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Bayesian methods have a number of advantages that make them especially useful in
the provision of fisheries management advice: they permit formal decision analysis,
and they facilitate the incorporation of model uncertainty. The latter may be
particularly useful in the management of contentious fisheries, where different nations
and interest groups may suggest alternative assessment models and management –
each likely to imply different findings, even when using the same data. Such situations
might be approached in a number of different ways. For example, one might attempt
to choose a best model from all those available and to base decisions on it alone.
Alternatively, one might make decisions that lead to acceptable outcomes under all
envisaged models; or one could reach decisions that are good on average (where
average is taken over the set of all competing models and is weighted by a measure of
how well each model coheres with available information). This last approach is
advocated in this paper, and a Bayesian technique for achieving it is presented and
discussed. The main points of the paper are illustrated with a hypothetical application
of the technique to the rebuilding of the biomass of haddock by a selective culling of
seals.

Key words: decision analysis, Bayesian networks, model uncertainty, ecosystem
effects, fisheries management.

Received 20 March 2000; accepted 26 January 2001.

T. R. Hammond and C. M. O’Brien: CEFAS Lowestoft Laboratory, Pakefield Road,
Lowestoft, Suffolk NR33 0HT, UK. Correspondence to T. R. Hammond, tel.: +44 (0)
1502 524 213; fax: +44 (0) 1502 524213; e-mail: t.hammond@cefas.co.uk
Introduction

The literature on stock assessment in fisheries has
traditionally concentrated on numerical methods and
algorithms for estimating parameters of interest to fish-
eries management using population dynamics models.
There are now a wide variety of estimation methods that
incorporate uncertainty in both data and model
parameters (Deriso et al., 1985; Fournier and Archibald,
1982; Fournier et al., 1998; Gudmundsson, 1994;
McAllister and Ianelli, 1997; Richards and Schnute,
1997). Whilst these statistical algorithms allow one to
quantify the precision in parameter estimates, and per-
mit formal decision analysis (McAllister and Kirkwood,
1998), results are usually conditional upon a single
underlying model. There are published cases in which
stock assessments consider structural uncertainty (e.g.
Punt and Butterworth, 1995; Patterson, 1999), but this is
by no means routine.

In many situations, differences between methods of
parameter estimation are trivial when contrasted with
1054–3139/01/030648+09 $35.00/0
the impact of incorporating different structural models
into statistical inference (Buckland et al., 1997). The
principal objective of this paper is to show the impor-
tance of acknowledging model uncertainty within a
hypothetical fishery system.

In contentious multi-national fisheries, consideration
of model uncertainty is necessary because different
nations and interest groups will tend to propose or
support different models. It is only natural that nations,
groups and individuals should support the creation and
adoption of models that advance their position. It is
natural, too, that such groups should be critical of a
management system that rejects their advocated models.
A well-designed management system should employ
techniques that build consensus between groups rather
than those that reinforce antagonism. A secondary
objective of this paper is to illustrate the use of model
averaging as a tool to aid the process of decision
making.

This paper advocates the use of Bayesian belief

networks as a practical decision making tool. These
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networks have already been used in a fisheries context
(Kuikka et al., 1999), and they are well established in the
statistical literature (Jensen, 1996). In the hypothetical
fishery system considered here, the use of Bayesian
networks leads to some surprising results and may hold
valuable lessons for fisheries modellers and managers.
What are Bayesian networks?

A Bayesian network is always represented visually with
a set of vertices (V) and a set of edges. Each vertex
represents a specific random variable, and the vertex
is labelled with that variable’s name. Each variable
must have a finite number of mutually exclusive states:
examples of such being True or False; Red, Green or
Blue; Increasing or Decreasing. Each edge represents a
causal relationship between variables, and is depicted
with an arrow from cause to effect. One must never be
able to return to the same vertex by following causal
chains in a Bayesian network. In other words, Bayesian
networks are unable to accommodate cycles. It is said
that the collection of vertices and edges in a Bayesian
network forms a directed acyclic graph (DAG). In this
terminology, ‘‘directed’’ results from the orientation of
the arrows, ‘‘acyclic’’ from the prohibition on feedback
loops, and ‘‘graph’’ from the mathematical term for a
collection of vertices and edges.

The wording of family relationships is used in discuss-
ing edges, so if there is an edge from variable A to
variable B, one describes A as a parent of B or B as a
child of A. To each variable B with parents Al, . . ., An

there is attached a conditional probability table
P(B�Al, . . ., An). Should B have no parents, the
table reduces to an unconditional one, denoted simply
P(B).

Using only the conditional probabilities specified
above, Bayesian networks allow the rapid computation
of arbitrary probabilities on the variables in V. Thus,
given any set of evidence E on any subset of V, one can
rapidly determine P(B�E) for any variable B in V. This
calculation can be accomplished using the algorithm of
Lauritzen and Spiegelhalter (1998). The networks derive
their name in part from the repeated use of Bayes’
theorem in this algorithm.
Bayesian model-averaging

Ignoring the uncertainty in model selection can lead to
over-confident interferences and decisions (Hodges,
1987). Bayesian model averaging provides a way of
accounting for this model uncertainty by averaging over
competing models (Madigan and Raftery, 1994).

The conditional probability table P(B�E) introduced
earlier was defined with respect to a given Bayesian
network (or model). For a finite number of plausible
models M , . . . M , Bayesian model averaging necessi-
1 k
tates the specification of the prior distribution over
competing models. When there is little prior information
about the relative plausibility of the models, the assump-
tion that all models are equally likely a priori can be a
reasonable neutral choice (cf. Kass and Wasserman,
1995). Given any set of evidence E, one can determine
the conditional probability Prob(Mk�E) for model Mk.
Bayesian model averaging is then an average of the
conditional distribution P(B�E) under each Mk weighted
by Prob(Mk�E).
The problem

Consider the following hypothetical situation: a number
of haddock fishermen have requested the right to cull a
local seal population in order to increase the biomass of
haddock available for fishing. The fishermen claim that,
since seals compete with them for haddock within the
local ecosystem, their catch rates would improve with
fewer seals. Despite public opposition, fisheries manag-
ers take the proposal seriously. In fact, so effective are
the fishermen in mustering political support, that an
expert panel is convened with a mandate to consider
whether or not culling seals would improve the
local haddock fishery. In the event that the cull is
deemed advantageous, the fishermen will be allowed to
implement it.
Materials and methods

A group of individuals opposed to seal culling (referred
to as ‘‘Group A’’ in this paper) has kept abreast of
recent seal culling studies and is encouraged by them.
They believe that the seals-eat-haddock story over-
simplifies the trophic interactions in the local ecosystem
(fishery). Furthermore, they suspect, along with Lavigne
(1995), that complex ecosystem interactions could well
influence the outcome. This certainly was the case in
Yodzis (1998), where it was predicted that seal culling
would have an adverse affect on the hake biomass in the
Benguela ecosystem. Group A agrees to propose a
complex ecosystem approach along the lines advocated
by Yodzis (1998), in the hopes of obtaining a similar
result and thus of averting the need for a seal cull.

For their part, the fishermen are looking for a method
that is easier to understand, and they opt to press the
case for seal culling using Bayesian networks (Jensen,
1996). The fishermen create a predictive model using
Hugin software, based on the algorithm of Lauritzen
and Spiegelhalter (1988), which allows them to present
their approach in an interactive fashion.

Figure 1 shows a graphical representation of the
simple model that the fishermen initially propose. It has
four nodes that represent components of their simplified
view of the ecosystem. The rightmost is a rectangular
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SealsHaddock CullUtility

Figure 1. This figure depicts the initial model proposed by the fishermen. The Cull node represents the decision on whether or not
to selectively kill seals. This decision affects whether or not the seals are increasing which in turn affects whether the haddock are
increasing (since seals eat haddock). Finally, the utility of haddock for the fishermen is improved by increases in the biomass of
haddock.
Table 1. A conditional probability table for the Seals node
given the Cull decision; i.e. P(Seals�Cull). The fishermen indi-
cate that if they kill seals, the seal biomass will be decreasing
with probability 1.0. On the other hand, if they do not kill the
seals, the fishermen indicate ignorance about what will happen
to the seals by assigning equal probability to the two states
Increasing and Decreasing.

Cull Cull seals Don’t

Decreasing 1.0 0.5
Increasing 0.0 0.5
decision node labelled Cull that represents the decision
between two alternative actions – ‘‘cull seals’’ and ‘‘do
not cull seals’’. An arrow leads from the Cull decision to
an elliptical node labelled Seals that represents the state
of seal biomass in the local area. It has two states –
either Increasing or Decreasing. The arrow from Cull to
Seals indicates that the state of the seal stock; i.e.
whether their biomass is decreasing or not, is directly
affected by the decision about whether or not to cull
seals. Another arrow leads from Seals to Haddock and
the latter node has the same two states as the former –
either Increasing or Decreasing. The arrow implies that
the probability that haddock are increasing is affected by
the state of Seals; that is, the arrows imply a causal
relationship. Finally, the diamond shaped node labelled
Utility represents the value fishermen place on changes
in the biomass of haddock. The fishermen ascribe a
utility level of 100 when the haddock are increasing and
a utility level 0 when the haddock are decreasing.
Although other participants may have different utility
functions (cf. IWC, 1993), this one was consistent with
the mandate of the expert panel; namely, to consider
only the effects on the haddock fishery.

The effect of the decision to cull on Seals is specified
with the conditional probabilities given in Table 1. The
fishermen feel secure about defending Table 1, but they
are unsure about the importance of the interaction
between Seals and Haddock. The impact of a predator
on a prey species depends, amongst other things, upon
the biomass of the predator, the fraction of its diet that
consists of the prey and on the size classes of prey
consumed. A detailed trophic analysis that incorporates
all these factors (cf. Punt and Butterworth, 1995;
Yodzis, 1998) would require substantially more informa-
tion than is available to the fishermen. Thus the fisher-
men decide to base their probability table for haddock
on seal dietary data, reasoning that the importance of
the seal–haddock interaction should be reflected in the
importance of haddock in the seals’ diet.

Dietary data are generally available for most species
(Rice et al., 1991; Anon., 1994), but in Table 2 hypo-
thetical diet data are presented for a selection of species.
In reality, such diet information would be based upon
examination of predator gut contents and behavioural
observations. The information in the Table 2 categorises
the importance of each predatory relationship using
terms ranging from Very High, through High, Medium,
Low and down to Very Low. The interpretation of these
categories is represented by relative weights that also
accompany Table 2. For example, the importance of the
interaction between seals and haddock is assessed as
Low with a relative weight of 2.0. The importance of the
interaction between seals and whiting is assessed as Very
High with a relative weight of 5.0; i.e. the dietary data
suggest that whiting are 2.5 times as important to the
seals’ diet as haddock are.

In order to model the probability that a particular
species is Decreasing given knowledge about what is
happening to its predators, the fishermen create a pre-
dation pressure model. The primary assumption of the
model is that predation pressure is additive; i.e. the
model assumes that predators act independently of one
another – they neither interfere with one another nor do
they cooperate. The model consists of two parts – a rule
for determining an index of predation pressure (x) on a
species given the state of all its predators; namely,
whether they are increasing/decreasing, and an equation
for determining the probability that the species is
decreasing given the predation pressure (x). The two
components are combined to determine the probability
of decrease, given the state of the predators. In this way,
the model allows the generation of conditional prob-
ability tables for use in a Bayesian network.

Suppose that a particular prey species has K predators
in a particular network. Let predator k (for k=1, 2, . . .,
K) have relative importance weight xk (as defined in
Table 2). The state of the predator is either increasing or
decreasing, and this is indicated by sk=1 in the former
case and sk= �1 in the latter. The total predation
pressure (x) on the prey species is determined by sum-

ming over the predators:
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The equation for determining the probability (p) that
the prey are Decreasing is inspired by logistic regression.
As in logistic regression, p is determined from the
natural logarithm of the odds ratio:

logit(p)=loge{p/(1�p)} (2)

The model is as follows:

logit(p)=�x (3)

where �>0 is a parameter that is assumed to hold for all
species. For �>0, greater predation pressure (x) implies
a greater probability that the prey are decreasing in
abundance. There is a biological interpretation for �,
namely �=logit(p0), where p0 is the probability that a
prey species is Decreasing, if it has a single predator of
Very Low importance and that predator is Increasing. A
value of p0=0.54 is assumed throughout this paper with
the implication that �=0.1603, but the implications of
this choice are discussed subsequently.

A number of properties of the predation pressure
model are readily apparent. Firstly, given a prey species
with two predators of equal importance, the cancellation
property implies that when one predator is Increasing
and the other is Decreasing, the resulting predation
pressure is zero and the probability that the prey are
Decreasing is 0.50. Secondly, using the relative impor-
tance weights given in Table 2, one can note that the
predation pressure from a predator of High importance
can be cancelled by two predators of Low importance,
or by four of Very Low importance.
Table 3 shows the conditional probabilties for the
Haddock node of Figure 1, obtained using the predation
pressure model and the seal dietary data. In the Table 3,
a probability of 0.421 is assigned to haddock Decreasing
given that seals are Decreasing. In order to compute this
value, first note that the importance of seal predation on
haddock is considered Low (see Table 2), so
x=(�1)(2.0). Upon multiplying x by �=0.1603, one
obtains logit(p)= �0.3206, which in turn implies
p=exp(�0.3206)/(1+exp(�0.3206))=0.421.

The optimal decision is taken to be the one that leads
to the highest expected utility. This expectation is com-
puted by multiplying the probability that haddock are
increasing (conditional upon any data introduced at
network nodes) by the utility derived from such an
increase (previously ascribed a level of 100 by the
fishermen). The fishermen have ascribed a utility level 0
when the haddock are decreasing so this term is
eliminated from the calculation and may be ignored.
Table 2. Hypothetical dietary data for a number of the trophic interactions. The interpretation of the
importance categories is expressed in terms of relative weight. For example, a predator-prey
interaction of High importance is 4.0 times more significant than one of Very Low importance.

Predator Prey Importance

Cod Whiting Medium
Cod Sandeels Very Low
Seals Haddock Low
Seals Cod Medium
Seals Whiting Very High
Seals Saithe Very Low
Saithe Cod Medium
Saithe Haddock High
Saithe Sandeels Very High
Whiting Haddock Very High
Whiting Sandeels Very High
Sea birds Sandeels Very High

Importance Very High High Medium Low Very Low
Relative weight 5.0 4.0 3.0 2.0 1.0
Table 3. A conditional probability table for the Haddock node
of Figure 1 given the state of the Seals node. The values are
based on the predation pressure model and on the fact that Low
importance was assigned to the seal predation of haddock in
the dietary data of Table 2.

Seals Decreasing Increasing

Decreasing 0.421 0.579
Increasing 0.579 0.421
Results

The fishermen present their initial model and run using

Hugin, giving an expected utility of 57.9 if seals are
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Utility Seals Cull

WhitingHaddock

Figure 2. Seals eat whiting and whiting eat haddock.
Utility Seals Cull

Whiting CodHaddock

Figure 3. Cod are known to eat whiting and seals eat cod. The utility function remains unchanged and does not include cod because
the expert panel’s mandate is to consider impacts on haddock alone.
culled, and 50.0 if they are not. They demonstrate that
their model is robust against uncertainty in p0 in the
sense that the optimal decision is not affected as long as
p0 is greater than 0.5. Indeed, the higher the value of p0

in this model, the more attractive seal culling seems.
Group A, having neither the time nor the data necessary
to conduct a sophisticated analysis (cf. Yodzis, 1998),
adopt the simple Bayesian network approach advocated
by the fishermen. They raise the point about eco-
system effects, and claim to be able to use the fishermen’s
own method and model to demonstrate that culling
seals would have an adverse effect on the expected
utility.

Group A examines the seal dietary data in Table 2
and notes that seals also eat whiting. They construct the
network shown in Figure 2 that includes seal predation
on whiting, together with whiting predation on haddock.
The Whiting node has the usual two states – Decreasing
and Increasing. The network is parameterised using the
predation pressure model exactly as specified by the
fishermen, and the Seals node is entered from Table 1 as
before. As anticipated by Group A, the expected utility
for culling the seals is 49.732, whilst the expected utility
associated with doing nothing is 50.000. This result
suggests culling is counterproductive, so the Group
display it to the fishermen. In this model, the optimal
decision is not affected by increasing p0, but lowering p0

below 0.53 does lead to the conclusion that culling
would increase haddock biomass. Note that, in contrast
to the situation in the previous model, increasing p0

makes the culling option seem less attractive.
The fishermen respond with the network shown in

Figure 3, which includes cod as well as whiting. This
network is parameterised using the predation pressure
model and dietary data, as before. It favours the culling
option, with expected utility 50.962, over the alternative
of doing nothing, with expected utility of only 50.000.
This particular network is sensitive to increases in p0, as
raising this quantity to 0.55 or higher reverses the
optimal decision. On the other hand, decreases in p0

have no effect on the optimal decision, provided only
that p0 that does not fall below 0.5 (a possibility
excluded a priori). Thus, in this model, higher values of
p0 are unfavourable to the culling option.

Group A are undeterred and respond with the net-
work shown in Figure 4 in which the expected utility of
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Utility Saithe Cull

Whiting

Seals

CodHaddock

Figure 4. Saithe prey upon both cod and haddock; seals eat saithe.
Utility Saithe Cull

Whiting

Seals

CodHaddock

Sandeels

Sea birds

Figure 5. The Trojan sea bird model that includes a Sea birds node with two states – Gathering and Dispersing.
Table 4. A conditional probability table for the Sea birds node
of Figure 5 given the state of the Sandeels. The values are based
on an adaptation of the predation pressure model and on the
fact that Very High importance was assigned to the sea bird
predation of sandeels (see Table 2).

Sandeels Decreasing Increasing

Gathering 0.31 0.69
Dispersing 0.69 0.31
culling seals is 49.800, whilst the expected utility of
restraint is 50.000. In this network, the optimal decision
is not affected by raising p0, but decreasing it below 0.53
does change the best decision. As in the two previous
models, lower values of p0 are good for the fishermen’s
position, higher values for Group A’s.

At this point in the development of ever more com-
plex models, the fishermen have exhausted the choice of
species that are eaten by seals. They seem defeated but
construct the Trojan sea bird model shown in Figure 5.
This model includes a Sandeels node with the usual two
states – Decreasing and Increasing, and a node called
Sea birds, with two new states – Gathering and Dispers-
ing. Sea birds are known to gather over areas of high
sandeel abundance, so the fishermen reason that sea
birds will be more likely to gather when sandeels are
Increasing. They adapt their predation pressure model
to produce a table of probabilities that sea birds are
Gathering given the state of the Sandeels. The resulting
table is shown as Table 4.
The fishermen present their new model with every sign
of defeat, saying they would agree to be bound by its
recommendations if Group A would also. Group A
examine the model and note that it says the expected
utility of a seal cull remains exactly the same as the
situation in their own model depicted by Figure 4. In
fact, for all the nodes that are common to both, the
models of Figures 4 and 5 lead to identical marginal
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Table 5. A summary of the effects of structural changes in the operating model on the decision at hand and an investigation of the
effects of modifying parameter p0.

Model Optimal decision at p0=0.54 Effect of increasing p0 p0 to change decision

Figure 1 Cull seals Favours culling Insensitive
Figure 2 Do not cull seals Favours restraint 0.53
Figure 3 Cull seals Favours restraint 0.55
Figure 4 Do not cull seals Favours restraint 0.53
Trojan seabird model (with seabirds Dispersing) Cull seals Favours restraint 0.55
Utility Which model? Cull

Haddock

Figure 6. The model averaging network.
probabilities. In other words, the Trojan sea bird model
seems to favour Group A’s position. Group A agree to
the model and congratulate themselves on their victory.
They fail to notice, at first, that the fishermen have all
moved outside on to the beach and are scanning the
sea with binoculars for, on the horizon, a storm is
coming.

Mystified, Group A follow the fishermen out on to the
beach, and are asked if the sea birds are dispersing. ‘‘Of
course the sea birds are dispersing’’, say Group A,
‘‘there’s a storm coming!’’ A fisherman enters the evi-
dence that the sea birds are Dispersing into a Hugin
representation of the Trojan sea bird model. The
expected utilities change: 46.281 for culling the seals and
46.274 for doing nothing. ‘‘You can’t be serious’’, says
Group A, ‘‘the sea birds are dispersing because of the
storm. Besides, tomorrow the weather will probably
clear up, and the birds will be back.’’ The fishermen
enter the evidence that the sea birds are Gathering into
the Bayesian network. Once again, the expected utilities
change: 53.735 for culling the seals but 53.726 for doing
nothing. ‘‘You see’’, say the fishermen, ‘‘we should cull
the seals either way!’’

Though such considerations would probably be over-
looked in a storm, we may examine the effect of changes
in p0 on the results from the Trojan sea bird model.
Before the introduction of evidence, the model behaves
exactly like the model of Figure 4. In other words,
increasing values of p0 favour Group A’s position. After
the introduction of evidence of any kind on the sea
birds, increases in p still make Group A’s position more
0
attractive. Whether the sea birds gather or disperse,
increasing p0 to 0.55 or above will lead to a reversal of
the optimal decision, but lowering it only makes culling
look more advantageous.

Table 5 summarises the optimal decision in each
model and the sensitivity of the models to changes in p0.
In the Trojan sea bird model, it is the mere presence of
evidence about the sea birds that changes the decision,
and not the actual nature of that evidence. Jensen
(1996) provides further explanation of this property of
Bayesian networks.

Group A interprets the events on the beach as clear
evidence of the inadequacy of the Trojan sea bird model.
They say that (besides its temporal difficulties) it fails to
incorporate other causes for sea bird dispersal (like
storms), and they withdraw their acceptance of it. The
fishermen are outraged, and relations between the two
groups deteriorate. Support for models becomes polar-
ised: the fishermen supporting the Trojan sea bird model
(with the Sea birds Dispersing), and Group A backing
the model in Figure 4.

In an attempt to break the impasse, model averaging
is proposed, because it would allow evidence to shed
light on which model is most credible. This is agreed to
because there seems to be no other way forward. The
model-averaging network is shown in Figure 6. It con-
tains a node called Which Model? with two states –
Fishermen and Group A. These states represent the
fishermen’s and Group A’s models, respectively, and
each state is assigned probability 0.5 to reflect total
model uncertainty. Arrows link the Cull decision
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directly to the Haddock since model-specific predictions
about the state of the Haddock under each decision are
entered on this node. The resulting probability table is
shown in Table 6.

The model-averaging network shows an expected
utility of 48.041 for culling seals, and 48.137 for
restraint, so in the end it is decided not to implement a
cull of the seals. Later that year, a stock assessment is
conducted on the haddock and they appear to show a
marked increase in biomass so the fishermen are
appeased. When this information is incorporated into
the model-averaging network, the probability in favour
of the Group A model is increased from 0.500 to 0.519.
Discussion

Despite the emphasis within fisheries literature on
parameter estimation, it is often structural (model)
uncertainty that is the true source of controversy, and
the choices of parameter estimation method are of
secondary importance. This paper presents a case where
model structure affects the optimal decision. Though the
value of a model parameter (p0) also plays a role, the
decision favoured by increases in p0 was shown to
change with modifications in model structure. In view of
such an example, fisheries science and management may
wish to place greater emphasis in the future on
approaches and techniques for dealing with structural
model uncertainty.

It must be admitted that addressing model uncertainty
can often seem particularly arduous: it will typically
more than double the amount of work required to
produce a result. The temptation not to consider it will
be strong. Indeed, in this paper we have succumbed to it
ourselves, having, for example, omitted consideration of
link functions other than the logit in our predation
pressure model. Consideration of model uncertainty
must remain a matter of scientific discretion; however,
certain questions will force such considerations on the
scientist. Emotionally or politically charged topics, like
culling seals, will demand consideration of structural
uncertainty because opposing groups are likely to have
created their own models. After all, the power of models
in shaping decisions has not gone unnoticed. Having
devoted time to such creation, the groups are not likely
to be pleased if their models go unused.

Model averaging should be explored further because it
is useful both as a conceptual framework for addressing
model uncertainty and as a means for achieving consen-
sus amongst opposing groups. Though the initial prob-
abilities attached to different models in such averaging
may depend partly on political considerations, the
example shown here illustrates that data can shed light
on which model should receive highest weight. If con-
sensus on a single model cannot be reached, model
averaging may still be acceptable to all because no group
needs to be excluded. After all, the more models have
been put forward, the more people’s work one must
reject in choosing a single model on which to base
decisions. Those one angers by rejection may well out-
number the people one pleases by acceptance! The
shrewd decision-maker would do well to keep such
political considerations in mind. On the other hand,
completely caving in to interest group pressure is not
advisable either. If one can reach a decision that is
acceptable under all envisaged models, such an option is
compelling, but experience suggests such options will be
the exception rather than the rule. Furthermore, such
decision making does not allow the data to decide which
model is preferable, and thus provides no mechanism for
learning from experience. Simply put, model averaging
may provide a compelling compromise between political
and scientific considerations.
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Don’t
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