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This paper applies BASCET, a Bayesian Spatial Composition Estimation Tool for
clusters of acoustically identified schools, to Bering Sea acoustic survey data collected
during 1994. As the method employs prior information from an acoustic expert,
procedures for eliciting such information are suggested and pitfalls of the process are
indicated. Techniques for model checking using the posterior predictive distribution
are employed, as is a multi-chain method for evaluating the convergence of the
Markov-Chain Monte Carlo algorithm used in BASCET. Unlike methods based on
neural networks, BASCET is able to provide confidence regions for its estimates of
school cluster composition. In addition, it can indicate which school cluster attributes
were most influential in determining a given estimate, a useful tool for model checking
that is here demonstrated on a randomly selected cluster. Estimated abundance ratios
of juvenile to adult pollock (Theragra chalcogramma) were compared, in two regions,
to the values used by expert technicians. Ratios differed from expert values by less than
0.03 in both regions. The encouraging results reported here suggest that the BASCET
method, originally tested on simulated data, may be usefully applied to real surveys.
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Introduction

Species and size-class identification is an essential part of
the analysis of acoustic survey data, with important
impacts whenever acoustic surveys are used in stock
assessment. The task is commonly done by eye, where-
upon it is subject to inconsistency. Methods for auto-
matically classifying fish schools are also available and
are discussed in a companion paper (Hammond and
Swartzman, 2001). The companion paper also describes
BASCET, an algorithm unique in placing classification
within a Bayesian framework, in focusing attention on
training set construction, and in incorporating spatial
structure into the estimation process.

The main objective of this paper is to evaluate the
performance of BASCET by comparing the results it
produces using data from the 1994 Bering Sea acoustic
survey to corresponding values computed by expert
technicians. This paper also serves as a blueprint for
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the implementation of BASCET on a real acoustic
survey. While this Bayesian algorithm is fully specified
by the equations in Hammond and Swartzman (2001),
the user is still faced with the task of selecting prior
distributions for a complex set of model parameters.
Ideally, the posterior distributions from one year’s
survey should be used as priors for the next. Alterna-
tively, one might use posterior distributions from a
nearby survey to form the basis of the priors in the
survey of interest. Of course, these suggestions are of
little help where BASCET has never been applied. For
such cases, priors should be elicited from acoustic
experts. An example of how this can be done, and
recommendations on how it might be done better, are
provided here.

In any application of BASCET one should verify its
assumptions and examine their impacts on estimation
results. In this paper, test quantities from the posterior
predictive distribution are simulated in order to check
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Figure 1. The 1994 Bering Sea acoustic survey track, shown as a broken line, selected transects as a solid line, and the distribution
of biomass as estimated by the Bergen echo-integrator as a background. AFSC scientists believe these estimates represent adult and

juvenile pollock.

model assumptions. BASCET can also give a measure of
justification for its answers, a feature that can indicate
problems (or provide reassurance) when these expla-
nations are compared to those provided by human
experts. Such explanations typically indicate which
school cluster attributes most influenced a given com-
position estimate. They can also highlight attributes that
suggest that the cluster may be composed of something
else entirely. Finally, sensitivity to certain prior assump-
tions is investigated in order to examine the impact these
assumptions have on estimation results.

Methods

This paper describes the analysis of acoustic survey data
from the Bering Sea collected in summer 1994 on the
ship “Miller Freeman™ by the acoustic survey team
of the Alaska Fisheries Science Center (AFSC). The
acoustic images were created using a 38 kHz SIMRAD
EK-500 split-beam transducer, and were recorded in
Bergen Echo Integrator (BEI; Knudsen, 1990) format.
Bottom depth was recorded continuously as part of the
acoustic data, and temperature bathytherms (XBT/
CTD) and trawl data were obtained as part of the
survey.

The process of analysing a set of acoustic data with
BASCET has 13 steps. These are:

(1) Decide which species or size classes are to be
discriminated.
(2) Decide which acoustic school attributes to use in
discrimination.
(3) Decide which environmental features to use.
(4) Extract schools and their attributes from back-
scatter images using image-processing techniques.
(5) Merge schools into school clusters.
(6) Obtain trawl catch by species class.
(7) Identify hotspots with  “Hotspotgen”
manually).
(8) Elicit priors for BASCET parameters.
(9) Determine proposal distributions for MCMC
parameters (see Appendix 1).
(10) Run the BASCET estimation procedure.
(11) Investigate convergence of the MCMC algorithm
(see Appendix 2).
(12) Test modelling assumptions using the posterior
predictive distribution.
(13) Compare BASCET “reasoning” to that of an
acoustic expert for selected school clusters.

(or

The following paragraphs are intended to clarify and
elaborate on these steps. Appendix 3 may be useful in
understanding BASCET jargon.

Figure 1 shows the path of the acoustic survey vessel.
The parts of the path on which analysis was conducted
are shown as a solid line and the rest of the path as a
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Figure 2. Location of trawl samples taken in the selected survey region and the composition of their catch. After examining these
hauls and the acoustic images, AFSC scientists divided the survey region into two along the dashed line shown. On the right side
of the line they decided that juvenile-to-adult pollock ratios were 0.01, and, on the left, the ratio was 0.07.

dashed line. Figure 1 also shows an image representing
the distribution of BEI-estimated biomass over the
selected area. AFSC scientists indicated that these
estimates represent the biomass of adult and juvenile
pollock, Theragra chalcogramma (T. Honkalehto,
Alaska Fisheries Science Center, pers. comm.). In order
to partition their biomass estimates between these two
classes, scientists scrutinized backscatter images in the
area, and examined the haul results.

Figure 2 shows the composition of the catch from
hauls carried out in the survey region using a star plot.
The shape of each plot symbol indicates the dominant
class by weight in the catch, as indicated by the haul
legend. On the basis of the haul and image information,
the survey team decided to divide the region into two
subareas along the dashed line shown in Figure 2. To
the right of the line, they decided that there was one
juvenile pollock for every 100 adults (>30 cm long), and,
to the left, that there were seven juveniles for every 100
adults (T. Honkalehto, pers. comm.). Juvenile-to-adult
biomass ratios are also shown on the Figure.

The BEI data were converted into a table of school
parameters and environmental factors through mor-
phological and other image-resolving techniques
(Swartzman et al., 1994). In order to simplify analysis,
schools were merged into school clusters, as recom-
mended in Hammond and Swartzman (2001). Following
Swartzman (1997), the horizontal range threshold used

for this operation was 500 m and the vertical range was
300 m.

The objective of BASCET is to identify the com-
position of school clusters. In this application, the
algorithm was allowed to say that clusters were com-
posed of adult pollock, juvenile pollock or jellyfish,
categories suggested by AFSC scientists. In order to use
the BASCET algorithm, prior distributions had to be
obtained for the estimation model parameters, and the
next section of this paper addresses general concerns
about eliciting priors from an expert. Thereafter, tech-
niques are suggested that may help elicit priors for
BASCET. Proposal distributions were specified for use
by the Markov Chain Monte Carlo (MCMC) algorithm
that underlies BASCET. Recommendations for doing
this are presented in Appendix 1. Finally, the number of
iterations of MCMC was selected using the technique
described in Appendix 2.

In order to compare BASCET results to the ratios
used by AFSC, weighted averages of the school cluster
composition estimates in each of the two regions defined
by AFSC scientists (Figure 2) were computed. Each
cluster composition estimate was weighted by the
number of schools in the cluster. These average com-
positions were called ¢, and ¢, for the eastern and
western regions respectively. The juvenile-to-adult
pollock ratios in ¢, and ¢, were compared to the
corresponding ratios used by AFSC (Figure 2).
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Prior elicitation

The prior distribution for a parameter summarizes the
information about it from all sources other than the data
set itself. There are several pitfalls to watch for when
eliciting priors from an expert. Above all, the expert
must be interpreting each parameter correctly. For
example, consider the problem of asking an angler what
the probability is that he will catch a big fish during his
holiday. In giving his answer, it is important to know
whether or not he is assuming his planned fishing trip
actually goes ahead. By raising such complications as
these, one can assist an expert to express his or her
uncertainty about parameters of interest properly.

Prior distributions elicited from an expert are not
guaranteed to be consistent with each other (Punt and
Hilborn, 1997). For example, suppose one is asking an
angler for two pieces of information: the volume of the
average fish he caught and how many of his fish would
fit into a specified cooler. The two answers are negatively
correlated; one may be subject to a little bias. Therefore,
if the angler provides (or is led to provide) independent
prior distributions for the two parameters, in some sense
the priors will be inconsistent with each other. After all,
the total volume of the fish in a cooler cannot exceed the
volume of water the cooler can contain.

Eliciting priors for correlated parameters is a difficult
task, but there is a technique that some experts find
particularly helpful. The trick is to ask the expert to
provide a sample from the joint prior distribution. This
sample is then used to estimate the parameters of the
prior (by maximum likelihood). The sampling approach
is also helpful when parameters of the prior distribution
do not have obvious physical interpretation.

Configuring BASCET

In this section, important parameters of BASCET are
examined one at a time. The parameters are of two
types: those for which prior information is required and
those for which the user must specify a value (i.e. they
are assumed known without error). In order to assist
with prior specification, techniques for extracting beliefs
about parameters from experts of acoustics are
suggested. Then, to assist with setting user-specified
parameters, interpretations are provided for them and
trade-offs are examined.

The classes

The BASCET algorithm of Hammond and Swartzman
(2001) was used to estimate the proportion of adult
pollock, juvenile pollock and jellyfish in every school
cluster. If any other types of fish appeared in acoustic
backscatter images they were forced to fit into these
three categories. By the same token, when other fish
appeared in the trawl samples, as they occasionally did
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(<3% of total catch biomass for hauls shown in Figure
2), the catch composition was computed as if they were
not present. Each of the candidate groups was called a
class, and the classes were indexed by k=1 . .. K. In this
example, K was equal to 3. Note that, in this paper, the
word “composition” means a vector of length K, whose
entries add up to 1.

Hotspots and their composition

The BASCET algorithm can take advantage of the fact
that acoustic survey data exhibit spatial and temporal
structure. It handles such structure using regions of
space-time called hotspots. These hotspots are taken to
have a circular shape and finite duration; they are not
allowed to overlap in both space and time (when
hotspots do overlap in both space and time they are
merged). The basic idea is that school clusters located
within the same hotspot should have similar com-
position. The more hotspots there are in the survey
region, the more diversity there can be in local species
composition.

In BASCET, hotspots also provide the mechanism by
which the catch from trawl samples is related to the
composition of school clusters. In the algorithm, the
catch from a particular haul provides information about
the composition of any school clusters in the same
hotspot. Thus, in the language of classification literature
(James, 1985), the hotspots determine the training set
with which the algorithm learns to estimate school
cluster composition. Given the separation between
trawls and corresponding acoustic images, spatial and
temporal assumptions must be made when constructing
an acoustic training set.

BASCET uses the hotspotgen algorithm (Hammond
and Swartzman, 2001) to place hotspots in the survey
region. The size of hotspots placed around both hauls
and clusters can be tuned using hotspotgen arguments
Rlcer Riusters Riawn and RS and sensitivity to
these values should be investigated. The more hotspots
used, the less need there is to rely on spatial structure in
the acoustic data, but the longer the algorithm will take
to converge, i.e. the more iterations of MCMC will be
required (see Appendix 2). This is because MCMC
should take longer to converge when more parameters
are being estimated. In order to ensure MCMC con-
vergence (by using a small number of hotspots), the
following values were chosen for the Bering Sea
data: RY  .,=8h, RS, e =15km, RS ,=25km and
Ry,=10h.

In BASCET, every hotspot has a composition that
represents the expected composition of school clusters
contained within it (prior to observing cluster
attributes). The composition p; of hotspot i is assumed
to be distributed as follows:

P~ ALN(alr(pyy), Xy
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where the alr transformation is defined by:

alr(z)= |:log<ﬁ>,-~-,log <é>,~~~,log<zK ! >:|
Zg Zg Zg

and the Additive Logistic Normal (ALN) distribution is
as defined in Hammond and Swartzman (2001).

The expected hotspot composition (p;) was assigned
the prior distribution:

T(pr) = ALN(py, @yy)

BASCET requires the ALN distribution solely for the
sake of computational convenience. As py is @ compos-
ition vector, obtaining a prior distribution for it from an
expert is challenging. It can be helpful to ask the expert
to create a sample of size 10-20 from the prior distri-
bution. In this case, the expert was asked to identify 10
plausible values for the expected composition. These
were centred around 54% adult pollock, 10% juvenile
pollock, and 36% jellyfish, and p;; and ®,; were esti-
mated from this sample. The results were:

[ 03918
M=l 2966
[0.9896 0.8987
108987 1.0768

The same sampling technique was used to determine the
prior for ¥;;, which controls the variability in hotspot
composition. The expert was asked to imagine that the
true py was equal to the expected value of the samples
given in the previous step. Then he was asked to provide
a second sample of ten hotspot compositions to repre-
sent how variable the individual hotspot compositions
were about their global mean. A degrees-of-freedom
value is also required. The prior distribution used in all
computations was:

n(Zg )= Wishart (15, Q)

[ 0.1187 —0.0647]
QH =
—0.0647 0.0724

The Wishart distribution is described in Gelman et al.
(1995).

Acoustic attributes

Acoustic attributes of school clusters help the algorithm
to discriminate between classes. Three acoustic
attributes were used: mean within-school volume back-
scatter cross-section (S,), range of within-school S, and
school area. These features were placed into vectors
denoted by f and indexed by a=1 ... 3. Thus, f; would
refer to a measurement of mean within-school S, and f;
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would refer to a measurement of school area. The
BASCET estimation model assumes that the distri-
bution for acoustic feature f,, for a cluster of compos-
ition ¢, is Normal with mean Tf_ ¢,  and variance o>
(K being the number of classes, 3 in this application).
The assumption of normality should pose little problem
when there are many schools in each cluster.

The interpretation of the nine p,, values is best
explained using examples: i, 5 refers to the mean within-
school S, for jellyfish, whereas p; ; would be the mean
school area of adult pollock. Each of these values was
assigned a prior distribution as follows:

Tc(ua,k) = N(ea,ksri,k)'

The three o2 values affect the importance of their
respective acoustic attributes in discriminating between
classes: larger values assign less weight to an attribute.
The o2 values were assigned prior distributions from the
inverse Gamma family (Gelman et al., 1995):

(o) ~1G(a,.B,)

When setting prior parameters as described below,
it is useful to know that m(c?) is parameterized to
have mean ((o,—1)B,)~ ' and variance ((o,— 1)
(0, —2)B) "

The prior parameters 0,,,7a .0, and B, must be
specified, but there is no need to ask for them directly.
The best way to obtain these may be to consult with a
school-identification expert. First, select a number of
backscatter images at random from a previous survey
year or a nearby region. Have the expert identify the
composition of the schools in these images and treat the
identifications as being absolutely correct. Then one
could use the acoustic attributes of the identified schools
to estimate the required parameters.

The prior parameters used in this paper are listed
below:

[—43 —45 —55
[0..]=| 25 30 15
[ 1500 2500 1000
5 5 25
[t.]=| 05 10 04
1300 350 100

In the matrices above, the rows indicate the acoustic
parameters (average S, in dB, S, range in dB, and school
area in m?) while the columns indicate the classes (adult
pollock, juvenile pollock, and jellyfish).

The parameters of an inverse gamma distribution
should not be elicited directly. It is preferable to ask for
the mean and SD and then derive the a, and B, from
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these. An expert might draw histograms of credible 2
values from which the mean and SD can be determined
approximately. Once the mean and SD are obtained, the
two equations provided above for the mean and vari-
ance of an inverse gamma distribution determine o, and
B, uniquely. The numbers used in this paper are as
follows:

[10.000
2977
L 8.250
0.006
0.202
| 5.517x 10797

Lo, ]=

[B.I=

As before, the rows indicate the acoustic parameter.

Trawl sample parameters

The treatment of trawl data in BASCET incorporates a
weight-to-numbers conversion vector (m) of length K.
The entries of m represent the average weights of
individual fish of each class. Given that the objective is
identifying the species composition of clusters, the rela-
tive size of entries in m is more important that the
absolute size. The values used in estimation were:

100
m=| 50
70

The BASCET algorithm does not admit any
uncertainty in m, so results are conditional on the values
chosen. Whenever catch data are available as numbers
of fish by class (as opposed to weight by class), the use of
m can be dispensed with altogether.

BASCET uses selectivity vectors to account for the
fact that the species that appear in backscatter images
are likely to be different from those caught in trawls.
There is one such vector for every type of gear in use
(gears are indexed by g=1 ... G). These selectivity
vectors represent the relative vulnerability of the fish
observed in backscatter images to the trawl gears. They
are vectors of length K whose entries sum up to 1. It
must be stressed here that selectivity is relative to what
appears in the acoustic images and not to what is in the
water. The distinction is important because the acoustic
equipment is itself highly selective.

Jellyfish are considerably more likely to appear in the
trawl samples than in morphologically identified schools
because they have low target strength at 38 kHz. With
this tendency in mind, the gear selectivity vectors (s,, for
g=1 to G) were set to the value:

T. R. Hammond et al.

0.03
0.02
0.95

ng

Results should be interpreted as being con-
ditional on the selectivity vectors chosen (by expert
consultation).

Environmental features

Two environmental features were used for school cluster
identification purposes: ocean depth and temperature at
the cluster location. A prior for the composition vector
Eemp that represents the change in composition one
would expect with a one-degree increase in the local
temperature was required. This vector works as follows:
suppose a school cluster has composition ¢, at tempera-
ture t,, and suppose that the temperature changes to t,,
then the new expected composition ¢, would be derived
as follows:

alr(e;)=alr(e,) +(t, — t)alr(Giemp)

A prior distribution was assigned to &, from the
ALN family for the sake of computational convenience.
As &omp 1S @ composition vector, extracting a prior for it
requires techniques similar to those used to determine
mean hotspot composition priors.

To obtain a prior for &, the expert might be told
the average temperature for schools in the survey region.
Then one might ask the expert to imagine a volume of
water at that mean temperature that happens to contain
some fish. Next one would ask the expert to assume that
the composition of classes in the volume is known to be
¢. The expert would then be asked to imagine how this
composition would change in water 1° warmer. Finally,
he could be asked to provide a sample of plausible
values for the new composition, from which a prior for
Etemp can readily be determined.

The prior for §,.,,, used in this paper is as follows:

T[( E.)Iemp) = ALN(alr(@temp),‘Ptemp)

0.187
Bemp=| 0.407

0.406
me:[o.244 0.108}

0.108 0.150

The other environmental feature was ocean depth.
As this was thought a priori to have little or no effect on
expected cluster composition, the following prior was
chosen:
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Figure 3. Location and composition of school clusters, as estimated by the BASCET estimation algorithm. When adult and
juvenile pollock proportions were averaged over the regions separated by the broken line, the eastern area had 1.8 juveniles for
every 100 adults and the western area had 4.3 juveniles per 100 adults.

T(Edepmn) = ALN(alr(@gepm ), Paepen)
v,
Dgepih = 7
v,
_ [0.0002 0.0001
depth [0.0001 0.0002]

Depth preference parameters

In BASCET, depth distributions of the various classes
are expressed as Beta distributions delimited by the local
ocean depth. As the parameters of a Beta distribution
are somewhat abstract, it may be best to obtain priors
for them using the sampling approach. First, one would
ask the expert at what percentage of local ocean depth
each class of fish prefers to swim. Uncertainty in these
preferences could be indicated using a sample of depth
preferences for each species class. In this case, it was
suggested that juvenile pollock prefer to swim at around
20% of the local ocean depth, jellyfish at about 25%, and
adult pollock at about 90%. These preferences were
considered accurate to within =+ 15%.

Information about the variability in depth distri-
bution is also needed. To obtain this, the expert might be
asked to assume that the expected preferences specified
above were correct. Using the assumed preferences,
the expert might then provide a sample showing the

variability in school depth distribution about the pre-
ferred levels. In the Bering Sea, the expert felt that adult
pollock were more widely distributed about their pre-
ferred depths than the other classes. For the adults, the
variance in school depth divided by ocean depth was
thought to be about 0.1 + 0.05, whereas the other classes
were assigned a variance of about 0.05 £ 0.03.

Parameters of the Beta distribution can then be recon-
structed from the samples provided. To do this for a
particular class, one can use each mean and variance
sample value to compute a corresponding set of Beta
distribution parameters. For example, if the mean
sample is p4, and the variance sample o5 for class k,
then the Beta distribution parameters a4, and B4, can
be determined from the following equations:

Hax= g,k
k= 5
g,k + Ba.x
and
5 g 1Ba.x
G4k

B (ota + Bd,k)z(ad,k+ Baxt1)

The mean and variance samples thus determine a
sample of oy, and By, values that may, in turn, be used
to construct the priors.

The depth distribution priors used in this paper (1 is
adult pollock, 2 juvenile pollock, 3 jellyfish) were:
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Table 1. Effects of different user-specified parameter values on estimation results in the eastern and western regions of the survey
area (defined in Figure 3). The values in ¢, and ¢, represent the average composition in the eastern and western regions respectively
and r; and r, the juvenile-to-adult pollock ratios in ¢, and ¢, respectively. The compositions are indexed in the class order adult

pollock, juvenile pollock, jellyfish.

Scenario User-specified parameter values c, [ T, I,
Base case As defined in paper 0.880 ] 70.786 ] 0.018 0.043
(hotspots as in Figure 4)
0.016 0.034
L 0.104  0.180
Six hotspots As defined in paper, but change random seeds 0917 [0.818 ] 0.027 0.060
for hotspotgen algorithm
0.025 0.049
L 0.058 1 0.132 |
13 hotspots RS ster =10 km 709197 70.822 7] 0.018 0.046
Reuser =0 h 0.017 0.038
RS,.1=20 km ’ '
Ri.w=12h 1 0.064 | [ 0.140 ]
Gear selectivity modification 0.06 [0.8537] 70.751 ] 0.016 0.041
s,=| 0.03 0.014 0.031
L 0.91 L 0.133 | L 0.218 |
Gear selectivity modification 0.1 [0.8237] [0.721 ] 0.012 0.032
s,=| 0.1 0.010 0.023
L 0.8 L 0.167 L 0.256
Gear selectivity modification 0.02 [0.891 ] 70.805 ] 0.015 0.036
s,=| 0.03 0.013 0.029
L 0.95 L 0.096 | L 0.166
Weight-to-numbers conversion 90 [0.8117] 0.706 ] 0.020 0.044
vector modification
m=| 30 0.016 0.031
L 60 L 0.173 | L 0.263 |

n(ag ;)=LogNormal(0.45, 0.28)
n(0y ,)=LogNormal( — 1.03, 0.64)
n(0y 3)=LogNormal( — 0.25, 0.62)
n(Bq.,)=LogNormal( — 1.03, 0.59)
n(B4.)=LogNormal(0.70, 0.33)
n(B4.3)=LogNormal(0.98, 0.36)

The first and second parameters in the specification of
each LogNormal distribution are the mean and SD of
the log transformed random variable. In contrast to
other prior models in BASCET, the LogNormal form is
not required in this instance (because the depth par-

ameters were not Gibbs sampled; see Appendix 1 of
Hammond and Swartzman, 2001).

Methods for model checking

Four different types of model checking are employed in
this paper: sensitivity analysis for selected prior distri-
butions and user-specified parameters, comparison of
prior and posterior results, simulation of test quantities
from the posterior predictive distribution, and justi-
fication of composition estimates for selected clusters.
Of these methods, the last two require additional
explanation.

Testing with the posterior predictive distribution

The posterior predictive distribution is the distribution
one would use to predict new data y™P after observing
the real data y. For parameter vector 0, the posterior
predictive distribution is given by the equation:

p(y"Py)=[p(y""10)p(0]y)d0
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Table 2. Effects of different prior distributions on estimation results in the eastern and western regions of the survey area (defined
in Figure 3). The values in ¢, and ¢, represent the average composition in the eastern and western regions respectively and r, and
r, the juvenile-to-adult pollock ratios in ¢, and ¢, respectively. The compositions are indexed in the class order adult pollock,
juvenile pollock, jellyfish.

User-specified

Scenario parameter values c c, I, I,
Increase prior uncertainty about &, v 0.244 0.108 [0.884 ] [0.793 ] 0.018 0.042
eme 10,108 0.150 0.015 0.033
[ 0.100 | L 0.173 |
Increase prior uncertainty about depth n(0y,)=LogNormal(0.45, 0.42) 70.890 ] 0.805 ] 0.016 0.035
distribution parameters oy, and By n(0y,)=LogNormal( — 1.03, 0.96)
fork=1...K (¢t 3)=LogNormal( — 0.25, 0.92) 0.014 0.028
n(Bg,1)=LogNormal( — 1.03, 0.89) | 0.096 | | 0.166 |

n(Bg42)=LogNormal(0.70, 0.50)
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Figure 4. Hotspot locations used in the analysis, indicated by circles. The haul start locations are indicated by diamonds and school
cluster locations by black dots.
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Figure 5. Prior and posterior distributions for acoustic feature means.

Following Gelman et al. (1995), the discrepancy between
the model and data is measured using test quantities
T(y,0), which are scalar summaries of parameters and
data. Test quantities play the same role as test statistics
do in frequentist hypothesis testing. The basic idea is to
compute the Bayes p-value for a particular test quantity,
as follows:

Bayes p-value=Pr(T(y"",0) >T(y,0)|y)

where the probability is taken over the joint posterior
distribution of 6 and y™P. If the Bayes p-value is close to
either 0 or 1, it suggests model failure. As in frequentist
statistics, how close the Bayes p-value must be to these
extremes before one concludes there is ‘‘significant”
model failure is arbitrary. Here, values within 2.5% of
the extremes were interpreted as cause for concern.

In practice, one draws samples from the posterior
predictive distribution using simulation, as integration is
often intractable. Given S samples (8" ... 0%) from the
posterior distribution, one draws one value of y™P from
p(y|0°) for each sample 0°, and then computes T(y,0°%)
and T(y™P,0°). The Bayes p-value may then be estimated

by computing the proportion of times in S samples that
T(y"™",8°) > T(y.0°).

The models for the acoustic data were evaluated using
test quantities. One test quantity was used for each
acoustic feature. In order to define the test quantity for
the acoustic data model, some notation will be intro-
duced. For a particular set of model parameters, let
the composition of school cluster j be ¢;. Under the
BASCET model, the distribution of acoustic feature f,
in the cluster is supposed to be Normal with mean
T [Cuta and variance .

Upon simulating a value fi°P from this distribution,
one can compute the following statistics for the cluster:

K 2 K 2
<f;ep_ Z CkHa,k) <fa - Z CkHa,k)
dir= & andd, ;=——*~4 72

=1
c? c?

The test quantities for the acoustic features are
found by summing over the school clusters:
TyP=%/_,d? and T,=%{_,d, ;. The Bayes p-value for
each acoustic feature is computed by examining the
proportion of posterior parameter simulations under
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Figure 6. Prior (solid line) and posterior (broken line) distributions for acoustic feature variances.

which TP >T,. If there appears to be model failure, one
should investigate whether the predicted variance in any
particular cluster (assumed to be o2 for all clusters)
actually depends on either the number of schools in the
cluster or the cluster composition. If so, appropriate
changes to the model may be required.

A different test quantity was employed to evaluate
the trawl sample model. Let us assume that, under a
particular set of model parameters, the expected
(numeric) composition of haul 1 is ¢; (Hammond and
Swartzman, 2001), the weight-to-numbers conversion
vector is m (see above), and the observed vector of catch
weights by class is w,. Under BASCET assumptions,
when w, is divided elementwise by m, the resulting
vector z, is supposed to be distributed multinomially:

z, ~Multinomial(Z,c )
for

K
Z,= Z 7., (Hammond and Swartzman, 2001)
k=1

Thus, one can compute Bayes p-values using z;°P vectors
drawn randomly from the Multinomial distribution
above. In the Bering Sea application, interest centres on
the adult-to-juvenile pollock ratio, so the test quantity
was based on the following values:

diP=(log(Z} By i) — 10&(Zi Puvenite))”

1,juvenile

and

d, :(IOg(Zl,adull) - lOg(Zl.juvenile))z

These values were summed over all the hauls giving
TP =2t d*® and T, .=2r-,d,. From these two
test quantities, the Bayes p-value can be computed as
above. If there appears to be model failure, one should
consider altering the user-specified gear selectivity

vectors s, or the weight conversion vector m.

Justification of composition estimates

Perhaps the greatest strength of the BASCET approach
is its ability to “justify” the composition estimates it
makes. Such justification involves an exploration of the
cluster attributes most important in determining the
final result. Methods based on neural networks are not
designed to facilitate such exploration. Central to this
advantage is an ability to provide posterior confidence
regions for all composition estimates, a task that neural
networks cannot achieve. These regions indicate how
certain the algorithm is about each cluster composition
point estimate.

Justification also relies on the fact that BASCET can
indicate posterior credible regions for composition esti-
mates that exclude the information in any particular set
of cluster attributes. For example, the algorithm could
provide a posterior credible region for the composition
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Figure 7. Prior and posterior results for depth distribution parameters. The parameters determine the Beta distribution that
describes the depth preferences of each class. The mean of a Beta distribution is ay/(og+ By).

of a particular school cluster that uses all acoustic
features of the cluster, but none of its environmental
attributes. Therefore, the user can investigate which
particular attribute was most decisive in determining the
final answer. Furthermore, such analysis can determine
which cluster attributes are pointing towards the same
dominant class and which are suggesting that the cluster
may be composed primarily of something else entirely.
The ability to examine the algorithm’s “‘reasoning” in
this manner allows comparison with the way a human
expert reasons. Such comparison can provide a powerful
tool for model checking because it allows one to inves-
tigate whether, when expert and algorithm agree on an
answer, they also agree on the reason for that answer.

Results

Figure 3 shows the locations of all the school clusters
whose composition was estimated using BASCET. The
estimated composition of these clusters is indicated
using a star plot. An image showing the ocean depth in
the area is also given. BASCET predicted that, in the
eastern region, the juvenile-to-adult pollock ratio (by
numbers) was 1.8%, while the ratio in the western region
was 4.3%. AFSC figures were 1% and 7%, respectively.
Table 1 indicates the changes in these predictions under

different choices for user-specified parameters, and
Table 2 shows the same for different priors. Figure 4
shows the locations of all the school clusters and trawl
samples observed over the course of the Bering Sea
acoustic survey. It also shows the location of all hotspots
resulting from the hotspotgen algorithm (Hammond and
Swartzman, 2001).

Bayes p-values for the three acoustic feature test
quantities were 0.90, 0.46, and 0.31 for average S, S,
range, and school area respectively. For the trawl sample
test quantity, the Bayes p-value was 0.59. None of these
results suggests significant model failure.

Figure 5 shows prior and posterior results computed
for the acoustic feature means (u,,). The BASCET
algorithm learned a considerable amount about the
adult pollock parameters from the data, but the
juvenile pollock parameters resemble prior values. This
tendency is explained by the relatively low represen-
tation of juvenile pollock in the composition estimates.
The problem occurs also, but to a lesser extent, for
jellyfish.

The prior and posterior results for acoustic feature
variances (2) are shown in Figure 6. This figure indi-
cates that the posterior distributions for average S, and
school area are in the tails of their respective prior
distributions. In other words, the results suggest that
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Figure 8. Prior and posterior results for expected hotspot
composition.

Juvenile pollock

unwarranted precision was assigned to the prior distri-
butions for these quantities. The impact of widening
these particular prior distributions was therefore
examined in Table 2.

Figure 7 shows the prior and posterior distributions
for cluster depth related parameters (o4, and By, ). For
the most part these appear little changed from the prior
values. The effect of increasing prior uncertainty about
these parameters was examined in Table 2.

The prior and posterior results for expected hotspot
composition (py,) are revealed in Figure 8 using triangle
plots. Triangle plots are used in this paper to display
composition estimates. Each vertex of the triangle
represents a pure composition, whereas the centre indi-
cates an even mixture of classes. The prior is indicated
using contour lines, defined using 95%, 75%, 50%, 25%,
and 5% credible regions. The posterior is shifted slightly
towards the adult pollock, suggesting that these were
more abundant than was thought a priori.

Figure 9 shows the prior and posterior results for the
composition vector that defines the effect of temperature
on cluster composition (§ey,)- While there is little shift
in location between the prior and posterior, the shape
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Figure 9. Temperature effect prior and posterior.

of the posterior distribution is slightly different. The
posterior implies that increases in temperature favour
jellyfish a bit less than was thought a priori.

The process of justifying composition estimates on a
school cluster chosen at random (number 78) is illus-
trated in Figure 10. The first triangle plot suggests the
cluster is composed of a mixture of jellyfish and adult
pollock (as shown by the 50%, 25%, and 5% credible
regions), but it also indicates a good deal of uncertainty.
According to these results, it is unlikely that the cluster
could be composed of more than 40% juvenile pollock.

The next triangle plot in Figure 10 shows the com-
position of the hotspot that contains cluster 78. This
hotspot suggests that jellyfish and adult pollock repre-
sent the dominant classes in the cluster, which the
algorithm suspects upon examining other clusters in the
hotspot. This triangle plot also indicates that the hotspot
prediction is a rather uncertain one, although the possi-
bility that the cluster might be dominated by juveniles is
already ruled out. The next six triangle plots indicate
how the hotspot prediction is refined upon examining
different cluster attributes (one at a time). The average
school area, the cluster depth (44 m) and the average S,
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Figure 10. Illustration of the “justification of cluster composition estimates”. The cluster depth is 43.6 m, the average S, — 51.4 dB,
the S, range 1.03 dB, the area 94.38 m?, the ocean depth 79.7 m, and the temperature is 4.18°C. The “parent composition” refers
to the composition of the hotspot containing this cluster.

all suggest that there are few juvenile pollock. The Discussion

relatively shallow ocean depth (80 m), the S, range and

the low average S, (— 51.4 dB) suggest there may be a BASCET provided results fairly close (2% vs. 1% and
high proportion of jellyfish. 4% vs. 7%) to the values chosen by AFSC scientists,
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when the results were compared at AFSC resolution.
However, BASCET is able to provide far more detail in
its answers, making them more useful than the averages
currently used by AFSC. The application documented
here provides no reason to suspect that the performance
results attributed to the algorithm on simulated data
(Hammond and Swartzman, 2001) might be lost if the
algorithm were applied to other real surveys.

The ability to reproduce results is, of course, an
important component of the scientific method. BASCET
represents a step forward for acoustic survey science
because it enables survey technicians to compute
reproducible results (from given parameters), something
that cannot be expected from current ad hoc methods. It
is doubtful, for example, that acoustic technicians from
another laboratory could reproduce the AFSC juvenile
to adult pollock ratios from the same data. Moreover,
constructing the training set required by most classifi-
cation algorithms from trawl data is not a straight-
forward process (Hammond and Swartzman, 2001).
BASCET is the first algorithm to propose a general
procedure for such construction. Therefore, the higher
standard of clarity about training set construction in
BASCET must be maintained in acoustic survey papers
for them to be widely accepted as appropriate scientific
procedures.

Unlike all other school classification algorithms to
date, BASCET is Bayesian in inspiration and flavour.
This means that it can readily incorporate expertise
developed by acoustic scientists and fishers. It also means
that it must do so. The ability to incorporate human
expertise is valuable because it implies that the algorithm
can function even when trawl data are missing altogether,
a situation that would completely defeat most competing
algorithms. This implies that BASCET has a higher
degree of generality in its possible applications. As long as
the information elicited from human experts is accurate,
BASCET should also perform better than competing
algorithms (as it has more information available, though,
admittedly, no challengers have tested this claim).

BASCET is designed to indicate not only how confi-
dent it is about the estimates it makes, but also to justify
those answers if they are challenged. In other words, the
algorithm is designed to explain its answers, not as a
human expert would, but nonetheless in a manner that
provides insight into the way the algorithm weighs
different sources of information. These capabilities set
BASCET apart from “black box”algorithms based on
neural networks.
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Appendix 1. Determining proposal
distributions for MCMC

The performance of the BASCET algorithm is affected
by a number of user-specified parameters (Hammond
and Swartzman, 2001), some of which determine the
distributions used to propose moves to particular esti-
mation model parameters. In effect, they tune the
MCMC estimation method that underlies the BASCET
approach. A simple rule of thumb is suggested for
determining these proposal distributions.

In MCMC methods, proposals are made to model
parameters from a transition probability function (q),
and these proposals are either accepted or rejected
according to a particular rule. Experience with MCMC
has suggested that it is desirable to tune proposal
distributions so as to achieve acceptance rates between
30% and 80% (Billheimer, 1995). Low acceptance rates
suggest that the proposal distributions are too broad,
whereas high ones suggest that they are too narrow.
Neither extreme case will allow for the efficient traversal
of parameter space that is required to achieve timely
convergence of the algorithm.

This simple rule was applied by running test chains
and examining the acceptance rates for various proposal
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distributions. Proposal distributions were adjusted until
the desired acceptance rates were achieved.

Appendix 2. How many iterations of
MCMC?

It is of interest to determine not only how many
iterations are required by MCMC methods to achieve
satisfactory results, but also how many iterations are
required to “forget” the arbitrary initial value for the
chain. The latter number is often referred to as the
burn-in period. These questions were addressed using a
technique suggested by Gelman ez al. (1995, p. 330). The
idea of the technique is to run several Markov Chains of
a given length, each starting from a different initial
value. The start values are supposed to be overdispersed
relative to the posterior distribution, a requirement that
was met by drawing them randomly from the joint prior
distribution. If the chains have both converged, then box
plots constructed from parameter values in each chain
should be similar. Gelman et al. (1995) suggest a test
statistic called VR (computed using the between- and
within-chain variance), which should be close to 1 if
convergence has occurred. According to the authors,
values below 1.2 are acceptable for most applications.

Two test chains of length 300 000 (after a burn-in of
100 000), each sampled every 10 iterations, were used in
the computation of VR statistics. These statistics were
computed for all of the classification parameters
depicted in Figures 5-9, as well as for a random selec-
tion of cluster composition estimates (clusters 24, 55, 78,
and 159). All values were below 1.1 and thus our test
showed no sign of failed convergence. Both chains were
combined for final inference.

Appendix 3. Glossary of BASCET
jargon

o4 — A parameter vector that affects the depth distri-
bution of schools. The kth element is denoted by o ,; it
determines the depth distribution of the kth species class

B4 — A parameter vector that affects the depth distri-
bution of schools. The kth element is denoted by B ; it
determines the depth distribution of the kth species class

62 — The variance of acoustic feature a

62 — Variance in hotspot log spatial range

67 — Variance in hotspot log temporal range

K, — A vector of length K indicating the mean value of
acoustic feature a for a pure school of each species class.
The kth element is denoted by u, ,; it determines the
mean of acoustic feature a for the kth species class

&, — A composition vector that determines the effect
of environmental attribute b on school cluster compos-
ition. Symbols &, and &yepy, stand for the effects of
temperature and ocean depth respectively

T. R. Hammond et al.

2y — Determines the variability in hotspot compos-
ition

Q; — A parameter of the prior distribution for X

®mp — A parameter of the prior distribution for &,

¥ — A parameter of the prior distribution for

temp
&tcmp
Ogepn — A parameter of the prior distribution for
édeplh'
¥ iepn — A parameter of the prior distribution for
gdepth'

Ay — Hotspot intensity. Determines the expected
number of hotspots in the survey region

1, — Expected hotspot log spatial range

As — School intensity. Determines the expected
number of schools in a hotspot

1, — Expected hotspot log temporal range

A — The number of acoustic attributes of a school
cluster

Backscatter image — An image in which each pixel
represents the S, value in a rectangular curtain of water
beneath the path of the acoustic survey vessel.

¢; — The composition of school cluster j. A vector of
length K whose entries sum to 1

Class — A category of fish defined either by size or by
species. A class may also consist of several species. The
number of classes is K

Cluster — A school cluster

Composition — A vector whose individual entries sum
up to 1

cr; — The composition of trawl sample 1

d,, — A horizontal threshold used in the definition of
school clusters

d, — A vertical threshold used in the definition of
school clusters

Haul — A trawl sample

Hotspot — A region of space and time within which
the composition of size or species classes can be different
from the overall class composition in the acoustic survey
region

Hotspotgen — An algorithm used to generate hotspots
using the observed locations of school clusters and trawl
samples. Takes four arguments: R% ... RS ... RS, .,
and RS,

K — The number of species classes

m — A numbers to weight conversion vector of length K

MCMC - Markov Chain Monte Carlo, a method for
generating a sample from a Bayesian posterior distribu-
tion

Pu — Expected hotspot composition

p; — The composition of hotspot i

Posterior — A distribution that represents uncertainty
about the value of a parameter after observing the
data

Prior — A distribution that represents uncertainty
about the value of a parameter prior to observing the
data. A Bayesian concept
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RS, .er — A parameter used in creating hotspot con-
figurations using the hotspotgen algorithm

RS, . — A parameter used in creating hotspot config-
urations using the hotspotgen algorithm

RY..er — A parameter used in creating hotspot con-
figurations using the hotspotgen algorithm

RY..1 — A parameter used in creating hotspot config-
urations using the hotspotgen algorithm

School cluster — A collection of schools that are near
each other
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School — A data record consisting of a location, a
depth, a time, and a collection of acoustic and environ-
mental attributes that have been extracted from an
acoustic backscatter image

s, — A composition vector representing the relative
vulnerability of classes to gear g

S, — Volume reverberation

B — The number of environmental attributes of a
school cluster
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