 15.5�C) is fast
compared with other Calanus species. The long N3 stage duration suggests that it is the
first feeding stage. Isochronal growth is approximated, but the equiproportional rule is
not adhered to. In the field, growth rate is influenced more by food than by
temperature, particularly larger stages that are more frequently food-limited. This is
probably because the small phytoplankton cells that dominate at warm temperatures
are generally at low concentrations (<2 mg chlorophyll a m�3), insufficient for fast
growth of large stages. Egg production following short periods (1–3 d) of starvation
returns quickly to normal on the reintroduction of food, an adaptation that may be
beneficial in the relatively stable food environment of the Agulhas Bank. Following
long periods (9 d) without food, however, many females are unable to regain normal
levels of egg production. At present, there is no information on the extent of omnivory
in C. agulhensis, and little on the ecology of the naupliar and young copepodite stages.
These may be fruitful areas for future research.
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Introduction

The species now known as Calanus agulhensis was first
recorded in South African waters by Cleve (1904), who
identified it as Calanus finmarchicus. This name persisted
for many years, and was used by De Decker (1964) in a
comprehensive report on the marine Copepoda of South
Africa. He subsequently referred to the copepod as C.
finmarchicus sensu lato, to designate a form of
uncertain taxonomic status (De Decker, 1973, 1984).
1054–3139/00/061834+16 $35.00/0
Hutchings (1985) referred to it as C. finmarchicus var.
australis, whereas in more recent papers the name
Calanus australis has been used (Attwood and Peterson,
1989; Peterson et al., 1990). C. agulhensis sp. nov. was
finally described in 1991 (De Decker et al., 1991).

C. agulhensis belongs to the Calanus helgolandicus
species group and is closely related to other southern
hemisphere calanids, such as C. australis (De Decker
et al., 1991). However, it is most similar morphologically

to Calanus pacificus, an exclusively northern hemisphere
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species. C. agulhensis is one of the smaller species in the
C. helgolandicus group, with a mean body length of
2.72 mm for females (range 2.15–3.2 mm) and 2.61 mm
for males (range 2.08–3.13 mm; Table 1).

There have been two broad areas of research in South
Africa concerning C. agulhensis. The first is an applied
approach, relating the spawning and recruitment of the
dominant pelagic fish species in the region, Cape
anchovy (Engraulis capensis), to the availability of C.
agulhensis, its primary food source on the Agulhas Bank
(Peterson et al., 1992; Hutchings et al., 1995; Richardson
et al., 1998). The Agulhas Bank is a roughly triangular
extension of the continental shelf off southernmost
Africa, extending eastwards from Cape Point. There is a
strong inverse relationship between the abundance of
adult anchovy and that of copepods on the Agulhas
Bank, implying density-dependent regulation of the
anchovy spawning stock (Peterson et al., 1992; Richard-
son, 1998). This approach differs from most other
regions, where the emphasis has been on Calanus nauplii
and young copepodites as food for fish larvae.

The second approach has endeavoured to explain the
population dynamics and life history of C. agulhensis.
The copepod inhabits the warm and relatively stable
waters of the Agulhas Bank and the outer shelf along
South Africa’s west coast. This contrasts with the distri-
bution of Calanoides carinatus, which dominates the
cool and dynamic coastal upwelling region off the west
coast. The different distributions of the two species,
despite their apparent similarity, has stimulated com-
parative studies on their diet, their response to a fluctu-
ating food environment, their production rates and their
vertical migratory behaviour.

Relatively little has been published on the life history
and population dynamics of C. agulhensis. In this paper,
we review what we consider to be the key factors that
control its population dynamics off South Africa, using
published and recent unpublished work, and provide
comparisons with sibling species and suggestions for
future research. In so doing, we hope that the informa-
tion will add new perspectives on the biology and
ecology of Calanus in general.
Distribution, abundance, and population
structure

Early investigations identified the Agulhas Bank as the
centre of distribution of C. agulhensis (Cleve, 1904; De
Decker, 1964), although it is also found off the west and
east coasts of South Africa (De Decker, 1984). The most
extensive information on the distribution and abun-
dance of C. agulhensis has been collected by Marine &
Coastal Management (formerly the Sea Fisheries
Research Institute) during biannual, hydroacoustic
pelagic fish stock assessment surveys since 1988. Data
from 16 cruises, eight each during winter (May/June)
and summer (November/December), show that C.
agulhensis is abundant over the entire Agulhas Bank, as
illustrated by the distribution of females in Figure 1.
Animals are also found off South Africa’s west coast,
but there they are less abundant, although densities
are sometimes high beyond the shelf edge (Figure 1),
particularly during summer.

C. agulhensis accounts for 53–82% of the copepod
biomass on the Agulhas Bank (Verheye et al., 1994).
Biomass of C. agulhensis is highest over the midshelf of
the central bank and declines towards the east and west
(Figure 2). Between 1988 and 1993, the proportion of
early juvenile stages (C1–C3) was generally higher east
of Cape Agulhas than farther west (Hutchings et al.,
1995). Animals are found all year round on the Agulhas
Bank (De Decker et al., 1991), reproducing continuously
and with no evidence of diapause. Highest densities of
C. agulhensis during summer are often associated with a
quasi-permanent ridge of cool, upwelled water south of
Mossel Bay [Figure 3(a), (b); Peterson et al., 1992; Boyd
and Shillington, 1994; Peterson and Hutchings, 1995].
Although cyclonic circulation around the ridge is
thought to enhance local retention of C. agulhensis
(Peterson et al., 1992), it has been hypothesized that
there is a net westward advection of various stages
across the Agulhas Bank (Largier et al., 1992). Several
observations support this hypothesis. First, there is a
general movement of fish eggs and larvae westwards
across the bank (Shelton and Hutchings, 1982; Huggett
et al., 1998). This advection continues north around
Cape Point and onto the west coast, where C. agulhensis
lives in warm water along the shelf break (Figure 1).
Second, the largest densities of copepods on the western
Agulhas Bank are generally found midshelf (Pillar, 1986;
Richardson et al., 1998), spatially disassociated from
the inshore chlorophyll a maximum (Brown, 1992;
Mitchell-Innes et al., 1999). This is thought to be a
consequence of advective input from the adjacent
eastern Agulhas Bank, rather than in situ growth
(Largier et al., 1992; Peterson et al., 1992). Last, the
distribution of stages N6–C3 is usually centred on the
cool upwelling ridge, whereas that of older stages C4–C6
is offset towards the west [Figure 3(b); Largier et al.,
1992; Peterson and Hutchings, 1995]. Moreover, when
the ridge is absent, as it was in November 1990, the
centre of distribution of C. agulhensis is displaced
westwards (Hutchings et al., 1995).
Vertical migration

Studies on vertical migration are essential to investigate
hypotheses regarding plasticity of behaviour, such as the
interplay between hunger and predation risk, and popu-
lation retention mechanisms. Two studies on the diel
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Figure 1. Composite map of distribution (m�2) of C. agulhensis females from 16 cruises (winter and summer data pooled) around
the coast of South Africa between 1990 and 1996.
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Figure 2. Biomass of C. agulhensis across the Agulhas Bank
during 1988, 1989, and 1990. Each data point is the mean of a
cross-shelf transect. Note that the greatest biomass is off Mossel
Bay (redrawn from Verheye et al., 1994). The curve was fitted
using the distance-weighted least squares procedure.
vertical migration (DVM) of C. agulhensis have been
undertaken, one off the west coast and one on the
Agulhas Bank.

Off the west coast, Peterson et al. (1990) investigated
vertical migration of C. agulhensis along a cross-shelf
transect. Chlorophyll a concentrations in the upper 20 m
ranged from high (17.2 mg m�3) inshore to moderate
(3.8 mg m�3) offshore, indicating that food was unlikely
to be limiting. Normal DVM was apparent for C4, C5,
and female C. agulhensis near the shelf edge (190 m
deep), but younger copepodites showed similar daytime
and night-time abundances in the upper water column.
Stage C5 and female C. agulhensis were scarce inshore
(80 m deep), but the younger copepodites again seemed
to remain in the upper water column by day and night.

A more comprehensive study of diel vertical migration
by C. agulhensis was made at three stations on the
Agulhas Bank during March 1994 (JAH, unpublished
data). The first station (100 m deep) was characterized
by persistently high concentrations of chlorophyll a
(�5 mg m�3) in the upper mixed layer [Figure 4(a)].
There, C. agulhensis exhibited typical DVM, ascending
to the food-rich, upper layers at night, and descending
before sunrise. By mid-morning, the entire population,
except for the C1s, had returned to deeper water.
Ontogenetic layering was evident during the day, with
older stages found progressively deeper.

At the second station (140 m deep), chlorophyll a
levels in the upper mixed layer were initially low
(�1 mg m�3), but they increased to �5 mg m�3

during the afternoon [Figure 4(b)]. The near-surface
presence of animals at the start of sampling, before
sunset, suggested either an early ascent or lack of
descent the previous day, enabling the animals to maxi-
mize their food intake near the surface. As food levels
increased, the copepods resumed migratory behaviour,
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Distribution (m�2) of C. agulhensis developmental stages over
the Agulhas Bank during November 1989 (after Largier et al.,
1992).
with younger stages (C1–C3) responding later than older
ones (C4–C6). Daytime ontogenetic layering was again
evident, with a relatively deeper distribution during
conditions of abundant food.

At the third station (80 m deep), very low subsurface
chlorophyll a (<1 mg m�3) was associated with a strong
thermocline, which formed the upper limit of the
copepods’ nocturnal distribution [Figure 4(c)]. Subse-
quent daytime weighted mean depths were similar to
those of the previous night, with the animals apparently
remaining to feed on what low levels of phytoplankton
existed in order to reach satiation.

DVM of young C. agulhensis stages (C1–C3) was
variable during this study. At the first station vertical
migration appeared to be related to food availability,
but at the second station there was no relationship. The
extent of DVM of the large stages (C4-female), however,
was significantly correlated with food abundance in the
chlorophyll maximum layer at all stations (Figure 5),
indicating that vertical migratory behaviour was directly
linked to food availability. Large stages of C. agulhensis
therefore spent more time near the surface under poor
food conditions than under conditions of good food,
apparently in order to achieve satiation prior to
descending to relative safety from predators in deeper
water. Off the west coast, juvenile and adult Calanoides
carinatus migrate extensively when chlorophyll a is
plentiful near the surface, but display suppressed DVM
when surface chlorophyll a is low (Verheye and Field,
1992). Similar behaviour was noted for C. pacificus
during a mesocosm study (Huntley and Brooks, 1982).
C. pacificus copepodites performed high-amplitude
migrations when phytoplankton was abundant, and
individual ingestion rates were high. As food availability
declined, migration amplitudes decreased and eventually
ceased, such that copepodites remained in the relatively
food-rich surface waters at all times.

Ontogenetic layering has been observed for many
Calanus species, including C. finmarchicus (Tande,
1988a; Unstad and Tande, 1991), C. glacialis (Hansen
et al., 1990; Unstad and Tande, 1991), C. helgolandicus
(Williams and Conway, 1980), C. pacificus (Huntley and
Brooks, 1982; Osgood and Frost, 1994), and C. sinicus
(Uye et al., 1990). This is thought to be a consequence of
stage-specific feeding behaviour and swimming ability,
as well as size-related susceptibility to predation, and
may be important in reducing competition between
different life stages (Tande, 1988a). Ontogenetic layering
may be more pronounced under conditions of strong
thermal stratification (Huang et al., 1992), and has been
suggested as a mechanism for population retention in
regions subject to strong advection such as upwelling
areas (Verheye et al., 1991; Peterson, 1998).

Inverse ontogenetic layering, with youngest
stages deeper than older ones, has been observed for C.
helgolandicus (Williams and Conway, 1980) and C.
glacialis (Unstad and Tande, 1991), the latter when
co-occurring with C. finmarchicus in the Barents Sea.
Williams and Conway (1980) suggested that different
ontogenetic behaviour by congeneric species serves to
minimize interspecific competition where the species
have sympatric distributions. Different migratory behav-
iour has also been found for co-occurring C. pacificus
and Metridia lucens, with M. lucens copepodites some-
times performing reverse migrations (Osgood and Frost,
1994). Those authors suggest that M. lucens may
be more susceptible to invertebrate predation, or may
simply be capable of a wider range of migratory behav-
iours during development than C. pacificus. As each
species integrates factors such as predation risk and
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bimodal-sized ambient food distributions.
energetic gains from food in a unique way, interspecific
differences in diel migratory behaviour are to be
expected even under identical conditions (Dagg et al.,
1998).

Feeding ecology

Compared with the highly dynamic west coast upwelling
regime (Shannon, 1985), the Agulhas Bank provides a
relatively stable food environment, with a seasonal
structure typical of temperate continental shelf systems
(Probyn et al., 1994) such as the Georges Bank
(Hutchings, 1994). Although higher concentrations of
chlorophyll a are associated with inshore coastal
upwelling (�3 mg m�3) and dynamic upwelling along
the eastern shelf edge (>2 mg m�3), mean concen-
trations over most of the south coast shelf are moder-
ately low (1–2 mg m�3; Brown et al., 1991; Brown,
1992).

There are few studies on ingestion rates of C.
agulhensis in the field, but they do show that individuals
are often food-limited. Maximum ingestion rates of C.
agulhensis females increased from 167 ng chlorophyll a
individual�1 d�1 (mean=72) under low concentrations
of chlorophyll a (<3 mg m�3) to 732 ng chlorophyll a
individual�1 d�1 (mean=430) at high concentrations
(>3 mg m�3; Table 1). Ingestion rates as a percentage
of body C d�1 (Table 1) were calculated by assuming
that water low in chlorophyll a is flagellate-dominated
(Mitchell-Innes and Pitcher, 1992), with a C:chlorophyll
ratio of 41 (Cochrane et al., 1991), and water high
in chlorophyll a to be diatom-dominated, with a
C:chlorophyll ratio of 30. Faster ingestion rates by
large juveniles (C4 and C5) were also observed under
high compared to low chlorophyll a conditions. The
high concentrations of chlorophyll a often observed on
the west coast (Brown et al., 1991; Brown, 1992)
therefore support faster rates of ingestion than the
generally low concentrations characteristic of the
Agulhas Bank.

Calanus spp. are generally considered to prefer
large phytoplankton cells (Frost, 1972; Peterson and
Bellantoni, 1987; Walker and Peterson, 1991), although
C. finmarchicus is able to utilize small (<10 �m) cells
(Huntley, 1981; Nejstgaard et al., 1997; Båmstedt et al.,
1999) if they are sufficiently abundant. During ship-
board experiments off South Africa, the distributions of
particles removed by female C. agulhensis incubated in
natural food assemblages suggest a preference for the
larger particles of the dominant size classes (JAH,
unpublished data; Figure 6). Most particles ingested
were similar to, or slightly larger than, peak ambient
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size, whether food size was small [�8 �m; Figure 6(a)],
large [�45 �m; Figure 6(b)] or bimodal [12 and 25 �m;
Figure 6(c)]. A similar feeding pattern was exhibited by
C. chilensis females, which, at high concentrations of
food, selectively ingested particles with the greatest
relative abundance, or particles slightly larger than those
with greatest relative abundance (Cowles, 1979). Dispro-
portionate ingestion, or ‘‘preference’’ (Turner and
Tester, 1989), of large particles from natural assem-
blages has been observed for C. pacificus (Richman and
Rogers, 1969; Harris, 1982) as well as for C. finmarchi-
cus, C. glacialis, and C. hyperboreus (Barthel, 1988).
Nevertheless, it has been proposed that this may be
because Calanus handles large cells more efficiently than
small cells (Frost, 1977).

Other studies have documented non-selective feeding
behaviour by Calanus spp. Huntley (1981) found that,
under non-saturated feeding conditions, C. finmarchicus,
C. glacialis, and C. hyperboreus removed particles in
direct proportion to their abundance, with no apparent
size-selective ingestion. Turner and Tester (1989) pro-
posed that copepods are primarily non-selective when
suspension-feeding on natural phytoplankton assem-
blages. These differences in feeding behaviour may be
related to differences in food availability. Cowles (1979)
found that selectivity decreased with declining food
abundance, as would be expected from optimal foraging
theory. However, Barthel (1988) found that selectivity
was independent of food abundance. Factors such as
food quality, experimental methodology, and the often
unknown extent of omnivory further complicate the
interpretation of feeding studies, and the issue of food
selectivity is likely to be debated for some time to come.

Diel feeding patterns appear to be less enigmatic. C.
agulhensis exhibited a diel feeding rhythm off the west
coast, independent of whether or not they were vertically
migrating (Peterson et al., 1990). Gut pigment content
was low during daylight and increased rapidly one hour
before sunset. Gut fullness then declined 2–3 h after
sunset, levelling off at up to six times higher than mean
daytime values. Stages C3–C5 ingested 20% of their
daily ration during daylight, whereas females ingested
approximately 15% during the day.

Diel feeding rhythms have been noted for many other
Calanus species, including C. chilensis (Castro et al.,
1991), C. finmarchicus (Daro, 1985), C. helgolandicus
(Harris and Malej, 1986; Harris, 1988), C. pacificus
(Dagg et al., 1989; Landry et al., 1994; Dagg et al.,
1998), the boreal species C. cristatus and C. plumchrus
(Ishii, 1990), and the subantarctic species C. propinquus
and C. simillimus (Atkinson et al., 1992a, b, 1996). These
feeding rhythms are sometimes bimodal (Ishii, 1990) and
seem to be independent of vertical migration. Dagg et al.
(1989) observed that, although some C. pacificus
appeared in the surface layer up to 2.5 h before sunset,
feeding increased substantially only well after sunset.
This is thought to be linked to predator avoidance,
because the food-packed guts of copepods feeding
during daylight may attract visual predators (Stearns,
1986; Dagg et al., 1989; Bollens and Stearns, 1992).
Development and growth
0
C6

20

T
im

e 
(d

)

N1

4

8

12

16

N5N3 C1N2 N6N4 C2

15.5°C
19.5°C

C3 C4 C5
Stage

Figure 7. Cumulative median development time for C.
agulhensis at 15.5 and 19.5�C (after Peterson and Painting,
1990).
Development rate

The maximum rate of development of C. agulhensis was
investigated by feeding individuals excess quantities of a
mixture of the diatom Thalassiosira weissflogii and the
flagellate Tetraselmis suecica in the laboratory (Peterson
and Painting, 1990). C. agulhensis developed from egg to
adult in 20.3 d at 15.5�C and in 16.0 d at 19.5�C. Egg
hatching time was 21 h at 15.5�C. Stages N1 and N2
moulted quickly to N3 (<1 d per moult), but the N3s
had a relatively long stage duration (�3 d at 15.5�C)
before moulting to N4 (Figure 7). The range between
first and last appearance of a stage was 4–7 d from N3 to
C5. Most of the variability was evident at the N3 stage,
with some added variability at the C5 stage. Isochronal
development (Miller et al., 1977) was approximated
from N4 to C5 at 15.5�C and from N4 to C4 at 19.5�C.

C. agulhensis conforms to the common developmental
pattern summarized by Landry (1983), whereby: (i) the
first (non-feeding) naupliar stages have a short duration;
(ii) the first-feeding naupliar stage (in this case N3) is
prolonged; (iii) the remaining naupliar stages and most
of the copepodite stages develop at the same rate; and
(iv) the fifth copepodite stage is prolonged. However,
growth of C. agulhensis does not adhere strictly to either
the isochronal or the equiproportional rule (Corkett,
1984).

Equiproportional development was observed for C.
sinicus by Uye (1988) and for Calanoides carinatus by
Peterson and Painting (1990), but not for C. marshallae
(Peterson, 1986), which demonstrated a sigmoidal
pattern of development. Contrasting patterns of
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development have been described for C. finmarchicus in
different areas. Equiproportional development was
reported off eastern Canada by Corkett et al. (1986), but
not in studies in the North Sea (Thompson, 1982) or off

northern Norway (Tande, 1988b). Although experimen-
tal variability may contribute to these differences, vari-
ation in relative developmental rates in different regions
could also be indicative of different ecotypes among C.
finmarchicus populations (Tande, 1988b).

C. agulhensis egg hatching time and total development
time from egg to adult is generally faster than that of
other Calanus spp. at similar temperatures (Table 2).
Fastest development (19 d) was observed for C. pacificus
reared on the dinoflagellate Gymnodinium splendens
(Paffenhöfer, 1970). Animals developed more slowly
when reared on other phytoplankton species, so high-
lighting the importance of food quality as well as food
concentration.
Effect of temperature on growth and egg
production

C. agulhensis egg and egg-to-adult development
time decreased with increasing temperature, with a
corresponding decline in stage duration (Table 1;
Peterson and Painting, 1990). Under excess food con-
ditions in the laboratory, egg production increased
linearly from 27.3 eggs female�1 d�1 at 9�C to 75.3 eggs
female�1 d�1 at 21�C (JAH, unpublished data; Figure
8). Maximum rates of egg production of C. finmarchicus
and C. pacificus also increased with temperature (Runge
1984; Hirche, 1996; Runge and Plourde, 1996; Hirche
et al., 1997), with exponential and linear regressions
fitting the data equally well (Hirche et al., 1997).

A large number of moulting rate (�700) and egg
production (�3000) experiments for C. agulhensis have
been collected off the South African coast. This repre-
sents one of the largest data sets of copepod growth
rates from the field anywhere in the world and has
provided new perspectives on the debate about the
relative importance of food and temperature to copepod
growth rates (see Huntley and Lopez, 1992; Kleppel
et al., 1996).

Female growth rate, measured by egg production,
suggests a dome-shaped relationship with temperature in
the field, with growth rates of 0.2 d�1 (60 eggs
female�1 d�1) for temperatures <13�C and >18�C, and
up to 0.4 d�1 (120 eggs female�1 d�1) between 13 and
18�C [Figure 9(a)]. A similar relationship was found
between somatic growth and temperature for the larger
copepodite stages (C3–C5), with slower growth for
temperatures <13�C and >18�C, and faster growth
between 13 and 18�C (Richardson and Verheye, 1998).
These relationships are probably a consequence of the
dome-shaped relationship between chlorophyll a and
temperature (Mitchell-Innes and Pitcher, 1992; Pitcher
et al., 1996; Richardson and Verheye, 1998); low con-
centrations of chlorophyll a are associated with both
cool (<13�C) and warm (>18�C) temperatures [Figure
9(b)], whereas water of 13–18�C has higher concen-
trations of chlorophyll a. Growth rates of smaller stages
did not show this dome-shaped relationship with tem-
perature. These results emphasize that temperature-
specific growth rates measured under food-satiated
conditions in the laboratory cannot necessarily be
extrapolated to the field.
Effect of food concentration and particle size on
growth and egg production

There is considerable evidence to suggest that larger
C. agulhensis stages are increasingly food-limited
(Hutchings et al., 1995; Peterson and Hutchings, 1995;
Richardson and Verheye, 1999). First, mean growth rate
decreased by an order of magnitude from 0.55 d�1 for
N6 to 0.05 d�1 for females (Table 1; Figure 10),
whereas maximum growth rate only showed a twofold
decrease, from 0.69 d�1 for N6 to 0.33 d�1 for females.
The decrease in maximum growth rate is probably a
consequence of allometry, whereas the decrease in mean
growth rate implies that an environmental factor may be
acting differentially on the growth rate of different
stages. Second, large stages required more food to
reach food-saturated growth rates than smaller stages
(Figure 11). Third, large copepods were only rarely
growing maximally, whereas small stages were mostly
growing at near-maximal rates (Figure 5 of Richardson
and Verheye, 1999). Finally, the optimal size of food
particles is related to copepod size (Berggreen et al.,
1988; Mauchline, 1998), larger copepods preferring
larger phytoplankton cells. Large cells, such as diatoms,
are only periodically abundant (usually at times of
relaxation in upwelling), whereas small cells, such as
flagellates, are ubiquitous (Richardson and Verheye,
1999). Collectively, these findings suggest that the
ambient food environment limits the growth rate of
large C. agulhensis stages, with stage duration in the field
increasing significantly for older stages. By contrast,
small C. agulhensis stages are always growing at near-
optimal rates. Similarly, Vidal (1980) found that sub-
optimal food concentration only slightly retarded the
growth of young copepod stages, whereas older stages
were more seriously affected. A consequence of progres-
sive food limitation of C. agulhensis with increasing
body size is that juvenile growth is unrelated to female
growth (Hutchings et al., 1995; Richardson and
Verheye, 1999).

Field studies have also shown that C. agulhensis egg
production and somatic growth rates are related to
phytoplankton cell size. The somatic growth rates of all
copepodites are positively related to the proportion
of cells >10 �m (Richardson and Verheye, 1998).
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Moreover, Walker and Peterson (1991) observed an
almost sevenfold improvement in daily egg production
in areas dominated by large cells over areas dominated
by small cells. Off the west coast of South Africa,
chlorophyll a concentration is positively related to cell
size (Mitchell-Innes and Pitcher, 1992), so the effect of
cell size on growth is confounded with the effect of cell
concentration. Richardson and Verheye (1998) con-
cluded that, when small phytoplankton cells dominate
the phytoplankton assemblage, growth of C. agulhensis
in the field may not be limited by cell size per se, but
by the typical concentrations of these cells (�2 mg
chlorophyll a m�3, equivalent to �82 mg C m�3).
Båmstedt et al. (1999) found that C. finmarchicus was
able to attain maximum rates of egg production when
feeding on high concentrations (>800 mg C m�3) of
algae as small as 4–8 �m.
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Effect of starvation on egg production

C. agulhensis appears to be better adapted to the more
stable food environment characteristic of the Agulhas
Bank than Calanoides carinatus, which is adapted to
upwelling environments (Thiriot, 1978; Borchers and
Hutchings, 1986). Females of both species acclimated to
excess Thalassiosira weissflogii were subjected to varying
periods of starvation, then returned to the excess food
medium and their egg production monitored (JAH,
unpublished data). C. agulhensis recovered more rapidly
from short (1–3 d) periods of starvation, although recov-
ery following longer periods of starvation (5–9 d) was
slower than that of C. carinatus females (Figure 12).
Moreover, many C. agulhensis females did not regain
normal, unstarved rates of egg production after 9 d
without food. The time required for post-starvation egg
production to return to normal levels was proportional
to the starvation period, up to a limit of 7 d starvation
for C. agulhensis.

Somewhat contradictory results were reported by
Attwood and Peterson (1989). They found that
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Figure 11. Mean growth rate in relation to chlorophyll a concentration for C1 to female C. agulhensis, where g=ga(1�e�kc).
Parameters ga and k are given in Table 1 (after Richardson and Verheye, 1999).
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C. agulhensis only regained normal egg production
approximately 5 d after 1–5 d without food, compared
to a recovery time of 1–4 d found by the current authors
(JAH, unpublished data; Figure 12). Furthermore, the
maximum egg production of C. agulhensis under food-
satiated conditions reported in their study was only 40
eggs female�1 d�1 at 15�C, substantially lower than in
other laboratory studies at the same temperature (87–99
eggs female�1 d�1; JAH, unpublished data) and field
studies (130 eggs female�1 d�1; Richardson and Verh-
eye, 1998). As the latter experiments were conducted
during summer, the different findings of Attwood and
Peterson (1989) could be because their study was con-
ducted during winter, when females may have had a
poor feeding history (females used in both laboratory
studies were collected from the field, and not raised in
the laboratory).

Regarding termination of egg production, C. agulhen-
sis did not immediately stop producing eggs when placed
in filtered seawater, but continued to lay eggs for at least
3 d (JAH, unpublished data). Delayed termination of
egg production following starvation has been observed
for other Calanus species. C. glacialis laid eggs for a
further 3–6 d when starved (Hirche and Bohrer, 1987),
whereas egg production by starved C. finmarchicus con-
tinued for up to 20 d, although at very slow rates
(Hirche, 1990; Hirche et al., 1997). In contrast, termin-
ation of egg production within 24 h of starvation was
observed for C. marshallae (Peterson, 1988) and Cala-
noides carinatus (Borchers and Hutchings, 1986), two
species from upwelling areas. Continued (but slower)
egg production during starvation may be an effective
strategy in a relatively constant, but low chlorophyll a
environment such as the Agulhas Bank, where interrup-
tions in food availability tend to be brief. Hassett and
Landry (1983) proposed that it might be energetically
optimal for copepods experiencing short-term food
patchiness to maintain higher levels of digestive enzymes
at low food concentrations in order to exploit higher
concentrations of food when encountered. Similarly, it
may be energetically more efficient to maintain egg
production, albeit at a slower rate, rather than to stop
and then restart egg production within a short period of
time if the absence of food is likely to be short-lived. By
contrast, if animals inhabit an environment where food
deprivation is often prolonged, it might be energetically
more efficient to cease egg production immediately and
wait for better conditions. This may be the strategy used
by the upwelling species C. marshallae and Calanoides
carinatus.
Future directions

Much remains to be discovered about C. agulhensis.
Research to date has only partially explained the
dominance of C. agulhensis on the Agulhas Bank. A
limitation of the fieldwork on growth, ingestion rates,
and daily vertical migration is that C. agulhensis has
been assumed to be entirely herbivorous, but the extent
of omnivory in this species is unknown. Omnivory could
be particularly important on the Agulhas Bank, where
concentrations of chlorophyll a are generally low. We
also know little about the lipid reserves of females, and
nothing about those of juveniles. Laboratory exper-
iments investigating food preference and growth in
response to food concentration and starvation have all
been conducted on female C. agulhensis. The effect
of these factors on juvenile stages also needs to be
investigated.

To improve our understanding of the population
dynamics of C. agulhensis, a number of parameters still
need to be investigated, such as the effects of starvation
and predation on egg viability and mortality. Moreover,
we need to know more about how C. agulhensis
populations are maintained by processes such as
vertical migration and advection. The hypothesis that C.
agulhensis is advected from the eastern to the western
Agulhas Bank could be verified by modelling the life-
history parameters of C. agulhensis, in combination with
current measurements and information on predation by
pelagic fish. The vertical migratory behaviour of C.
agulhensis should be explored not only in terms of the
ambient food conditions, but also in terms of predation
pressure. These studies are currently underway.
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