
ICES Journal of Marine Science, 58: 1115–1132. 2001
doi:10.1006/jmsc.2001.1102, available online at http://www.idealibrary.com on
A general procedure for estimating the composition of fish school
clusters using standard acoustic survey data
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An algorithm to identify classes of fish in acoustic backscatter images would
improve the accuracy of acoustic biomass estimates over manually scrutinized
images. A generalized Bayesian procedure for such identification called BASCET is
presented, and two implementation strategies for the procedure are compared using
simulated acoustic survey data. The procedure has several unusual characteristics: it
evaluates schools not individually but in clusters; it makes use of human experience at
cluster identification; it presents measures of uncertainty in all estimation results; and
it constructs the training set required for supervised learning automatically using
spatial and temporal assumptions. The simulation study comparison suggests that
making use of temporal and spatial structure in the acoustic data leads to improved
estimation performance. On the simulated data, the BASCET algorithm correctly
identified the dominant fish class in 15 of 16 cases. However, the simulation model
generates acoustic survey data based on the same assumptions used in BASCET,
assumptions that may differ from a real acoustic survey. The study also assumed
that the human experience incorporated in the Bayesian prior distributions was
not misleading. Performance of BASCET on real acoustic data is presented in a
companion paper.
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Introduction

When acoustic surveys are used to estimate the bio-
mass of a particular class of fish, it is valuable if the
acoustic equipment can distinguish that class from
others. For such discrimination to be possible, the
relevant classes, whether identified by size or species,
must differ in any of three ways: in acoustic charac-
teristics of their echoes, in the shape of their schools,
or in the position of their schools relative to environ-
mental conditions. It has already been shown that
such differences can be exploited to achieve successful
classification (Rose and Leggett, 1988; Richards et al.,
1991; Weill et al., 1993; Simmonds et al., 1996). How-
ever, a general procedure for doing so using the
data from a standard acoustic survey has yet to be
presented.
1054–3139/01/061115+18 $35.00/0
Acoustic data

In an acoustic survey, data are often recorded in back-
scatter images. The individual pixels in these images
represent the mean volume backscatter cross-section (Sv)
in regular depth intervals beneath the path of the
transducer. Schools of fish can be extracted from the
images using standard image-processing techniques
(Haralick et al., 1987; Haralick and Shapiro, 1992).
Extraction algorithms based on such techniques have
been implemented by several scientists (Nero and
Magnuson, 1989; Nero et al., 1990; Baussant et al.,
1993; Reid and Simmonds, 1993; Weill et al., 1993). As
implemented by Swartzman et al. (1994b), this extrac-
tion process records (among other things) mean Sv, Sv

range, area, location, depth, and several environmental
measurements for every school. Except for ocean

depth, which is available from the acoustic images, the
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environmental measurements are obtained by inter-
polation between CTD (conductivity, temperature,
depth) casts (Swartzman et al., 1994a). Here, a school
will refer to a record of such measurements that has been
extracted from a backscatter image.

Schools can be numerous, so it is often better to deal
with school clusters. These clusters consist of collections
of schools that are all near each another. In more precise
terms, two schools are placed in the same cluster
whenever they are within threshold horizontal range (dh)
and within threshold vertical range (dv) of each other. A
cluster retains the average of the school measurements
for the schools it contains.

The data from a standard acoustic survey consist of
the following: location, time, and depth of all trawl
samples and school clusters, haul catches, and the
mean of each acoustic feature in each school cluster.
Although variances can be recorded for acoustic fea-
tures, these are not used here. Environmental feature
vectors are also available for every cluster and haul. This
paper is devoted to the question of how to design a
general procedure for using these data to estimate the
composition of all clusters.
Standard classification algorithms

Most standard classification algorithms require a train-
ing set (James, 1985). In an acoustic survey context, this
is a set of school clusters for which the true composition
is known. It is used to teach the algorithm how to
differentiate between the classes. The quadratic discrimi-
nant analysis method in the pioneering work by Rose
and Leggett (1988) is an example of a standard classifi-
cation algorithm built with a training set. Other
examples include the k-nearest-neighbour algorithm in
Richards et al. (1991), the linear discriminant analyses in
Weill et al. (1993) and Barange (1994), and the neural
networks of Simmonds et al. (1996) and Haralabous and
Georgakarakos (1996).

Once a standard classification algorithm has been
taught to discriminate between classes using the training
set, its parameters are not modified further. The school
clusters are presented to it individually, and they are
identified as if they were independent objects. The fact
that the classification parameters are fitted only to the
training set means that only a small portion of the
available data is actually used. All the information
contained in clusters that are not in the training set is
discarded. The loss is considerable because the distribu-
tion of acoustic and environmental attributes is quite
informative.

The first scientist to discriminate between object types
using acoustic information outside a training set was
François Gerlotto. The hierarchical clustering algorithm
used in his paper (Gerlotto, 1993) is notable for two
reasons: it does not require a training set, and it uses all
acoustic data. The paper shows that areas of the ocean
can be grouped in such a way that the acoustic measure-
ments within each group are similar. He called these
groups ‘‘acoustic populations’’, although their species
composition remains unknown. Although this level of
resolution is not particularly useful for stock assessment,
the paper does serve to show the value of using the entire
acoustic data set. After all, if objects can be sorted into
natural groupings, then identification is just a matter of
labeling these groups correctly.

Most classification algorithms can be used either to
estimate the composition of an object or to classify it.
Here it is considered appropriate to estimate the com-
position of schools and school clusters rather than to
classify them, because schools are not guaranteed to be
composed purely of a single class.
The troublesome trawls

It has proved difficult to design a general procedure
for estimating the composition of school clusters
because it is hard to come up with the training set
required by most standard classification algorithms.
In a standard acoustic survey, the only information
about the true composition of school clusters comes
from trawl samples (Simmonds et al. 1992). Trawl
samples are not a reliable means of determining the
species or size composition of school clusters. There are
three reasons for this: gear selectivity, spatial and tem-
poral separation between the trawl and the cluster, and
uncertainty about which trawls are informative about a
particular cluster and which provide little information
about it.

Trying to construct the training set for a classification
algorithm using trawl data is awkward, but automating
the process can relieve some of the burden on surveyors.
In this paper, an algorithm for constructing a training
set automatically using four spatial and temporal
parameters (called RS

trawl, RT
trawl, RS

cluster, and RT
cluster) is

suggested. It is hoped that reducing the process of
training set construction to the choice of these four
parameters will facilitate communication, as well as
reduce the scope for between-surveyor variability. It is
also hoped that the focus on spatial and temporal
structure that this algorithm requires of the user will lead
to improved estimation performance. Such improvement
would come from what is here called ‘‘context sensitive
anticipation’’.

The identities of schools located in close proximity to
one another in the ocean are far from independent. This
fact is ignored in standard classification algorithms,
which assume independence. This paper will demon-
strate how to construct a composition estimation tool
that can anticipate the composition of a school cluster
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based on information from other clusters and trawl
samples nearby.

The human brain routinely anticipates the properties
of observations based on their context. If a man
observes that a number of school clusters in a small area
all appear to be adult pollock, then when he comes upon
another cluster in the same area, he would surely be
inclined to think the cluster was also composed of adult
pollock. Computer algorithms can be designed to mimic
such anticipation. When they are so constructed, classi-
fication performance should show improvement over
standard methods. This prediction is tested here using
simulated data.
What is a general procedure for school cluster
identification?

A general procedure for school cluster identification uses
standard acoustic survey data to produce composition
estimates for all school clusters in the data set. These
composition estimates are vectors of length K, where K
is the number of fish species or size classes that the user
wishes to distinguish. The classes are assumed to be
specified in advance by the user. Practical considerations
suggest that they should be few in number (K<5),
especially if the user hopes to achieve reasonably precise
estimates of composition. The entries of a composition
vector are constrained to sum to 1 and represent the
numerical proportion of the respective fish classes in a
school cluster.

A general procedure should be a statistical algorithm
rather than a sequence of ad hoc steps. The algorithm
can and should be able to improve its estimates using
auxiliary information, when such is available, but it
must be prepared to make do with standard acoustic
data alone. A general procedure should also be able to
provide some reasonable measure of precision for the
composition estimates it makes.

In this paper, two general procedures for estimating
the composition of all the school clusters identified in an
acoustic survey are described and compared. The proce-
dures are designed to distinguish a small number of
classes, although each class can contain several species
or size groups. Both algorithms are Bayesian (Gelman
et al., 1995), requiring prior distributions that represent
a priori beliefs about the values of key parameters.
These priors may be elicited from an acoustic expert
or obtained from experience with other surveys.
Recommendations for obtaining these priors are pre-
sented in a companion paper (Hammond et al., 2001).
The procedures are intended for situations where
superior estimation performance is crucial but speed
is not. The methods usually take several days to
calculate results for a real survey on a 300 MHz
Pentium PC.
Methods
A simulation experiment

A primary objective of this paper is to conduct a simu-
lation experiment comparing the performance of estima-
tion tools. The model used to simulate the acoustic data
for this experiment is presented fully in Hammond
(2000), although we provide an overview below. The
three classes used in both simulation and estimation were
adult pollock, juvenile pollock, and jellyfish.

A test survey region and a test survey track were
constructed for the simulation experiment. The region
and its accompanying survey track are shown in
Figure 1. The ocean depth in the test region is shown as
a light-shaded grey surface, and contours of sea surface
temperature are indicated on the top face of the plotting
cube.

The parameters of the simulation model were selected
at random from prior distributions elicited from an
acoustic expert (Hammond et al., 2001). Estimation
tools were compared in terms of their ability to recover
the true composition of the simulated school clusters.
For this task, each model was allowed to use both the
prior information and the simulated acoustic survey
data. Both models were designed to use the same
classification attributes.

The estimation tools are called ‘‘BASCET’’ and ‘‘the
independence scheme’’. BASCET is an acronym for
Bayesian spatial composition estimation tool for clusters
of acoustically identified schools. Both algorithms are
general approaches to estimating cluster composition in
the sense that they use all the data and neither requires a
user-specified training set. Parameters are estimated
from the results of an entire survey. We now provide an
overview of the simulation model, followed by an over-
view of the BASCET approach. Full descriptions of
BASCET, including all the equations, are given in
Appendix 2.
The simulation model

The model was designed to represent two aspects of fish
behaviour. First, it creates patchy distributions of fish
schools; second, it allocates school compositions so that
local average species compositions can differ from the
overall average. In other words, fish species are not
mixed homogeneously in the survey area.

The key to the simulation model is the use of hotspots,
which represent large-scale but temporary oceanic
features. Examples of hotspots include plankton
blooms, fronts, and upwelling areas. These features are
assumed to be attractive to a particular composition of
species. Hotspots are taken to have a circular shape.
Although the shape assumption may not always be
suitable, one can represent complex oceanic structures
by using several hotspots.
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Figure 1. The survey region used for evaluation is the rectangle shown. A shaded surface plot shows the bottom depth in the survey
region, while contour lines of sea surface temperature in �C are depicted on the top face of the cube. The survey track is shown by
a thick solid line.
In the simulation model, fish schools are placed
around hotspots using a parent-child random point
process. This placement is implemented in two phases.
In the first phase, hotspots are allocated randomly in the
survey region, their number controlled by the hotspot
intensity parameter �H. Each hotspot is marked with a
spatial range, a temporal range, and a composition for
which it is favourable. All these markings are drawn
randomly from their respective distributions. In the
second phase, schools are allocated so they lie on the
curtain of water beneath the survey track and within
spatial and temporal range of the hotspots. The number
of schools in a hotspot is controlled by the school
intensity parameter �S.

Schools are assigned a composition that depends on
the composition of their hotspot ‘‘parent’’ (i.e. on the
hotspot that contains them), on the school depth, and on
the environmental features at the school’s location. Pure
schools of each class are assumed to have different
acoustic feature distributions. The distribution of
acoustic features in an impure school is modelled using a
mixture of the pure school feature distributions. The
mixture proportions are given by the school com-
position. Acoustic features of a school are generated
randomly from the school’s acoustic feature distri-
bution. Schools that are within a threshold horizontal
range (dh) and within a threshold vertical range (dv) of
each other are merged into school clusters.

The catch from trawl samples is also simulated using a
point process approach. Three assumptions underlie the
process: that trawl time is a constant, that trawl samples
are only done within hotspots, and that the depth of the
trawl samples has the same distribution as the local
depth distribution of the fish. The idea is to allocate
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schools within the area swept by the gear using the same
process that allocates schools beneath the survey track.
Schools in the path of the gear are retained with a
certain average probability, and their composition is
adjusted for gear selectivity. Computing the catch data is
a matter of converting the numerical composition of the
schools retained by the gear to a weight composition.
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Figure 2. A graphic representation of the conditional independence properties of the BASCET model. Shaded nodes indicate
variables found in the acoustic data set. Broken arrows indicate a deterministic dependency between variables, and solid arrows
indicate a stochastic one. Thus, a variable with three incoming broken arrows would be a function of three arguments. Rectangular
nodes indicate constants (that were not treated as uncertain).
An overview of BASCET

The hotspot idea is also central to the estimation
approach, because BASCET uses hotspots to help esti-
mate the composition of school clusters. These hotspots
represent regions of space and time within which the
expected composition of school clusters can be different
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Table 1. Simulation parameters and the prior distributions from which they were sampled.

Name Description Prior distribution Simulation value

�H Hotspot intensity Gamma (37.24, 0.1719) 8.7507
�s Expected hotspot log spatial range N(2.708, 0.32) 3.2024
�t Expected hotspot log temporal range N(1.792, 0.32) 1.5512
�2

s Variance in hotspot log spatial range IG(18.0, 0.1634) 0.54612

�2
t Variance in hotspot log temporal range IG(18.0, 0.1634) 0.47042

pH Expected hotspot composition ALN (�H,�H)

�H Variance in hotspot composition �(��1
H )=Wishart (15,�H)

�S School intensity Gamma(11.25, 20) 220.113
�temp Effect of temperature increase on expected cluster composition ALN (alr(�temp),�temp)

�depth Effect of ocean depth increase on expected cluster composition ALN (alr(�d),�d)
from the overall average class composition in the entire
survey region. In other words, the use of hotspots allows
the algorithm to avoid assuming that the species classes
are mixed homogeneously in the survey region.

For the sake of convenience, the estimation model
assumes that hotspots have circular shape and finite time
duration. All have a composition vector that represents
the local average class composition (this vector is often
called the hotspot composition). In BASCET, hotspots
are always created in such a manner that they never
overlap (in either space or time). The assumption that
hotspots do not overlap is made so that no school cluster
will lie in more than one hotspot.

In BASCET, hotspots provide the mechanism by
which the catch from trawl samples is related to the
composition of school clusters. The model assumes that
the catch from a trawl sample is informative about the
composition of the hotspot that contains the haul. The
catch composition is also relevant to the composition of
any school clusters contained in that same hotspot.
Thus, a configuration of hotspots in the survey region
determines a set of school clusters for which there is
direct composition evidence, i.e. a training set. In other
words, a method for generating a configuration of
hotspots in the survey region is also a method for
constructing a training set. As BASCET incorporates an
algorithm for using simple spatial and temporal hypoth-
eses to generate hotspot configurations, it also provides
a method for constructing training sets automatically.
The hotspotgen algorithm used for constructing hotspot
configurations is described in Appendix 2. There is,
however, no need to accept the configuration suggested
by hotspotgen: an operator can certainly edit the
hotspots or even specify them all manually.

Another advantage of using hotspots derives from
their ability to help anticipate the composition of school
clusters. Suppose, for example, that it is necessary to
predict the composition of a school cluster about which
nothing is known. The prediction would be that it has
the overall class composition that the survey region is
known to have. If, however, the composition of the
hotspot containing the cluster of interest (i.e. the local
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Table 2. Remaining simulation parameters and the prior distributions from which they were sampled.

Name Description Prior distribution Simulation value

�a,k for
a=1 . . . A
k=1 . . . K

Acoustic feature means for each class
and feature

�(�a,k)=N(	a,k,
2
a,k)

�2
a for

a=1 . . . A
Acoustic feature variances �(�2

a)=IG(�a,�a)

�d,k for
�d,k

k=1 . . . K

Depth preference parameters by class �(�d,1)=lognormal(0.45, 0.28)
�(�d,2)=lognormal(�1.03, 0.64)
�(�d,3)=lognormal(�0.25, 0.62)
�(�d,1)=lognormal(�1.03, 0.59)
�(�d,2)=lognormal(0.70, 0.33)
�(�d,3)=lognormal(0.98, 0.36)

sg for
g=1 . . . G

Gear selectivity composition vectors

m Average weights by class
composition) is known, then it would be better to predict
that the cluster composition is the same as that of the
hotspot. Therefore, in BASCET, the context of a cluster
(i.e. the hotspot it is contained in and the clusters or
hauls in that hotspot) provides information about the
composition of that cluster. Those familiar with the
Kriging approach may think of the use of hotspots
as not unlike using a step-function variogram
model (assuming that the covariance between random
composition vectors could be defined).

BASCET begins an analysis of a set of acoustic data
by generating a configuration of hotspots compatible
with the data, often using hotspotgen. A configuration
of hotspots is said to be compatible with the data under
two conditions: first, for any school cluster C, there is
exactly one hotspot H such that C is within temporal
and spatial range of H; second, for any trawl sample T,
there is exactly one hotspot H such that the start of haul
T is within temporal and spatial range of H. The
hotspotgen algorithm takes arguments that specify the
spatial and temporal ranges of the generated hotspots.
Of course, an experienced operator can modify the
hotspots to make them correspond to known oceanic
features (e.g. shelf breaks or ocean fronts). One means of
introducing expert supervision of the process is to have
the expert specify a few hotspots near important features
and then have hotspotgen complete the task, ensuring
compatibility with the data.

Once a hotspot configuration is determined and
priors have been chosen for model parameters, BASCET
uses Markov Chain Monte Carlo (MCMC) to
generate a sample of parameter values from the joint
posterior distribution. An introduction to MCMC
methods is given in Appendix 1. All estimates in this
paper are derived from the posterior samples generated
by MCMC. Appendix 3 of the companion paper
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(Hammond et al., 2001) provides a glossary of BASCET
jargon that may be useful here. The parameters of the
BASCET model will shortly be introduced using a
graphic representation of the estimation model. To
assist the reader in interpreting this representation, a
short introduction to graphic modelling is presented
next.
Graphic models

We use a directed acyclic graph (DAG) to present
the estimation model. This method provides a
simple description of the relationships between model
parameters. It also provides a basis for rapidly determin-
ing conditional independence relationships between par-
ameters, and allows the joint distribution of model
parameters to be determined from ‘‘local’’ dependencies
in the graph. In our DAG, the parameters of the model
form the vertices of the graph, and causal relationships
between parameters (often called variables, in accord-
ance with Bayesian norms) are indicated by directed
edges from cause to effect. The wording of family
relationships is used in discussing DAGs, so, for
example, if there is an edge from variable A to variable
B, one describes A as a parent of B or B as a child of A.
Such parental relationships are extrapolated to define
both the set of ancestors of a given variable and the set
of its descendants.

When the relationships between a set of variables (V)
are represented with a DAG, a number of conditional
independence relationships are implied. In general, any
variable is considered conditionally independent of
all non-descendants, given the values of the variable’s
parents. From this interpretation it follows that the
DAG can be used to determine all conditional indepen-
dence relationships between variables in V. In other
words, one may determine whether any two variables
are conditionally independent, given evidence about the
state of any variables in V. Rules for determining such
conditional independence relationships are presented in
Jensen (1996).

The joint probability distribution of the variables in V
may be factored as follows:

This factorization is useful because it eliminates the need
to present the joint distribution of parameters. Instead,
only the conditional distribution of each parameter
given its parents is required.
Table 3. Performance results for the BASCET and independence scheme estimation methods using the
simulation parameters from Tables 1 and 2. The first eight clusters were simulated from one hotspot
and the others were simulated from another.

Cluster

Performance results

True composition Independence scheme estimate BASCET estimate

Adult
pollock

Juvenile
pollock Jellyfish

Adult
pollock

Juvenile
pollock Jellyfish

Adult
pollock

Juvenile
pollock Jellyfish

1 0.036 0.055 0.908 0.204 0.303 0.494 0.149 0.185 0.666
2 0.681 0.009 0.311 0.981 0.001 0.018 0.972 0.002 0.025
3 0.997 0.000 0.002 1.000 0.000 0.000 1.000 0.000 0.000
4 0.033 0.390 0.577 0.096 0.406 0.498 0.084 0.348 0.568
5 0.505 0.013 0.482 0.914 0.004 0.082 0.921 0.008 0.071
6 0.000 0.819 0.181 0.000 1.000 0.000 0.000 1.000 0.000
7 0.875 0.004 0.121 0.974 0.001 0.025 0.919 0.002 0.080
8 0.893 0.004 0.103 0.994 0.000 0.006 0.977 0.000 0.023
9 0.000 1.000 0.000 0.000 0.999 0.000 0.000 0.999 0.000

10 0.906 0.089 0.005 0.984 0.004 0.012 0.968 0.005 0.027
11 0.043 0.941 0.016 0.015 0.907 0.077 0.018 0.928 0.053
12 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000
13 0.067 0.906 0.026 0.343 0.430 0.227 0.338 0.401 0.261
14 0.902 0.093 0.005 0.995 0.000 0.004 0.992 0.001 0.007
15 0.016 0.972 0.012 0.024 0.885 0.091 0.030 0.894 0.075
16 0.321 0.648 0.031 0.783 0.062 0.155 0.746 0.083 0.171
The BASCET DAG

Figure 2 is a graphic representation of the BASCET
model. In this figure, the edges between variables are of
two types: dashed grey arrows and solid black ones. The
dashed grey arrows indicate a deterministic relationship
between variables, whereas the solid black arrows indi-
cate a stochastic relationship. Thus, a broken grey arrow
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Figure 3. In the upper three panels, priors for the mean of each acoustic feature are shown for each of three species classes. Values
used in the simulation exercise are shown as vertical lines for each class. The lower panels show posterior distributions computed
using the BASCET estimation method.
from x to y implies that y is a function of x, and a solid
black arrow indicates that the distribution of y depends
on the state of x. The vertices (or nodes) of the graph are
also of two types: circles and rectangles. The rectangles
indicate constants, and the circles indicate general
random variables. By constants, we mean quantities and
vectors that are not treated as uncertain. Those variables
that appear in a standard set of acoustic data are shaded
grey.

Rectangular plates are used to indicate repeated
structures. For example, the large plate in Figure 2
indicates that each of the I hotspots produced by the
hotspotgen algorithm has an associated composition
vector pi, an associated spatial range RS

i , an associated
temporal range RT

i , and an associated location in
space-time indicated by xi. Each hotspot i is associ-
ated with Ji school clusters and Li hauls (note that
either Ji or Li could be 0, but not simultaneously)
and variables associated with these objects are
arranged on subplates. Naturally, the locations and
sizes of the hotspots placed by hotspotgen determine
the number of clusters and hauls associated with each
hotspot.
The purpose of BASCET is to estimate all cluster
composition vectors cj. Figure 2 indicates that
these compositions are deterministic functions of the
respective hotspot parent composition, of environmental
features (ej) at the cluster location (xj), and of the depth
of the cluster divided by local ocean depth (j).
Parameter vector �b controls the effect of the bth

environmental attribute in vector ej on cluster com-
position, whereas parameter vectors �d and �d control
the effect of j on cluster composition. The distribution
of the ath acoustic feature of cluster j (in vector fj) is
determined from cj, from the number of schools in
the cluster (nj), and from acoustic feature distribution
parameters �a and �a.

The composition of trawl sample l (c1) is determined
with the same parameters used to determine school
cluster compositions (cj). This vector is then adjusted
using the selectivity vector sg that corresponds to the
gear type (g1) used in haul l, giving cTl, the final expected
composition of the trawl sample. The numerical com-
position of the catch is denoted by z1. As indicated in
Figure 2, BASCET treats the total number of individ-
uals caught (Z ) as if it had been determined a priori.
1
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This departure from reality was taken in order to avoid
modelling the size of the trawl catch. Finally, vector m is
used to convert the numerical composition of the catch
into the weight-by-class vector w1 actually observed in
the acoustic data set.

All equations describing the relationships between the
parameters of Figure 2 are presented in Appendix 2.
That Appendix also provides the techniques used to
update individual parameters in MCMC.
The independence scheme

The independence scheme provides a ‘‘control’’ case
against which to compare performance. It is designed
around the principle that no context sensitive anticipa-
tion should be attempted. In other words, the spatial
and temporal proximity of clusters should have no
bearing on composition estimates. In this sense, it is
similar to standard classification tools.

Such is the flexibility of the hotspot model that the
independence scheme is easily incorporated within it.
Saying that no context sensitive anticipation should be
attempted is the same as saying that each cluster should
be located within its own hotspot. As this can be
accomplished easily within the hotspotgen algorithm (by
simply making parameters RS

cluster and RT
cluster very

small; see Appendix 2), the independence scheme can be
viewed as a special case of BASCET. Therefore, the
same estimation algorithm can be used.
For the simulation study presented in this paper, the
arguments to the hotspotgen algorithm in BASCET
were set as follows: RS

trawl=5 km, RT
trawl=3 h,

RS
cluster=5 km and RT

cluster=3 h. For the independence
scheme, trawl-related arguments were kept the same, but
the values used for the cluster-related arguments were
RS

cluster=0.01 km, and RT
cluster=0.01 h.
40
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Figure 4. Prior distributions for the variance of each acoustic feature (solid lines), posterior distributions (broken lines), and true
simulation values (solid vertical lines).
Results

The parameters of the simulation model were drawn
at random from prior distributions elicited from an
acoustic expert (Professor Gordon Swartzman) using
techniques described in the section of Hammond et al.
(2001) entitled ‘‘Configuring BASCET’’. The prior
distributions are shown in Tables 1 and 2 along with
a parameter set drawn randomly from them. A full
explanation of the role of each parameter is given in
Appendix 2. Each set of parameters was used to generate
acoustic data using the simulation model of Hammond
(2000).

The performance of the two estimation approaches
was compared on the data generated from the set
of simulation model parameters in Tables 1 and 2.
Performance was evaluated using an estimation loss
function that measures how close each estimated com-
position vector is to the true value. If, for each school
cluster j, the estimated composition is e , the number of
j
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Figure 5. Prior and posterior results for depth distribution parameters. True values are shown as vertical lines. The parameters
determine the Beta distribution that describes the depth preferences of each class. It is helpful to bear in mind that the mean of a
Beta distribution is �d/(�d+�d).
schools is nj, and the true composition is cj, then the
estimation loss is given by:

wherein the additive log ratio (alr) transformation is
defined in Appendix 2. We used the alr transformation
in measuring loss because the elements of untransformed
composition vectors must sum to 1.

Point estimates of cluster composition were obtained
from each approach using 300 000 iterations of MCMC
(by averaging cluster composition estimates over the
MCMC iterations, see Appendix 1). In this simulation
experiment, BASCET was superior to the independence
scheme at the end of 300 000 iterations (loss=4.65 vs.
6.52).

Table 3 shows the true school cluster compositions
generated by the simulation model next to estimates of
those from BASCET after 300 000 iterations of MCMC.
It also gives the results for the independence scheme.
The rate of successful identification of the dominant
class was 15/16 in both estimation schemes.

Estimates of classification parameters can reveal flaws
in the estimation method. To this end, BASCET esti-
mates of key classification parameters were compared
with simulated values. Figure 3 displays such a compari-
son for the mean (�a) of each acoustic feature. Vertical
lines in this figure show the true values for each class and
acoustic feature. As one would hope, the posterior
distributions are clustered tightly around the true values.
Figure 4 makes a similar comparison for the variances in
acoustic features (�2

a). In Figure 4, the posterior distri-
butions are also clustered tightly around the true values.

Figure 5 compares the prior, posterior, and true
values for depth distribution parameters �d,k and �d,k,
for classes k=1 . . . 3. The posterior distributions for the
three �d,k parameters are sensible, but the alpha par-
ameter associated with jellyfish has a posterior that
seems surprisingly broad. Still, because there were only
two clusters dominated by jellyfish (Table 3), and
because the true value was plausible as a random sample
from this posterior, we saw no reason for concern.

The upper part of Figure 6 shows contours of the

prior distribution for the overall class composition in the
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survey region (pH) using a triangle plot. The true overall
class composition is shown with a cross. The vertices of
the triangle indicate pure compositions, whereas the
point at the centre of the triangle indicates an even
mixture of classes. The posterior estimate for pH from
the BASCET method is shown in the lower part of
Figure 6, using 95%, 75%, 50%, 25%, and 5% credible
regions. The true expected hotspot composition (pH) is
not recovered very accurately, but it is within the 95%
credible region.

The upper part of Figure 7 shows contours of the
prior distribution for �temp, the composition vector that
describes the effect of temperature on cluster com-
position. The value used in the simulation experiment is
shown with a cross. In the lower part of Figure 7, the
posterior distribution for �temp from the BASCET
model is described with 95%, 75%, 50%, 25%, and 5%
credible regions. It is encouraging to see the posterior
shifting over onto the true value.
Adult pollock

Prior for expected hotspot composition

Juvenile pollock Jellyfish

Adult pollock

Posterior for expected hotspot composition

Juvenile pollock Jellyfish

Figure 6. Contour lines of the prior distribution for expected
hotspot composition. The true value is shown with a cross. The
vertices of the triangle are pure compositions, and points near
the centre are even mixtures of the classes. In the lower triangle
plot, the posterior distribution is indicated by 95%, 75%, 50%,
25%, and 5% credible regions.
Figure 7. Contour lines of the prior distribution for the
composition that represents the effect of a temperature increase
of one degree. The true value is shown with a cross. The vertices
of the triangle are pure compositions, and points near the centre
are even mixtures of the classes. In the lower triangle plot, the
posterior distribution is indicated by 95%, 75%, 50%, 25%, and
5% credible regions.
Discussion

The performance results above are consistent with our
claims about the value of context-sensitive anticipation.
As predicted, trying to anticipate the composition of
school clusters appears to improve estimation results.
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This improvement occurs despite the fact that the
hotspots used in the anticipation process are not
observed at all. It must be said, however, that the study
was performed with just a single set of simulation
parameters, sampled randomly from prior distribu-
tions. It is conceivable, therefore, that the improved
performance is particular to the simulation parameters
used. Moreover, the similarities between the simulation
model and the estimation tool (e.g. both use hotspots)
might possibly have made context-sensitive anticipation
perform better than it would on real data, even though
the hotspots used in simulation were not available to
BASCET. These limitations are, of course, common to
many a simulation study.

BASCET is general enough to improve with develop-
ments in acoustic technology. As technology advances,
new features will be discovered that will help discrimi-
nate between the classes (Scalabrin et al., 1996). For
example, recent developments in wide-band technology
promise improved discrimination (Zakharia et al., 1996).
The estimation tools easily allow for the addition of new
acoustic features. The incorporation of additional
environmental variables is also straightforward.

Another valuable feature of the BASCET approach is
its transferability. If the estimation tool has been applied
to an area, and a new acoustic survey is carried out
nearby, then the prior distributions allow the user to
incorporate some or all of the old results in the new
survey. Old parameter estimates can be incorporated to
the degree that they are deemed relevant. In a general
estimation approach this feature is essential, and using a
Bayesian approach is probably the simplest way to
achieve it.

Despite encouraging performance results, several
problems with BASCET are apparent. It is not very
satisfying that the algorithm asks the user to specify
hotspotgen arguments and selectivity parameters. It
would be better if such selection was guided by the data.
These problems will have to be addressed in future
research. There were also some indications of bias in the
recovery of secondary model parameters, especially the
average hotspot composition (although the true values
were not outside 95% credible regions). The focus of
this paper is firmly fixed, however, on making good
cluster-composition estimates. By this standard, the
results are certainly encouraging. On simulated data, the
central prediction about the value of context-sensitive
anticipation appears to be vindicated.
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Appendix 1: Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methodology is
useful for drawing inference about a statistical distribu-
tion (F) whose density (f) can be identified up to a
constant of proportionality. As this scenario arises con-
stantly in Bayesian estimation problems, MCMC has
seen its greatest use in that field. However, the technique
is not necessarily limited to Bayesian problems. For a
given distribution F, MCMC is able to accomplish two
valuable tasks: it can draw a sample from it, or it can
compute the mean and variance. Therefore, in Bayesian
applications, MCMC is used either to draw a sample
from the posterior or to compute point estimates and
variances for parameters of interest. Both results are
approximations, as one would expect. A particular
strength of MCMC is its ability to handle problems with
missing data or latent variables (Tanner, 1996). As the
hotspots introduced in this paper are latent variables,
MCMC should be suitable for the BASCET model.

Within the MCMC field, there are a number of
algorithms from which to choose. Three of these are the
Gibbs sampler (Tanner, 1996, p. 137), the Metropolis
algorithm (Metropolis et al., 1953; Tanner, 1996, p. 174)
and the Hastings algorithm (Hastings, 1970). The Gibbs
sampler is a special case of the Metropolis algorithm
(Tanner, 1996, p. 181) and both are special cases of the
Hastings algorithm. All three methods proceed from an
arbitrarily chosen starting vector (x1). All are designed
to create a Markov Chain of parameter vectors (x1, x2,
x3, . . ., xn) that has F as its equilibrium distribution. In
other words, as n tends to infinity, xn converges in
distribution to a random variable x with distribution F,
and furthermore

for any integrable function .
In practice, the chain is used in one of two ways: either

one treats every mth vector beyond a certain index b in
the chain as a sample from F, or one computes

as an estimator for the expected value of F. Index b,
often called the burn-in period, is needed in order to give
the algorithm a chance to ‘‘forget’’ the fact that it started
from an arbitrary initial vector. Parameter m is used to
reduce the dependence between samples in the chain and
to reduce disk storage space.

The Hastings algorithm moves from one parameter
vector xi to the next by proposing moves from a
transition probability function q(xi,x�). Proposals x�
from q are either accepted, in which case xi+1=x�, or
rejected, in which case xi+1=xi. The key is to accept or
reject these moves with probability p given by the
equation

As one would imagine, it is necessary that the proposal
distribution q be such that there always exists a sequence
of moves that will take any vector in the domain of f to
any other vector in that domain.

The Metropolis algorithm is a special case of the
Hastings algorithm in which the proposal distribution q
is symmetric. This has the advantage that the terms
involving q drop out of the acceptance probability. In all
other respects it is like the Hastings algorithm.

The Gibbs sampler is the most efficient of the MCMC

methods because proposals are never rejected. On the
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other hand, it requires analytical computations that will
not always be feasible. In the Gibbs sampler, proposals
are made to each parameter in the vector x individually.
It makes use of the following observation: in many cases
where the posterior distribution �(x�y)=�(x1, x2, . . .,
xp�y) is difficult to compute, the full conditional distri-
butions �(xk�x1, . . ., xk�1, xk+1, . . ., xp, y)=�(xk�x�k,
y) can still be obtained analytically. When this is so,
these conditional distributions can be used to construct a
Markov Chain.

Given the starting point (x1
1, x1

2, . . ., x1
p) at which i=1,

the Gibbs sampler iterates the following loop:

(1) Sample xi+1
1 from �(x1�x

i
2, . . ., xi

p, y)
(2) Sample xi+1

2 from �(x2�x
i+1
1 , xi

3, . . ., xi
p, y) if p>2.

(3) Sample xi+1
3 from �(x3�x

i+1
1 , xi+1

2 , xi
4, . . ., xi

p, y) if
p>3.

(4) Sample xi+1
4 from �(x4�x

i+1
1 , xi+1

2 , xi+1
3 , xi

5, . . ., xi
p,

y) if p>4.
(5) . . .
(6) Sample xi+1

p from �(xp�x
i+1
1 , . . ., xi+1

p�1, y).
(7) Increment i.

When this is done, the vectors x1, x2, x3, . . . form the
required Markov Chain.

It is possible to combine elements from several
algorithms in the same chain. Such algorithms are called
hybrid schemes. For example, if analytical conditional
results (�(xk�x�k, y)) are available for a subset of
parameters, one could update these parameters as pre-
scribed by the Gibbs sampler. Each of the remain-
ing parameters could then be assigned their own
transition probability function (q) and would be
updated according to the Hastings algorithm. The
resulting Markov Chain could then be used for inference
just as before.

MCMC sampling can result in serious errors in par-
ameter estimates. When using MCMC, it is important to
evaluate whether one is using sufficient iterations (n),
and burn-in (b). In a simulation study, like the one in
this paper, poor correspondence between true and esti-
mated parameters indicates that more iterations or
burn-in are required. In a real application, however,
such comparison is impossible, and techniques such as
those described in Appendix 2 to Hammond et al. (2001)
are necessary.
Appendix 2: BASCET

BASCET chooses an initial configuration of hotspots
using an algorithm called hotspotgen. This algorithm
has four arguments: RS

trawl, RT
trawl, RS

cluster, and RT
cluster.

The first two of these arguments define the spatial and
temporal ranges of hotspots created around trawl
samples. The second two define the same characteristics
for hotspots created around school clusters. The algor-
ithm works as follows:
(1) Start with a set � composed of all the trawl samples
and another set � of hotspots. Initially, � might be
empty or might contain some operator-specified
hotspots.

(2) If no trawl samples remain in �, go to line 8.
Otherwise, select a trawl sample (t) at random from
� without replacement.

(3) If the start of t is contained within any hotspot in
�, then go back to line 2.

(4) Create a hotspot h at the start of t with spatial
range RS

trawl and temporal range RT
trawl.

(5) Add h to �.
(6) Merge any hotspots in � that overlap with each

other.
(7) Go back to line 2.
(8) Construct a set � composed of all the school

clusters.
(9) If no clusters remain in �, then STOP. Otherwise,

select a school cluster (c) at random from �
without replacement.

(10) If c is contained within any hotspot in �, then go to
9.

(11) Create a hotspot h at the location of c with spatial
range RS

cluster and temporal range RT
cluster.

(12) Add h to �.
(13) Merge any hotspots in � that overlap with each

other.
(14) Go back to line 9.
Estimation

In the BASCET method, estimation is achieved using
a hybrid MCMC scheme. In this scheme, model
parameters are updated in turn, as in the description of
the Gibbs sampler in Appendix 1. Whenever full condi-
tional posterior results (see Appendix 1) can be com-
puted analytically for a particular parameter, the
parameter is updated as prescribed by the Gibbs
sampler. Whenever such results are not available, the
parameter is assigned a transition probability function q
from which moves were proposed. These moves were
accepted or rejected in accordance with the rules of the
Hastings algorithm.

In the next section, the relationships between par-
ameters of the BASCET model are defined. Certain of
the parameters are assigned prior distributions, and, in
many cases, analytical posterior results are available that
are conditional on the values of all other parameters
(often called full conditional distributions). When such
analytical results are available, they will be presented
along with the parameter description. When such results
are not available, a proposal distribution (also called a
transition probability function) will be presented instead.
Thus, the description of the previous paragraph should
allow the reader to determine how each parameter is
updated in the MCMC scheme.
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Hotspot related parameters

Following a precedent established in Billheimer (1995),
hotspot composition was assigned an Additive Logistic
Normal (ALN) distribution. Aitchison and Shen (1980)
introduced this distribution, and its use in the analysis of
compositional data is chronicled in Aitchison (1986).
Here it is introduced using two vector functions: alr and
ialr. The alr transformation is defined as

and its inverse is given by

The ALN distribution has a density:

where z is a K dimensional composition vector whose
elements add up to 1.

The composition pi of hotspot i was modelled as:

pi�ALN(alr(pH),�H)

In turn, pH was assigned the prior distribution

�(pH)=ALN(�H,�H)

In the graphic model presented in Figure 2, it is apparent
that the full conditional distribution for parameter pH

reduces to a distribution that depends only on �H and
on the hotspot compositions pi for i=1. . .I. It also
follows from the specification above that the full con-
ditional distribution for pH is ALN with mean

��
H=[I��1

H +��1
H ]�1(I��1

H x+��1
H �H)

=(IK�1�1/1�H[1/1�H+�H]�1)
x+1/1�H[1/1�H+�H]�1�H

and variance matrix

��
H=[I��1

H +��1
H ]�1

where I is the number of hotspots, IK�1 is a K�1
dimensional identity matrix, and

This result was adapted from Gelman et al. (1995, p. 79).
In accordance with standard Bayesian practice
(Gelman et al., 1995), a Wishart prior distribution was
specified for ��1

H :

�(��1
H )=Wishart(�,�H),

with expected value ��H and degrees of freedom �.
The Wishart distribution (Gelman et al., 1995), a multi-
variate analog of the Gamma family, has density
proportional to

where W and Q are K�1 dimensional, symmetric,
positive-definite matrices.

For the Wishart to be a proper distribution, the
degrees of freedom � must be at least K�1. The prior
becomes increasingly informative with increasing �, so
the minimum value will often be appropriate. Sugges-
tions for eliciting prior parameter �H from an expert are
given in Hammond et al. (2001).

It is readily seen in Figure 2 that the full conditional
distribution for ��1

H reduces to a distribution that
depends on pH and the hotspot compositions pi for i=1
. . . I. The good thing about choosing a Wishart prior is
that the full conditional distribution of ��1

H is also
Wishart-distributed:

�(��1
H �pH,{pi}

I
i=1�Wishart(�+I,[��1

H +S]�1)

where

Gelfand and Smith (1990) provide an algorithm for
sampling from a Wishart distribution, and this Wishart
posterior result is also given in that paper.

No analytical results are available for the full
conditional distribution of individual hotspot com-
positions pi. Instead, (as part of MCMC inference)
new proposals for these compositions are generated
from an ALN distribution with expected location given
by the current value. These proposals are accepted and
rejected in accordance with the Hastings algorithm
(Appendix 1).
Acoustic parameters

The distribution for acoustic feature mean a for
a cluster with composition c was modelled by the
equation
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Each of the �a,k values was assigned a prior distribution
as follows:

�(�a,k)=N(	a,k,
2
a,k)

The �2
a values were assigned prior distributions from the

inverse Gamma family:

�(�2
a)�IG(�a,�a)

On defining ma,�k=�i�kci�a,i then, under the model,

the distribution of

is Normal, with mean �a.k and variance �2
a/c2

k. By
indexing the school clusters by j=1. . .J, one can refer to
the xa,k value for cluster j by xa,k,j, and to the variance in
this by �2

j,k. Then, one can extract all the information in
the school cluster data about �a,k with two statistics:

and

As can be seen in Figure 2 (using rules specified in
Jensen, 1996), the full conditional distribution for �a,k

depends only on the number of schools in each cluster
({nj}

J
j=1), on the observed values of feature a (i.e.

{fa,j}
J
j=1), on the school cluster compositions ({cj}

J
j=1),

on the other means {�a,m}m�k and on �2
a. It has a

Normal distribution

As noted above, school clusters store data about the
mean of acoustic feature fa for all nj schools that are in
the cluster in fa,j. For each cluster, let us define the
following statistic:

Using this statistic one can compute the full condi-
tional distribution of �2

a (which depends only on the
{�a,k}K

k=1 values and on the cluster compositions {cj}
J
j=1)

to be an inverse Gamma distribution with the following
parameters:
and
Trawl sample parameters

The treatment of trawl data differs considerably from
that in the simulation model of Hammond (2000). In
BASCET, results are conditioned on the actual size of
the catch. In addition, the weight conversion vector (m)
and the gear selectivity composition vectors (sg, for g=1
. . . G) introduced in Figure 2 are assumed to be known
without error. This may not be a reasonable assumption
in some circumstances, but the sensitivity of the answers
to the values chosen can be examined.

Each haul is assigned an expected composition (c) that
depends on the hotspot parent composition, on the
haul depth and on the environmental features at the
haul (start) location. As indicated in the discussion of
Figure 2, the calculation of c from these components is
carried out exactly as if the haul were a school cluster.
Equations for this computation are described in the next
two sections. Once c has been obtained, gear selectivity
can be addressed. In order to do so, c is adjusted using
the gear selectivity vector sg, giving the final expected
catch composition cT:

The trawl data were treated as if the total size of the
catch was fixed before the haul was even carried out. The
total catch vector (w1) is divided element-wise by the
weight conversion vector m, giving a new vector z1. The
distribution of a trawl sample catch is then taken to be
multinomial:

z1�Multinomial (Z1,cT,l)

for
Depth preferences

The proportions of ocean depth at which each of the K
species classes prefer to swim are assigned distributions
from the Beta family. For example, the proportion of
ocean depth preferred by species k (k), is taken to have
a distribution given by

k�Beta(�d,k,�d,k)
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The following prior distributions were assigned to �d,k

and �d,k:

�(�d,k)=LogNormal(	d,k,
2
d,k)

and

�(�d,k)=LogNormal(�d,k,�2
d,k)

where the distribution of LogNormal variable X is
defined by the mean and variance of log(X).

All school clusters have a  value defined as the cluster
depth divided by the local ocean depth. A school cluster
located within a hotspot with composition vector p is
taken to have its distribution formed by a p mixture of
the Beta distributions above. In other words, the value
for a school cluster was taken to have density given by
the following:

The composition (c) of a school cluster is taken to be
a function of three variables: the local hotspot com-
position p, the cluster’s  value, and the environmental
variables at the cluster’s location. First let us consider
the effects of depth alone. Given that a cluster is located
at depth  times the local ocean depth, and that it is
within a hotspot of composition p, one can predict a
composition for this cluster by using the depth prefer-
ences of the species classes. This is done by computing a
depth-adjusted cluster composition cd as follows:
where

New values for the parameters affecting the depth
preferences of each species class (i.e. �d,k and �d,k, for
k=1 . . . K) were proposed by multiplying the old values
by values generated from a LogNormal distribution
with a mode of 1. These moves are accepted and rejected
in accordance with the rules of the Hastings algorithm.
Environmental features

The vectors of environmental features (denoted by e)
associated with school clusters are not considered
random: they are entirely determined by the cluster
location. Their effects on cluster composition is
modelled using composition effect vectors �b as follows:

The composition effect vectors are assigned prior
distributions from the ALN family as follows:

�(�b)=ALN(0K�1,qN)

where 0K�1 is a zero vector of length K�1. New values
(��

b) for these compositions are proposed from an ALN
distribution centred at the current value as follows:

p(��
b��b)=ALN(alr(�b),sN)
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