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Effects of in situ target spatial distributions on acoustic density
estimates
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One goal of acoustic-based abundance estimates is to accurately preserve spatial
distributions of organism density and size within survey data. We simulated spatially-
random and spatially-autocorrelated fish density and �bs distributions to quantify
variance in density, abundance, and backscattering cross-sectional area estimates, and
to examine the sensitivity of abundance estimates to organism spatial distributions and
methods of estimating acoustic size. Our results show that it is difficult to simul-
taneously estimate fish density and maintain accurate �bs-frequency distributions.
Among our acoustic backscatter estimation methods, a weighted-mean from a local
search window provided optimal estimates of density, abundance and �bs. Other
methods tended to bias either �bs or density estimates. This analysis identifies the
relative importance of variance sources when estimating organism density using
spatially-indexed acoustic data.
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Introduction

Underwater acoustic technologies are non-invasive
sampling tools commonly used to map distributions of
fish and zooplankton abundance, density, and size.
Advances in hardware and computing technology have
increased the spatial resolution of acoustic data, thereby
improving the ability to examine organism distributions
at multiple scales (e.g. Horne and Schneider, 1997), to
investigate predator–prey interactions (Levy, 1991),
biological–physical interactions (Nash et al., 1989;
Megard et al., 1997), or use in bioenergetic modeling
(Luo and Brandt, 1993; Brandt and Mason, 1994).
Goals of fisheries acoustics are to provide accurate
abundance estimates and to preserve spatial distribu-
tions of organism densities and sizes within survey data.

Spatially-explicit analysis formalizes methods for
extracting quantitative spatiotemporal information from
acoustic data (Brandt et al., 1992; Mason and Brandt,
1996). Acoustic data are stored and analyzed in two-
1054–3139/01/010123+14 $35.00/0
dimensional arrays where each array dimension is par-
titioned into cells to maintain the spatial heterogeneity
observed in organism distributions. Each cell contains
volume backscatter integrated over the dimensions of
the cell [i.e. integrated echo (Dragesund and Olsen,
1965; Røttingen, 1976; Foote, 1978)] and backscattering
cross-sectional areas (�bs) of individual targets. Assum-
ing that backscatter from targets is incoherent and
linearly additive (Foote, 1983), numeric density is the
total energy returned from a sample volume, divided by
the energy from a representative scatterer within that
volume (Medwin and Clay, 1997).

where �̂v is the density estimate [number m�3], sv is
vertically integrated and horizontally averaged volume
backscatter over the spatial dimensions of the array cell,
and �̂bs is the representative acoustic backscattering
cross-sectional area (Figure 1).
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Figure 1. Acoustic echogram and corresponding spatially-indexed array. The top schematic (a) represents potential distributions
of aquatic organisms observed along acoustic transects. Data array cells can contain resolved individuals of single or multiple
species, no resolvable individual targets (i.e. fish aggregation), or may contain different species, sizes and scattering types. The
bottom schematic (b) shows the corresponding spatially-indexed array. �p, �y, �z are acoustic backscattering cross-sections of
predators, prey, and zooplankton, respectively. �̂, �̂ are the estimated backscatter and estimated density, and sv is volume
scattering. �? represents cells without resolvable individual targets. In cells with volume scattering and no resolved targets, a �̂bs

must be estimated.
Selections of �̂bs are critical for accurate density
estimates. Strategies to choose a representative acoustic
backscattering cross-section can be grouped in two
general categories: in situ targets, and acoustic–catch
relationships. In this paper, we focus on utilizing in situ
targets for calculating numeric density estimates within
acoustic data array cells. In situ targets are acoustically
resolved individuals using single- (Craig and Forbes,
1969), dual- (Ehrenberg and Torkelson, 1996) or split-
beam (Foote et al., 1986; Soule et al., 1996; Demer et al.,
1999) hardware and analyses.

We simulated spatially-random and spatially-
correlated fish density and backscattering strength
distributions to examine the influence of spatial distri-
bution, �bs-frequency distribution, and strategies used
to estimate �̂ on the accuracy of density and
bs
abundance estimates in spatially-indexed acoustic data
using in situ targets. These simulations represent
methods for interpolating backscattering cross-section
estimates into sampling volumes where individual
targets are not detected. It is important to note that we
are not simulating techniques for reliable measures of
individual targets, but investigating how to use in situ
data for reliable estimates of organism density and
abundance. Our specific questions are: does the �bs-
frequency distribution of a fish population affect accu-
racy of density and abundance; does decreasing
numbers of in situ targets affect accuracy of fish
density and abundance estimates, and does the spatial
distribution of fish density and backscattering
strength affect accuracy of density and abundance
estimates?
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Materials and Methods

Simulated spatial distributions of fish densities and sizes
were designed to reflect fish distributions commonly
observed with underwater acoustics in a variety of
freshwater and coastal ecosystems. Two discrete cat-
egories of spatially-correlated data were used in simu-
lations: random and autocorrelated. Four spatial
distributions were simulated (Table 1): (1) random-
density and random-�bs (Random Distribution), (2)
random-density and autocorrelated-�bs (Dispersal
Layers), (3) autocorrelated-density and random-�bs

(Mixed Aggregations), and (4) autocorrelated-density
and autocorrelated-�bs (Discrete Aggregations). The
Random Distribution simulates heterogeneous combi-
nations of backscattering strengths within cells, where
densities and �bs’s are independent among cells.
Dispersed Layer simulations emulate a two layer distri-
bution with a dominant fish size in each layer. This
structure is analogous to two thermally segregated
species. Mixed Aggregation simulations model
crepuscular periods when different fish species and
sizes co-occur. Discrete Aggregation simulations are
potentially the most realistic, simulating patchy
distributions of similar sized fish within each patch.
Array generation

All simulations use a 200�200 array (40 000 cells) with
a known number of fish per cell (density), and a known
length and �bs for each fish. To facilitate comparison
among simulations and �̂bs estimation methods, fish
abundances were kept as consistent as possible among
simulations (Table 1). Four length-frequency distribu-
tions: normal unimodal, normal bimodal, Poisson uni-
modal, and Poisson bimodal were generated to populate
the array (Figure 2). Mean and standard deviations of
these length-frequency distributions (Table 1) were
based on October 1996 survey data from Lake Ontario.
Fish lengths were converted to �bs using an equation
derived by Foote (1987), and the conversion from fish
length to �bs is assumed to represent the ‘‘true’’ length-
frequency distribution. Random selections were chosen
using a pseudo-random number generator from IDL
(Interactive Data Language, Research Systems Inc.,
Boulder, Colorado, USA).
Random distribution: spatially-random density
and �bs distributions

Spatially-random distributions of fish densities and �bs’s
for the Random Distribution simulation were obtained
by randomly filling 79% of array cells with fish densities,
fish lengths and corresponding backscattering cross-
sections (upper left panel, Figure 3). Cell densities were
randomly chosen from a Poisson distribution with the
mean equal to 1.55. Resulting cell densities ranged from
0–10 fish per cell. Fish lengths were randomly chosen
from the four length-frequency distributions depending
on simulation (Table 1), converted to �bs, and then
randomly placed in cells throughout the array.
Dispersed layer simulations: spatially-random
density and spatially-autocorrelated �bs
distributions

Spatially-random density distributions in Dispersed
Layer simulations were chosen as in Random
Distribution simulations. Spatially-autocorrelated �bs

distributions were obtained by using only bimodal
length-frequency distributions. In the upper portion of
the array, fish lengths were randomly chosen from the
smaller length-frequency mode to represent prey-sized
fish. In the lower portion of the array, fish sizes
were randomly chosen from the larger length mode to
represent predator-sized fish (Figure 2).
Mixed aggregation simulations:
spatially-autocorrelated density and
spatially-random �bs distributions

Spatially-autocorrelated densities in Mixed Aggregation
simulations were produced by kriging. Kriging is a
statistical technique that estimates one- or two-
dimensional covariances in spatially-indexed data
(Cressie, 1991). Estimating spatial variance in fish distri-
butions is an example of the forward approach for
obtaining abundance estimates using acoustic transect
data (e.g. Petitgas, 1993). We used an inverse approach
(similar to Simmonds and Fryer, 1996) to produce a
density map with specified variance and autocorrelation.
A spherical variance model was used to krig fish densi-
ties with the parameter values: range=26, nugget=0,
and sill=3 (Table 1). Patches are defined using the range
parameter, where cells within a radius of 26 cells from
the center cell are autocorrelated. The nugget parameter
defines the amount of randomness in the data. The
nugget was set to zero in Random Distribution and
Dispersed Layer models to simulate random density
distributions. The sill parameter defines variability
within a patch. Center cells for 85 patches were ran-
domly chosen, and an additional 150 cells along a single
row were designated as a layer. Initial fish densities for
each patch were randomly chosen from a Poisson distri-
bution with a mean of 2.15 (0–8 fish per cell). A mean of
2.15 generated fish abundances similar to those used in
random density simulations. Initial cell densities within
the layer were set to the maximum density of eight fish
per cell.

The array containing these initial patch and layer cells
was kriged using the spherical model to produce an
array with autocorrelated density structure (lower left
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Figure 2. Length-frequency distributions of fish populations used in simulations. Bimodal distributions are formed by joining two
unimodal distributions. Mean and standard deviations for each distribution are listed in Table 1.
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panel, Figure 3). To emphasize patch structure within
the kriged array, patches were further categorized into
high, low, and zero density. High-density patches were
defined as cells with fish densities greater than the mean
density of 2.15. Cell densities less than or equal to the
mean and greater than or equal to zero were set to zero.
Low-density patches were defined by setting cells with
negative densities to a fish density of two.

In mixed aggregation simulations, fish lengths were
randomly chosen from length-frequency distributions
(Table 1), converted to �bs, and randomly placed in cells
throughout the array, independent of patch density.
6

Density (number cell–1)
0 8

42

Normal Bimodal σbs distribution 95% target removal Local-window fill method

Discrete Aggregation

Normal Unimodal σbs distribution 95% target removal Nearest neighbour fill method

Random Distribution

Figure 3. Density distribution arrays used in Random Distribution (random-density/random-length) and Discrete Aggregation
(autocorrelated-density/autocorrelated-length) simulations. Arrays on the left show the original density distributions. Middle
arrays show density distributions after 95% of the cells with targets are removed. Right-hand arrays show the distributions of
estimated densities. The nearest-neighbor estimation method creates artificial spatial structure from random density distributions
(upper right panel). The window-fill method preserved the original spatial density structure, even with low numbers of individual
targets (lower right panel).
Discrete aggregation: spatially-autocorrelated
density and �bs distributions

Spatially-autocorrelated fish density distributions were
simulated using the same kriging process outlined in
Mixed Aggregation simulations. Spatially-autocorrelated
fish �bs distributions were obtained using only bimodal
length-frequency distributions. Prey aggregations were
simulated by placing smaller fish in high density patches
and the layer. Isolated predators were simulated by
placing larger fish in low density patches, and predator
abundance was lower than in other simulations.
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�bs estimation methods

Estimating density within array cells requires a represen-
tative �̂bs in each cell. Foote (1983) suggested that
a weighted-mean backscattering cross-sectional area
(�bs) be used as an estimate of �̂bs when targets
within a sampling volume are of similar type (e.g.
swimbladdered fish) and in sufficiently large numbers. In
cells with one or more individual targets, a weighted-
mean �bs of targets in each cell was used as the represen-
tative backscatter. In cells with no individual targets, but
with non-zero volume scattering (e.g. fish aggregations
with no resolvable targets), �̂bs was estimated using (1)
a weighted-mean from the distribution of individual
targets in the full array, (2) a weighted-random choice
from the distribution of individual targets in the full
array, (3) a weighted-mean from the distribution of
targets within a local-search window, and (4) a nearest
neighbor.

The weighted-mean estimation method uses a mean
�bs from all individual targets throughout the array
weighted by the frequency of occurrence. This mean
backscatter is used as the representative �̂bs in all cells
with non-zero volume backscattering but with no indi-
vidual targets. The weighted-random estimation method
chooses a representative backscatter from the distribu-
tion of all individual targets in the full array. Random
choices are weighted by the frequency of occurrence and
a new �̂bs is chosen for each cell. The local-window
estimation method searches for individual targets by
beginning with array elements immediately surrounding
a cell, and then increases the search radius until either a
minimum number of targets is found or a maximum
window size is reached. Three window parameters:
maximum window radius, window shape, and minimum
number of targets define the search pattern and target
criteria used to estimate a representative �̂bs. We used a
maximum radius of 25 cells, a symmetric (i.e. square)
shape, and a minimum of five targets within the search
window. Search patterns may be varied from symmetric
to elongated shapes to accommodate different spatial
distributions of organisms such as layers or patches. A
minimum number of targets within the search window
provides a distribution of targets for �̂bs estimation and
avoids duplicating the nearest-neighbor search strategy.
Setting a maximum window size restricts the search
pattern to a local area where similar species are expected
and avoids searching the entire array. When the mini-
mum number of targets is found, the weighted-mean of
those targets is used as the representative �̂bs. If the
maximum window size is reached and no individual
targets are found, cell density is set to zero. Setting cell
densities to zero is used as a diagnostic in the simula-
tions. In practice, these cells can be set to another choice
of �̂bs. For the nearest-neighbor estimation method, the
� of the nearest target is used as the representative
bs
�̂bs. If two or more targets are equidistant, then the
weighted-mean of those targets is used as the
representative �̂bs.
%Target removal

To simulate situations where individual targets are not
resolved, all targets were removed from randomly
chosen cells while retaining the known volume back-
scattering (%target removal). %target removal is calcu-
lated as the percentage of cells deleted from the array. It
does not equal the percentage of individual targets
removed, as a cell can contain more than one target.
%target removal for each set of simulations was
increased from 5% to 95% in 5% increments, and targets
in remaining cells were used to estimate the represen-
tative �̂bs in cells lacking individual targets. The removal
of targets from random cells did not modify the �bs-
frequency distributions in any simulation. After estimat-
ing the backscattering cross-section within each cell, cell
densities were computed using Equation (1) and fish
abundance was calculated. Accuracy of fish density and
abundance estimates was quantified by computing
deviations between original (before target removal) and
estimated data arrays.

Deviation indices were calculated as a function of
%target removal to test the accuracy of each �̂bs estima-
tion method. Accuracy of abundance estimates was
quantified using a normalized abundance deviation
index

where �̂ is estimated density, �k is known density in the
ith cell before target removal, and Ncells is the total
number of cells in the array (40 000). Because initial fish
abundances were not equal in all simulaitons (Table 1),
abundance deviations were normalized to facilitate com-
parisons among simulations. Mean per-capita deviation
indices for density and �̂bs estimates were computed
using

where �k is the known backscattering cross-sectional
area, and �̂ is the estimated value. The value of Ncells

differs among abundance, density, and �bs deviation
indices. For abundance deviation indices, Ncells is the
number of cells in the array. For density and �̂ indices,
bs
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Ncells is the number of cells with targets removed and
Ncells increases as %target removal increases. Positive
deviation index values indicate overestimates, whilst
negative values indicate underestimates of fish density,
abundance, and backscattering cross-sections. For
abundance estimates, a deviation index value of 1 is
equivalent to a doubling in abundance.
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Figure 4. Mean per-capita density deviation index as a function of %target removal. %target removal was incremented in 5% steps.
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using different �̂bs estimation methods on density estimates. �̂bs estimation methods are represented by: —�— mean fill, —�—
random fill, —�— local window, and —�— nearest-neighbor.
Results
Fish density, abundance, and �̂bs estimates were influ-
enced by the choice of �bs-frequency distribution in all
simulations (Figures 4–6). Density, abundance, and �̂bs

estimates were most accurate using the normal unimodal
distribution, whereas deviation indices were 1–2 orders
of magnitude larger with the Poisson bimodal distribu-
tion. This reduced accuracy may result from the wider
range of fish backscattering cross-sections in the Poisson
distributions compared to the normal distributions. The
local-window estimation method preserved spatial
density structure in Discrete Aggregation simulations
(bottom row Figure 3). The nearest-neighbor method
created artificial structure from spatially random density
distributions (top row Figure 3).

Estimates of fish density (Figure 4) and abundance
(Figure 5) using the local-window method were consist-
ently more accurate than other �̂bs estimation methods
for all spatial distributions and �bs-frequency distribu-
tions. For all spatial distribution simulations and �bs-
frequency distributions, the random-fill estimation
method provided the least accurate density and abun-
dance estimates (Figures 4 and 5). Using the nearest-
neighbor method, density and abundance estimates were
more accurate when density and �bs distributions were
both spatially autocorrelated (Discrete Aggregations)
than when spatial distributions were random (Figures 4
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Figure 5. Abundance deviation index as a function of %target removal. %target removal was incremented in 5% steps. Column
comparisons show the effect of using different �bs-frequency distributions, and row comparisons show the effect on abundance
estimates using different �̂bs estimation methods. Estimation methods are represented by: —�— mean fill, —�— random fill,
—�— local window, and —�— nearest-neighbor.
and 5). The mean-fill estimation method had density and
abundance deviation index values near zero for Random
Distribution, Dispersed Layer, and Mixed Aggregation
simulations. For Discrete Aggregation simulations,
density deviation values using the mean-fill method
were higher than those using local-window and
nearest-neighbor methods.

�̂bs deviation index values among all �bs estimation
methods were similar for all simulation conditions
except the Dispersed Layers simulation where deviation
indices were near zero for the nearest-neighbour and
window-fill methods (Figure 6). Although �̂bs deviation
index values were similar, 95% confidence intervals were
greatest for the random-fill method. The random-fill
method was susceptible to choosing inappropriately
small �̂bs values that resulted in exceptionally high
density estimates. Although random choices were
weighted by the frequency of occurrence, the random-fill
method did not incorporate the spatial distribution of
targets when estimating cell densities. When summing
cell densities for population estimates, exceptionally
high densities are not compensated by underestimated
densities in other cells because the minimum density
estimate in any cell is zero, and the maximum cell
density is bounded by the smallest individual target.

Using a weighted mean backscattering cross-section in
cells with resolved targets altered bimodal �bs-frequency
distributions in simulations with spatially random distri-
butions. In simulations with spatially autocorrelated
backscattering cross-sections (Dispersed Layers and
Discrete Aggregation simulations), distributions of �bs

in cells with resolved targets replicated individual target
�bs-distributions [vertical bars, Figure 7(b) and (d)].
When individual target sizes were spatially ran-
dom (Random Distribution and Mixed Aggregation
simulations), bimodal � -distributions from array cells
bs
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with resolved targets were altered to having greater
numbers at the mean [vertical bars, Figure 7(a) and (c)].
The local-window and nearest neighbor methods repli-
cated the distribution of �bs’s rather than the original
�bs-distribution of individual targets throughout the
array when �bs-distributions were random (lower panel,
Figure 7). The random-fill method retained the �bs-
distributions of individual targets for all simulation
conditions. The mean-fill estimation method altered
individual target �bs-frequency distributions to greatly
increase numbers at the mean and reduce the number of
�̂bss at intermediate values and tails for all simulation
conditions (Figure 7).
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Figure 6. Mean per-capita �bs deviation index as a function of %target removal. %target removal was incremented in 5% steps.
Column comparisons show the effect of using different �bs-frequency distributions, and row comparisons show the effect on �̂bs

estimates using different estimation methods. �̂bs estimation methods are represented by: —�— mean fill, —�— random fill,
—�— local window, and —�— nearest-neighbor.
Discussion
We recommend the use of a local search window among
�̂ estimation methods examined. The local-window
bs
method consistently gave accurate estimates of fish
densities and array abundances, and preserved �bs-
frequency distributions. The local-window method com-
bines the nearest-neighbor and mean-fill methods by
using the weighted-mean �bs from a distribution of
individual targets in close proximity to cells requiring an
estimate of acoustic backscattering cross-section. Using
a distribution of individual targets to choose a represen-
tative �̂bs reduces the probability of choosing an extreme
value when estimating fish density. Since fish tend to
aggregate with similar sized individuals of the same
species (Ranta and Lindström, 1990; Ranta et al., 1992),
a local search pattern preserves spatial distributions by
using contiguous targets to estimate �̂bs. Schooling and
shoaling behaviors result in spatially-autocorrelated dis-
tributions of fish densities, species, and sizes. In our
simulations, estimates of density and abundance were
most accurate when spatial distributions of density and
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backscattering cross-sections were autocorrelated. This
is reassuring as spatially-autocorrelated distributions
simulate discrete patches of fish typically observed in
freshwater, estuarine, and marine environments.

Accuracy of fish density, abundance, and �̂bs esti-
mates declined when as little as 5% of known targets
were randomly removed from the data set but did not
decrease in proportion to the percentage of known
targets removed. Density and �bs deviation index values
remained fairly constant up to 95% target removal,
suggesting that backscattering cross-section estimation
methods used in this study are not sensitive to the
number of available targets. Insensitivity of density,
abundance, and �̂bs estimates to numbers of individual
targets may be an artifact of randomly removing targets
from the entire range of fish sizes. Even at 95% target
removal, all modes from multimodal fish size dis-
tributions were represented. Subsequent simulations
would remove specified size classes in greater proportion
to other size classes from multimodal frequency dis-
tributions. As an example, prey fish that may not
be acoustically resolvable within schools would be
separated from predatory species that are resolvable.

Inclusion of backscattering by different types of
organisms will reduce the effectiveness of in situ targets
for density, abundance, and �bs estimates by increasing
the range of, and number of modes in backscattering
strength distributions. We simulated spatial distribu-
tions of backscattering by organisms of similar acoustic
scattering characteristics. Acoustic data collected in the
field is comprised of backscatter by a number of physical
and biological sources. Behavior and activity levels such
as during crepuscular periods when fish vertically and
horizontally migrate to feed (Ungar and Brandt, 1989;
Levy, 1990, 1991; Boudreau, 1992), will also affect the
accuracy of density estimates. Applying volume back-
scattering and individual target thresholds will reduce
the amount of backscattering by non-swimbladdered
organisms so that backscatter can be apportioned to
swimbladder bearing fish. Varying cell size so that the
spatial dimensions of array cells match aggregation
dimensions may also increase the utility of in situ targets
for density and abundance estimates. The strategy used
to select representative backscatterers depends on the
number of individual targets and the number of species
present in a sampling area. Alternatives to using in situ
targets include using length-frequency distributions
from catch data, using species composition and length-
frequency distributions from previously collected catch
or acoustic data, or changing the time of sampling.

All simulations assume linearity of backscattering
(Foote, 1983) from isolated individuals and from indi-
viduals within aggregations. Furusawa et al. (1992)
calculated that attenuation effects on abundance esti-
mates were negligible below packing densities of
approximately 0.8 fish m�3. We have not simulated
backscattering from the dense schools where non-linear
effects on sound transmission such as sound attenuation
(Røttingen, 1976) and shadowing (MacLennan and
Simmonds, 1992) may be significant. In cases where the
summation of backscatter is not linear, algorithms that
quantify relationships between acoustic volume back-
scattering and catch data must be used to ensure
accurate density and abundance estimates of fish
(Misund et al., 1992) and zooplankton (Hewitt and
Demer, 1993). Effects of non-linear sound scattering
from densely packed aggregations on fish density and
population estimates can be minimized by collecting
acoustic data when fish disperse and individual echoes
are better resolved (Brandt et al., 1991; Simmonds et al.,
1992).

Using in situ targets to estimate acoustic back-
scattering cross-sections within aggregations assumes
that species and �bs-frequency distributions of individ-
ual targets match those of non-resolvable individuals
within aggregations. This may not always be the case.
Rose (1993) found that aggregations of migrating
Atlantic cod (Gadus morhua) were structured by fish
length. When individual targets are not available or not
representative of individuals within aggregations, back-
scattering cross-sections can be estimated using length-
frequency data from net catches. Results of catch
data–acoustic backscatter comparisons are commonly
empirical regression equations describing the relation-
ship between acoustic backscatter and individuals (e.g.
Love, 1971; Midttun, 1984; Foote, 1987) or aggrega-
tions (e.g. Love, 1975; Rudstam et al., 1987; Fleischer
et al., 1997) of fish or zooplankton. Constraints to this
approach are that catch data are rarely available from
the identical volume surveyed using acoustics, and that
catch data are size selective.

In our simulations, as well as when a mean back-
scattering cross-section is derived from catch data, a
distribution of backscattering strengths is characterized
as a single value. Wide ranges and/or multimodal distri-
butions of �bs may not be adequately characterized by a
mean. An alternate approach would use the distribution
of �bs’s to form a probability-density-function (PDF) of
densities for each array cell. This density PDF may then
be used to construct a distribution of population
estimates, and potentially for size-based density and
abundance estimates.

Quantifying variability in population abundance
estimates requires an understanding of the variance at
each step in the estimation process. Measurement errors
in volume backscattering and variability in individual
acoustic backscattering measurements due to fish
activity and orientation (e.g. Foote, 1980) or individual
echo discrimination (e.g. Demer et al., 1999) occur prior
to placing acoustic data into spatial arrays. Variability
due to survey or sampling design occurs after cell-
based density estimates are made. The goals of these
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simulations were to quantify variance in density esti-
mates whilst retaining the spatial complexity of organ-
ism distributions. This paper quantified variance
associated with selecting a representative acoustic back-
scattering cross-section from in situ targets; extracting
spatio-temporal information from acoustic data; and
quantifying variability associated with estimates of
density and organism size within spatially-indexed cells.
In our simulations, the efficacy of backscattering cross-
sectional estimation methods was not influenced by
measurement or survey design variability. Quantifying
variances at each step of the population abundance
estimation process allows partitioning of biases incurred
when translating acoustic data to biologically and
ecologically meaningful metrics.
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