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In order to make use of all available information, fishery stock assessment researchers
often use several indices of stock abundance. These indices are derived from commer-
cial, as well as fishery-independent sources. Since the indices all relate to the same
fishery but may differ in the degree of accuracy with which they reflect stock size,
appropriate weights must be chosen for each. This paper contains an outline of an
empirical approach to assigning index weights via the likelihood function that
underpins both classical and Bayesian statistical methods. The approach is demon-
strated for a stimulated three-zone paua (Haliotis iris) fishery, and can be used readily
for multi-species fisheries and/or for assessment of multiple-use management of marine
resources.
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1See McAllister et al. (1994) and Punt and Hilborn (1997), for
example, where more than one index of abundance is used and
index prediction errors are assumed to be independent.
Introduction

Stock assessments may involve the use of several indices
of stock abundance derived from commercial fisheries
data, observer data from fisheries, and scientific surveys.
It is non-trivial to determine how much weight should be
assigned to each index in practice because of both model
and measurement uncertainty. In the best of circum-
stances the system of links among the indices could be
derived from scientific principles and included explicitly
in the model dynamics. Such a model would address
both deterministic and stochastic aspects of the fishery
concerned. Unfortunately this is not an option for most,
if any, fisheries. A straightforward empirical solution to
this problem is available via the likelihood function. The
likelihood function underpins both maximum likelihood
and Bayesian methods widely used in fisheries stock
assessments and management strategy evaluation. Con-
venient index weights are implied by relaxing the
commonly-used assumption of statistical independence
among measured indices of abundance and by specifying
a joint likelihood function that accounts for possible
correlation among the index errors.1

In addition to addressing more than one index of
abundance for stock assessment, the methods outlined
here are readily applicable to stock assessment for
management of multi-zone or multi-species fisheries, as
well as to multiple-use management of marine resources.
In applying this approach to our example fishery, we
take explicit account of any correlation among indices of
abundance for a particular management zone, as well as
similar correlation across zones. In a multi-species fish-
ery, correlation within and between constituent species,
rather than between geographical regions, might just as
readily be the focus of the work. The hypotheses that we
test are, therefore, concerned with restrictions on the
likelihood function covariance matrix that arise from
� 2001 International Council for the Exploration of the Sea
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whether one assumes independence among prediction
errors for indices, regions, or species.
Example fishery

The model used to explore the methods described here
was developed for the New Zealand blackfoot paua
(Haliotis iris) fishery, beginning with a model developed
by Worthington (1997), used to assess the New South
Wales abalone (Haliotis rubra) fishery (Andrew et al.,
1996). At the time of this study, the model was still being
developed. Since then, it has been used to assess New
Zealand paua (Breen et al., 2000) and to explore the
effects of outliers and mis-specified prior distributions
with different estimators (Chen et al., 2000).

In this paper, we do not use real fishery data; we use
simulated data based on the New Zealand paua fishery
and generated for development of the model. Data
available from the real fishery include research estimates
of growth rates and biological parameters, commercial
catch and effort data from compulsory fisher returns,
estimates of the recreational catch, independent surveys
of relative abundance from research diving, and esti-
mates of length frequency from catch sampling. There
are thus potentially three indices available for stock
assessment: catch per unit of effort (cpue), relative
abundance from surveys, and length frequency data.
Cpue was available for each year from 1984–1996, and
the survey data for 1990–1996. The example fishery
simulated here comprises three neighbouring zones, each
with a different starting biomass of paua and a different
historical exploitation rate. The zones are assumed
to share common growth rate, natural mortality and
steepness of the stock-recruit relationship.

The appropriate management unit for an abalone
fishery is not obvious (Brown & Murray, 1992). Abalone
move only short distances after settlement and may
show different growth rates over short distances (Day &
Fleming, 1992). Although there is a potentially disper-
sive planktonic larval stage, the distances over which
abalone disperse may be short (Prince et al., 1987). In
New Zealand, some management areas have been bro-
ken into subareas, to address concerns that the fishery
management unit used historically might have been too
large, although the geographical boundaries of these
splits were arbitrary. The model assumes that the area
assessed is a unit stock, that paua have the same growth
and mortality characteristics in all parts of the stock,
and that cpue responds to abundance as if abundance
were homogeneous within statistical areas. These are
obviously over-simplifications. Growth, for instance, is
likely to vary over small distances (Day & Fleming,
1992). The effect of small-scale variability on model
results, apart from degrading the fits, is unknown.

Thus an abalone fishery such as the New Zealand
paua fishery, described by Schiel & Breen (1991), is
ideally suited to explore methods that combine several
indices in a stock assessment to considere whether an
area should be assessed as one unit or in association with
neighbouring units.
Table 1. Parameters of the simulated paua populations in the
example fishery.

Indicator
parameter Zone 1 Zone 2 Zone 3

B0 1 394 551 188 732 10 304 415
R0 1 202 604 162 755 8 886 111
Bcurr/B0 0.21 0.61 0.64
Table 2. Restricted covariance matrix for H1: indices and zones independent and therefore uncorre-
lated. The diagonal elements are variances (�1000) only, for each index in each zone.

Zone 1

Zone 2

Zone 3

Zone 1

ML IScpue

cpue
ML
IS

cpue
ML
IS

cpue
ML
IS

Zone 2

cpue

Zone 3

IS

122.30
0
0
0
0
0
0
0
0

0
0.16

0
0
0
0
0
0
0

0
0

335.91
0
0
0
0
0
0

ML IS

0
0
0

151.64
0
0
0
0
0

0
0
0
0

0.22
0
0
0
0

0
0
0
0
0

42.98
0
0
0

cpue ML

0
0
0
0
0
0

23.84
0
0

0
0
0
0
0
0
0

0.27
0

0
0
0
0
0
0
0
0

12.83
Model

The model is a length-based state-space model adapted
from the model of Worthington (1997) as applied in
Andrew et al. (1996). Observation used in fitting the
model are the commercial cpue, the relative abundance
index from research surveys, and the proportions of
catch in each 5-mm length interval from research sur-
veys. Catch data are usually available from longer
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periods than the observed fishery indices such as cpue,
and research data (surveys and length frequencies) may
exist for even shorter periods. Thus the time-series
length varies among the three indices.

Parameters of the model are: R0, the recruitment to
the population at the unexploited (virgin) biomass; M,
the instantaneous rate of natural mortality; h, the
‘‘steepness’’ of the Beverton–Holt stock-recruit relation
(Francis, 1992); q1, the catchability coefficient relating
cpue to abundance; and q2, the catchability coefficient
relating the research survey index to abundance.
Table 3. Restricted covariance matrix for H2: indices correlated within zone. The shaded off-diagonals
are covariances (�1000) between different indices within the same zone. The upper triangle of the
matrix is a reflection of the lower triangle.

Zone 1

Zone 2

Zone 3

Zone 1

ML IScpue

cpue
ML
IS

cpue
ML
IS

cpue
ML
IS

Zone 2

cpue

Zone 3

IS

122.15
–4.06
157.85

0
0
0
0
0
0

–4.06
0.16
–6.39

0
0
0
0
0
0

157.85
–6.39
339.55

0
0
0
0
0
0

ML IS

0
0
0

152.12
4.91

–63.86
0
0
0

0
0
0

4.91
0.22
–2.93

0
0
0

0
0
0

–63.86
–2.93
42.98

0
0
0

cpue ML

0
0
0
0
0
0

24.44
–2.38
–16.49

0
0
0
0
0
0

–2.38
0.27
1.91

0
0
0
0
0
0

–16.49
1.91
13.54
Table 4. Unrestricted covariance for H0: all index-zone combinations correlated. The shaded
off-diagonals are covariances (�1000) between different indices across zones.

Zone 1

Zone 2

Zone 3

Zone 1

ML IScpue

cpue
ML
IS

cpue
ML
IS

cpue
ML
IS

Zone 2

cpue

Zone 3

IS

122.28
–4.10

156.23
–96.77
–4.20
60.47

–41.76
4.39

31.57

–4.10
0.16

–6.42
3.57
0.15

–2.06
1.50

–0.15
–1.09

156.23
–6.42

337.32
–90.84
–3.90
49.69

–40.02
3.48

24.93

ML IS

–96.77
3.57

–90.84
152.79

4.99
–66.00
56.07
–5.31

–36.12

–4.20
0.15

–3.90
4.99
0.22

–2.99
2.14

–0.24
–1.67

60.47
–2.06
49.69

–66.00
–2.99
44.05

–27.81
3.28

23.25

cpue ML

–41.76
1.50

–40.02
56.07
2.14

–27.81
24.18
–2.33

–16.08

4.39
–0.15
3.48

–5.31
–0.24
3.28

–2.33
0.26
1.85

31.57
–1.09
24.93

–36.12
–1.67
23.25

–16.08
1.85

13.06
Initial conditions for simulation

Initial conditions are determined by the parameter R0.
The model is ‘‘burnt in’’ for 30 years by running it with
no fishing to allow numbers-at-length to approach an
equilibrium. Males and females are not modelled separ-
ately. In year i=1, the number of paua in length class
j=1 is

N =R (1)
1,2 0
A growth transition matrix, G, was determined outside
the model, as described by Andrew et al. (1996). From
the von Bertalanffy growth parameters L� and K, an
expected yearly growth increment �lj was calculated for
the jth length class:

�lj=(L��Lj)(1�e�K) (2)

Using these growth increments and an assumed stan-
dard deviation of increments, the distribution of incre-
ments for length class j was calculated from the gamma
distribution. The distribution of increments was then
translated into the vector of probabilities of transition
from length class j to other length classes, and this
was done for all length classes to form the matrix G.
Negative increments were not permitted, so the tran-
sition probabilities for abalone moving from a larger size
to a smaller one were set to zero. Zero growth was
permitted. The largest size group was treated as a ‘‘plus
group’’, so that abalone in this group had a probability
of one of remaining in this size group.
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Figure 1. Recruited biomass (lines) and commercial catch
(points) for each of the three simulated paua populations in the
example fishery. (a) Zone 1; (b) zone 2; (c) zone 3.
Simulation

The model contains 22 length groups, each of 5-mm
interval width, from 20 mm length at the lower limit to
130 mm at the upper limit. In the ‘‘burn-in’’ period, the
vector Nt of numbers-at-length for each year t is deter-
mined from the numbers in the previous year, survival,
G and R0:

N� =N� G · exp(�M) (3)
t t�1
where the prime (�) denotes vector transposition and the
dot (·) denotes matrix multiplication. In this model, we
assume that all recruitment enters the first length class,
which is appropriate for one-year-old paua:

Nt,1=R0 (4)

Total biomass is given by the sum total of the product of
numbers and weight:

Btotal
t =N�

tweight (5)

where weight is the vector of weight-at-length. A vector
P incorporates the effect of minimum legal size (MLS): it
is zero for all length groups for which the centre is less
than the MLS, and 1 for all groups with mid-point equal
to or greater than the MLS. A vector vuln describes
vulnerability-at-length, which is related to the visibility
of paua to divers; smaller paua tend to be cryptic. The
biomass of legal-sized paua is given by the sum total of
the element-by-element product of the four vectors for
numbers, weight, legality and vulnerability:

Blegal
t =one�(Nt� · weight� · P� · vuln) (6)

where � · denotes element-by-element multiplication
and one is a column vector of ones. The dynamics of the
model, once an equilibrium has been approached, incor-
porate the observed catch and a selectivity function.
Exploitation rate Ut is calculated from observed catch
and model biomass:

Ut=min(catcht/B
legal
t , 0.80) (7)

The arbitrary constraint of 0.80 prevents exploitation
rate from reaching unrealistically high levels. The
survival-from-fishing vector is calculated as:

SFt=1�(P� · vuln� · Ut) (8)

Numbers in the following year are then calculated from
the vectors of numbers, percentage survival from natural
mortality, S, and survival from fishing:

Nt+1=Nt� · S� · SFt (9)

The model incorporates a Beverton–Holt stock-recruit
function using the parameter ‘‘steepness’’ (Francis,
1992) to calculate � and � from the egg production and
recruitment in the virgin state. Spawning biomass is
calculated from the vectors of numbers-at-length,
weight-at-length, and the proportion mature-at-length:

Bspawn=N � · maturity� · weight (10)
t t



208 A. D. McDonald et al.
Weight-at-length is based on the morphometric relation
of Schiel & Breen (1991). Recruitment to the population
is then calculated as:

R · tB
spawn
t�1 /(�+�Bspawn

t�1 ) (11)
Predictions

Predicted cpue is determined from legal biomass and the
catchability coefficient q1:

cpuepred
t =q1Blegal

t (12)

Similarly the independent survey index IS is determined
with a second catchability coefficient:

ISpred
t =q2Blegal

t (13)

Predicted mean length for each year is calculated from
the vectors of length, numbers-at-length, legality and
vulnerability:

MLpred
t =sum(length� · Nt� · P� · vuln)/

sum(N � · P� · vuln) (14)
t
For each of these model-based predictions there are
equivalent observed values for the fishery. The differ-
ences between the observed values and the predictions
yields prediction errors, the magnitude of which depends
on the values of the model parameters. The prediction
errors may be modified, therefore, by changing some or
all of the model parameter values.
Indicator variables

These are variables calculated from model parameters to
help assess the state of the stock and include current
biomass as a proportion of initial biomass (Bcurr/B0),
referred to here as depletion.
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Figure 2. Predicted indices for simulated populations of example fishery (lines) and indices with observation error added (points).
Likelihood function

A generalisation of selecting model parameter values
to minimise the sum of squared errors is to find
the parameter values that maximise the likelihood
function. The likelihood function may also be used to
obtain Bayesian distribution estimates for parameters.
In the case of fish stock assessment it is common
to use the Gaussian (or normal) likelihood function
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for the parameters of the biological model, given
the available data for the fish stock. Available data
are observed from the fishery and/or from scientific
surveys. These data are used for enumerating the errors
produced by the biological model in evaluating
fish stock size. The joint probability distribution of these
errors is interpreted as the likelihood function of the
population parameters in the model, given the observed
data.

The indices of abundance for paua in the present
paper are catch per unit effort (cpue), mean length (ML)
and the index obtained from the scientific surveys (IS).
The errors in model predictions of these three indices are
assumed to be jointly Gaussian and not necessarily
uncorrelated.

Regardless of the number of indices observed and
evaluated by the biological model, the individual likeli-
hood function for each observation period (year) can be
expressed in matrix form as:
or in logarithm form:

where � is the vector of parameters in the model, E is the
vector of index errors and � is the covariance matrix of
the index errors.
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Figure 3. Model fits under H0, cpue, mean-length and independent surveys, for three neighbouring zones. Model fits under the
alternative covariance hypotheses were not very different, and for clarity are not plotted.
Covariance matrix

The covariance matrix has column and row dimension
given by the product of number of indices and
zones. The diagonal elements are variances for each of
the indices and are calculated respectively as the sum
of squared prediction errors divided by the number of
observations in the data set on the appropriate index.
The off-diagonal elements are covariances between two
indices. Depending on the hypothesis regarding the
covariance matrix being tested, covariances are either set
to zero or calculated as the sume of the products of one
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Figure 4. Bayesian posteriors for mortality (M) and for steepness (h) with uniform priors under alternative covariance hypotheses.
The parameter M (mortality) was restricted to values less than 0.3. The parameter h (steepness) was restricted to values greater than
or equal to 0.5.
index prediction error for a particular year and another
index prediction error in the same year, divided by the
square root of the product of the number of observa-
tions available for each index (Greene, 1990).

Consider a two-index case, for example. Ignoring the
constant term, let:

so, when � is diagonal (c=d=0), the usual assumption
of uncorrelated indices holds and the ‘‘weights’’ for the
likelihood function are straightforward:

�2L(�)=ln(ab)+e2/a+e2/b (18)
1 2
where a is the variance of the error for index 1, e1, b is
the variance of the error for index 2, e2, and c=d
is the covariance between the errors for indices one
and two.

When � is non-diagonal the weights for the various
components of the likelihood function are clearly more
complicated and involve both the variances of, and the
covariances among, index errors. In order to determine
the weights on each of the indices we specify a testable
hypothesis for each of three objectives: (1) To evaluate
the fishery under H1: that the indices and specified
management zones are statistically independent (and
therefore uncorrelated); we restrict � (the covariance
matrix) to a diagonal matrix where only variances
for each index in each management zone, are included
in the overall likelihood function (Table 2). (2) To
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evaluate the fishery under H2: that the indices of
abundance within each management zone are correlated;
the covariance matrix includes those off-diagonal
components that are calculated between indices within
each zone (Table 3). (3) To evaluate the fishery under
H0: that all indices are correlated, both within and
across management zones; the covariance matrix is un-
restricted and includes all off-diagonal components
(Table 4).

The likelihood function for a particular year, then, is
constructed from the appropriate prediction errors and
the corresponding elements of the covariance matrix. In
the case of our example fishery, this means that the
likelihood function for some years involves only cpue
and its prediction error variance, for other years it
involves both cpue and IS, or cpue and ML (and their
respective variances and covariances) and for the re-
maining years it involves all three indices, along with all
calculated variances and covariances.
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Figure 5. Bayesian posteriors for recruitment [ln(R0)] among zones and among covariance hypotheses.
Parameter estimation

Maximum likelihood estimation involves searching for
parameter values that maximise the likelihood function.
The likelihood function displayed above yields the same
parameter values as weighted least squares. Alternative
likelihood functions may be specified in order to reflect
the distribution of index errors better, and these yield
different parameter estimates. In addition to giving point
estimates of the biological parameters, a measure of
their sampling variation is indicated by their standard
deviations (which are a function of the covariance
matrix in the likelihood function).

The Bayesian perspective differs from maximum like-
lihood estimation which reflects the view that the bio-
logical parameters and initial conditions (or values) are
fixed points and their estimates vary across samples of
data. By comparison, the Bayesian view is that there is a
distribution of parameter values and initial conditions,
and what is sought from the data is guidance on
both their extreme values and their central tendency.
Bayesian estimates, therefore, are based on repeated
sampling from a supposed distribution of parameter
values and on using available data to modify that
distribution.2
2In the Bayesian case covariance among the indices is not fully
accounted for by the covariance matrix in the likelihood
function because of the additional variation contributed by
randomness in the parameters.
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Simulated data sets for example fishery

The data used are simulated catch, cpue, length-
distribution and diving-survey indices generated for
three neighbouring management zones or stocks of New
Zealand blackfoot paua. We emphasise that we did not
evaluate the model for stock assessment of paua; we used
the data only to demonstrate a method of accounting for
correlation among indices and to appropriately weight
them in the joint likelihood function.

Three populations were generated by reversing the
dynamics of the model described above. For each zone
the parameters R0, q1 and q2 were defined, and a time
series of effort, f, was supplied from which catch was
calculated:

catcht=q1ftB
legal
t (19)

The historical minimum legal length (MLL) also
varied with zone. The three simulated zones of the
example fishery therefore demonstrate quite different
patterns of exploitation. Figure 1 shows the biomass and
catch trajectories for the three simulated paua popu-
lations, and Table 1 gives parameters that characterise
each of the populations.

Zone 1 represents a heavily exploited population of
paua with no input controls and consequently a very low
catch rate. The large decrease in available biomass in
1965 is due to an increased MLS from 50 mm to
115 mm. Zone 2 shows a very small stock which declined
rapidly under fishing pressure but subsequently recov-
ered after effort was controlled as a constant value. MLS
increased twice; from 50 to 80 mm in 1964 and to
115 mm in 1973. Zone 3 had a large stock and a stable
fishery with a very high catch rate. This zone was
managed with the same MLS as was Zone 2. Mortality,
steepness and growth were common to all three zones, as
was the number of years of data available: 28, 20 and
20 years of cpue, mean length and survey indices
respectively.

Correlated error terms were generated using a known
covariance matrix, and added as observation error to the
predicted indices. Some scaling of these errors was
necessary, and the magnitude of their variation was
chosen to match the magnitude of the model predictions
by zone and index (Figure 2).
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Figure 6. Bayesian posteriors for depletion (Bcurr/B0) across zones, under alternative covariance hypotheses.
Empirical results

For our chosen example we fit the population model to
the three generated indices of abundance; catch per unit
effort, length frequency and dive survey observations
from three neighbouring coastal zones. This zonal
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structure offers possibilities for a choice of management
options depending on the relationships between popu-
lations in the zones and the activities of fishers within
and among the zones. The three covariance hypotheses
are differentiated by the � (covariance matrix compo-
nent of the likelihood function) specified in each case.
These are demonstrated in Tables 2–4 by outlining or
shading each additional portion of the covariance
matrix as it is included into the likelihood function. In a
stock assessment application, the correlation coefficients
or coefficients of variation might be more informative to
the reader, but for this study, the structure of the
covariance matrix and of the components included the
joint likelihood are of most interest.

Likelihood ratio tests determine the goodness of fit of
the model to the simulated data under each covariance
hypothesis, and thus test the ability of the model to
detect and account for the correlation among indices.
Model fits to the three indices, for each zone, and for
each covariance hypothesis examined, are shown in
Figure 3.

The population parameters estimated for each of the
three zones were R0, mortality, M, steepness, h, catch-
ability for commercial fishing, q1, and catchability for
dive surveys, q2. In addition, the initial recruitment,
initial vulnerable biomass and depletion (current
biomass as a proportion of initial biomass) were esti-
mated, as was the covariance matrix specified in the
likelihood function. Posterior distributions were
obtained from the evaluation of every 500th set of
parameters from 500000 Markov–Chain Monte Carlo
(MCMC) samples.

Table 5 compares the ‘‘actual’’ simulated values of
population and model parameters with maximum likeli-
hood estimates and standard errors under each of the
three hypotheses. Our Bayesian estimates under alterna-
tive covariance hypotheses (using uniform priors) are
presented in Figures 4–6. The posterior modes conform
closely to the maximum likelihood estimates with
respect to biological parameter values, both among
zones and across covariance hypotheses. The dispersion
of the posteriors is also consistent with the maximum
likelihood standard-deviation estimates.

Likelihood ratio tests can be used to test the hypoth-
eses related to the covariance matrix �, thus determining
the weights used in the joint likelihood function.
Likelihood ratio tests for the example fishery are
demonstrated below.

H2 vs. H0 1212.74�999.372=213.36 �2
(0.95, 54)=70.50

H1 vs. H0 1212.74�691.789=520.95 �2
(0.95, 72)=94.80

H1 vs. H2 999.372�691.789=307.58 �2
(0.95, 18)=28.87

Therefore we reject H1 in favour of H2, we reject H1 in
favour of H , we reject H in favour of H and conclude
0 2 0
that the desirable weights for the components of the
likelihood function are obtained when the covariance
matrix is unrestricted.

Other trials of the model included applying obser-
vation errors to the simulated abundance indices that
were completely random. In that case, the likelihood
ratio test correctly reflected no improvement when the
covariance restrictions were removed. In the case of
errors that reflected within-zone correlation only,
likelihood ratio tests confirmed a significant improve-
ment between H1 and H2 but not between H1 or H2 and
H0. This demonstrates the ability of the method to
effectively detect and account for correlation among
indices.

Table 5 also contains evidence of how well the bio-
logical model mimics the true data-generating process.
The precision of parameter estimation is clearly better
for Zones 1 and 2 than for Zone 3, as indicated by the
standard-error estimates. This is true for all three
covariance–matrix hypotheses. In addition, the precision
of estimates for Zone 3 is markedly worse for H2 and H3

than for H0. The abundance index plots depicted in
Figure 3 reinforce these observations.

While the model fits to the observed data are not
noticeably improved (Figure 3), all parameters are esti-
mated more tightly when the assumption of indepen-
dence is relaxed and the covariance matrix is
unrestricted. This can be seen in the standard errors of
the estimates (Table 5) and in the shape of the posteriors
in Figures 4–6. For some parameters, notably h, M and
R0, the estimates or mode of the posterior distributions
actually shift away from the ‘‘true’’ value, however the
entire range of estimates still lies well within the range
under the other hypotheses. The model overestimates
depletion, but this is probably a function of the ‘‘one-
way trip’’ and lack of contrast in the data available.
This bias does not alter noticeably across covariance
hypotheses.

These patterns of improvement and bias can be seen
just as clearly in the point and variation statistics of the
maximum likelihood results as they can in the Bayesian
posterior distribution.
Discussion

We have introduced an approach to using multiple
indices of stock abundance and obtaining empirical
weights for each of them when assessing fish stocks. The
example presented indicates that, where indices are
correlated within or across zones or species, simply
adding univariate likelihoods for parameter estimation
must be rejected in favour of the weighted sum imposed
by the multivariate likelihood function. Alternative
weighting schemes may be used, of course, but the one
that we adopt follows directly from the dynamic model
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and likelihood function specified, making its application
straightforward and readily computed.

A major implication of testing hypotheses related to
the likelihood weights in applied work is that it may
become clear whether particular indices are providing
inadequate, duplicated or redundant signals. In such
circumstances, a review of the need to collect particular
data may be warranted. Also of importance is the
application of the approach to management of a fishery
itself. Because of the clarity of the formal procedure for
weighting the abundance indices, interpretation of the
resulting stock assessments over time is likely to be less
contentious than when arbitrary weights are chosen in a
less-structured manner. Furthermore, the structure of
our computer program allows relatively easy modifi-
cation of the biological model to account for direct
linkages among species, zones or marine resource uses.
Such modification would permit examination of the
strength of both deterministic and stochastic linkages
within the system supporting marine fisheries.
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