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The use of adaptive cluster sampling for hydroacoustic surveys
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Resource managers are often required to estimate the size of a wildlife population
based on sampling surveys. This problem is especially critical in fisheries, where
stock-size estimation forms the basis for key policy decisions. This study looks at
design-based methods for a hydroacoustic fisheries survey, with the goal of improving
estimation when the target stock has a patchy spatial distribution. In particular, we
examine the efficiency and feasibility of a relatively new design-based method known
as adaptive cluster sampling (ACS). A simulation experiment looks at the relative
efficiency of ACS and traditional sampling designs in a hydroacoustic survey setting.
Fish densities with known spatial covariance are generated and subjected to repeated
sampling. The distributions of the different estimators are compared.

Hydroacoustic data frequently display strong serial correlation along transects and
so traditional designs based on one-stage cluster sampling are appropriate. Estimates
of total stock size for these designs had a markedly skewed distribution. ACS designs
performed better than traditional designs for all stocks with small-scale spatial
correlation in fish density, yielding estimates with lower variance. ACS estimators were
not skewed and had a lower frequency of large errors. For the most variable stock the
use of ACS reduced the coefficient of variation (CV) of the stock size estimate from
over 0.9 to around 0.5. Differences between traditional and ACS designs were
consistent over multiple realizations of each spatial covariance model.

A survey of rainbow smelt (Osmerus mordax) in the eastern basin of Lake Erie was
used as a case study for development of a survey design. A field trial showed that use
of ACS for the survey is feasible but pointed out some areas for further research. The
biggest drawback to use of ACS is uncertainty in the final sample size. This can be
partially controlled by applying ACS within a stratified design. ACS retains the
unbiased and non-parametric properties of design-based estimation but allows
increased sampling in high-density areas that are of greater biological interest. For
stocks with an aggregated or patchy spatial distribution ACS can provide a more
precise estimate of stock size than traditional survey methods.
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Introduction

A persistent problem in the management of natural
resources is estimating the size of a population or stock
from a limited sample. Determining the population size
is particularly important in fisheries management where
key policy decisions are based on the estimated size
of a stock. Historically, fish stocks were often assessed
with methods yielding only a relative index of abun-
dance (Gunderson, 1995). Recently, there has been

an increased effort not only to estimate stock sizes

1054–3139/02/061314+12 $35.00/0 � 2002 International Council for the E
absolutely but also to quantify the uncertainty in the
estimate. Hydroacoustic methods provide both absolute
abundance estimates and a much larger sample size than
traditional fishing gears, thus allowing wider application
of statistical sampling theory to stock assessment
surveys.

Statistical theory provides a number of design-based
methods for estimating the mean density or total popu-
lation size. These methods are primarily designed for
situations where sample units are independent and the

underlying distribution is fairly normal, conditions
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rarely met by fisheries data. More usually fish density
data show strong skewness, high kurtosis, and local
correlation, resulting in a very large variance of estima-
tion (Gilbert, 1987; Foote and Stefansson, 1993; Patil
and Rao, 1994). These problems are particularly acute
when the target stock has an aggregated or ‘‘patchy’’
spatial distribution (Appenzeller and Leggett, 1996;
Barrange and Hampton, 1997). This study looks at
design-based methods for a hydroacoustic survey, with
the goal of improving estimation when the target stock
has a patchy spatial distribution. In particular, we
examine the efficiency and feasibility of a relatively
new (Thompson, 1990; Thompson and Seber, 1996)
design-based method known as adaptive cluster sam-
pling (ACS). While this study is based on fisheries
applications the results are also applicable to spatial
surveys in many other fields, including forestry (Roesch,
1993), wildlife ecology (Smith et al., 1995), and
epidemiology (Thompson, 1996).
Design-based methods for hydroacoustic surveys

Hydroacoustic data processing provides a direct esti-
mate of the area- or volume-normalized fish density over
a sampling unit. If densities in adjacent sampling units
are independent, the variance of the stock-size estimate
can be estimated simply with the sample variance. When
adjacent sampling units are strongly correlated, how-
ever, the observed sample variance will grossly under-
estimate the true variance of estimation (Williamson,
1982). The correct design-based approach in this situ-
ation is to use cluster sampling formulas, with the
transect being the primary unit and the integrated
segments of cruise track (referred to as EDSUs in
some literature) as secondary units. Key works on the
design of hydroacoustic surveys include Francis (1984),
Gavaris and Smith (1987), Jurvelius and Auvinen
(1989), and Jolly and Hampton (1990). A special ICES
workshop held in 1992 (ICES, 1993) reviewed design-
and model-based approaches for hydroacoustic stock
assessment. Current hydroacoustic survey designs are
primarily based on cluster sampling with parallel
transects across the study area, placed by either system-
atic or stratified random designs (Brandt et al., 1991;
Hampton, 1996; Simmonds and Fryer, 1996).

There has been considerable interest also in
model-based methods of estimation (Sullivan, 1991;
Swartzman, 1992; Stolyarenko, 1992; Steffanson, 1996).
Geostatistical methods have become popular for mod-
eling data with spatial correlation (Guillard et al., 1992;
Petitgas, 1993a,b; Pelletier and Parma, 1994; Williamson
and Traynor, 1996). Model-based approaches forecast
the total stock size by predicting fish density in
unsampled regions of the study area, and allow calcula-
tion of the uncertainty of the total based on estimated
variance of the error terms in the model (Ripley, 1981;
Foote and Steffanson, 1993). In some situations an
appropriate model-based estimate can greatly improve
precision over random sampling designs (Sullivan,
1991). For stocks with very patchy distributions, how-
ever, a smoothed surface-trend model may be a very
poor fit to the data (Foote and Steffanson, 1993;
Murray, 1996). Comparison of ACS estimation with
model-based methods is not included in this paper but
will be the subject of future work.
Adaptive cluster sampling (ACS)

Adaptive cluster sampling (ACS) is a design-based
method that can be used when data are strongly corre-
lated. The basic theory was put forth by Thompson
(1990, 1991a,b, 1992, 1996), Seber and Thompson
(1994), and Thompson and Seber (1996). ACS was
designed especially for situations where standard cluster
sampling is ineffective; when the target stock tends to
concentrate in a few dense clusters rather than being
evenly distributed over the study area. Theoretical
analysis shows that ACS reaches its greatest efficiency,
relative to simple random sampling, when the
target organisms are highly clustered, rare, or both
(Thompson, 1990; Thompson and Seber, 1996;
Christman, 1997). Monte-Carlo simulations (Conners,
1999) show that high relative efficiency of ACS is
associated with frequency distributions of fish density
that are strongly skewed, have high kurtosis and have a
large proportion of units with zero or very low densities.
These types of distributions are frequently observed in
fisheries data, especially with species that exhibit school-
ing behaviour or strong microhabitat associations
(Hampton, 1996; Simmonds and Fryer, 1996).
The Lake Erie smelt survey

As a framework and motivation for this study we use
data from a hydroacoustic survey of rainbow smelt
(Osmerus mordax) in the eastern basin of Lake Erie
(42�30�N, 80�W). Estimates of the total number of
yearling and older (YAO+) smelt are used in formulat-
ing catch limits and stocking policies for smelt and
their predators (Einhouse et al., 1997). The New
York Department of Environmental Conservation
(NYSDEC) Lake Erie Fisheries Unit in Dunkirk, New
York provided assistance, data, and ship-time for testing
adaptive sampling techniques. The Lake Erie Fisheries
Unit would like to optimize a survey design for estimat-
ing the total stock size of smelt, with an accurate
estimate of the associated variance. Data from prelimi-
nary surveys suggest a ‘‘patchy’’ distribution of smelt
density with small-scale ‘‘hot-spots’’ of high fish density
and a large-scale pattern of higher densities associated
with particular depth contours. Frequency distributions
of the existing survey data are strongly skewed and
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correlation coefficients between adjacent sampling units
are 0.6–0.8, indicating strong local correlation. These
features suggested that ACS may be particularly efficient
for estimating the total size of this stock.
Methods
ACS with primary and secondary units

In a typical hydroacoustic survey transect locations are
selected according to some sample design; each transect
then includes a set of secondary sampling units in which
the fish density is measured by integrating the acoustic
signal over a fixed distance. The type of ACS sampling
that applicable to such exercises is, therefore, ACS with
primary and secondary units (Thompson, 1991b;
Thompson and Seber, 1996; Pontius, 1997). The
transects are the primary units and the integrated
sampling units are the secondary units in this form of
‘‘Strip ACS’’ (Figure 1). The initial sampling design
consists of one or more randomly, or systematically
placed, transects. All of the sampling units in the initial
design are measured and units that meet a pre-specified
criterion are identified. The criterion is determined by
the researcher but is often the presence of a rare species
or a density higher than some set value. For the adaptive
stage of sampling secondary units are added in the
neighbourhood of any secondary unit meeting the ACS
criterion. The final sample includes all of the initial
transects plus, where any transect intersects a high-
density cluster, a ‘‘cloud’’ of adaptively added secondary
units. The number of units added to the sample depends
on the ACS criterion and neighbourhood definition
used, as well as on the scale of the secondary units and
the spatial distribution of the target fish.

ACS provides two methods for estimating the overall
mean density (or total) and variance of the estimator
(Table 1). Both estimators balance the total number of
fish in a cluster or network (y*

k) against the probability of
detecting that network, based on its ‘‘width’’ (xk) relative
to the initial sampling design. Estimation of the mean
over the study area is based on the means within the
sampled networks, including a large number of networks
of size one and the few larger networks. The first
estimator, referred to as the Hansen–Hurwitz-type (HH)
estimator, is based on sampling with replacement and
draw-by-draw selection probability for each transect.
Variance estimation for the HH estimator is based on
variance between density estimated by each transect.
The second estimator, the Horvitz–Thompson-type
(HT) estimator, may be used when sampling with or
without replacement. The HT estimator uses a combina-
toric argument to estimate individual and pair-wise
inclusion probabilities (�k, �kr) for each network (Table
1). This calculation is conceptually simple, but can be
complex to implement (Conners, 1999).

When the total number of transects in the study area
(N) is large the two estimation procedures yield nearly
identical results [�k�(xk/N)]. For both estimators the
estimated probability of detecting a network is a func-
tion of the number of transects that intersect it, and the
probability of selecting those transects with the initial
survey design. Thus, large clusters have a higher prob-
ability of being detected, and are down-weighted in the
estimation of the overall mean. Small clusters and units
that do not meet the criterion have smaller inclusion
probabilities and contribute more to the overall
mean. This weighting counteracts the positive bias in
the estimated mean that would normally result from
including a large number of high-density units in the
sample.
Figure 1. An example of strip adaptive cluster sampling for a
patchy population. Black squares represent fish densities above
the critical value. The initial sample consists of two transects
which detect three patches. Units adjacent to high densities
are added adaptively until densities drop below the critical
value. The final sample size includes the initial transects plus
adaptively added units.
Simulation study

A simulation study was conducted to test the efficiency
of ACS for a fish stock similar to Lake Erie smelt.
Simulated test stocks were created with known true total
size and different levels of spatial aggregation. Selected
stocks were sampled repeatedly using both traditional
and ACS designs. The study included four, one-stage,
cluster sampling (traditional) designs and two ACS
designs with different initial transect layouts. For each
sampling replicate the estimated total stock size and
variance of the estimator were calculated. The experi-
ment tabulated relative estimation errors – the difference
between the estimated and true total, [(T| �T)/T] – over
5000 random samples of each design. These were
compared based on the distribution of the estimated
total T| and the variance of the estimator over the
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Table 1. Notations and formulae for Adaptive Cluster Sampling with primary and secondary units,
based on Thompson and Seber 1996 (Chapter 4.7).

A. ‘‘Hansen-Hurwitz-Type’’ Estimation

N Number of possible primary units (transects) in the study area
n Number of primary units in the initial sample, j=1,2, . . . n
mj Number of secondary units in primary unit (transect) j
k Index of unique ACS network, k=1,2, . . . K
ykJ Measured fish density for a secondary unit (EDSU or sampling unit)
y*

k Sum of measured fish densities over all secondary units in network k
xk Number of primary units (transects) that intersect network k
Ijk Indicator variable:=1 if transect j intersects network k
wj Mean fish density over all networks detected by transect j
�HH ‘‘Hansen-Hurwitz Type’’ estimator of mean fish density

V| ( �HH) Estimated variance of estimator for mean fish density

B. ‘‘Horvitz-Thompson-Type’’ Estimation

N, n, k, y*
k, xk Defined as above

M Total number of secondary units in the study area
Jk Indicator varible:=1 if initial sample intersects network k
�k Estimated inclusion probability for network k
�kr Estimated joint inclusion probability for networks k and r
xkr Number of primary units that intersect both networks k and r
Table 2. Spatial models and simulated test stocks

Stock

Generation model
(spherical variogram)

Mean Sill Range Nugget (% of sill)

Random 5.0 6.0 4 6.0 (100%)
Big patches 5.0 6.0 20 0.6 (10%)
Small patches 5.0 6.0 4 0.6 (10%)
Rare patches 4.2 8.0 4 2.4 (30%)
sampling replicates. The programming was conducted in
MATLAB 4.1.

An isotropic spherical variogram model was used to
calculate the variance-covariance matrix for points on a
100�50 grid. This covariance matrix was then com-
bined with randomly generated, standard normal vari-
ables to produce a bivariate normal surface with the
modeled covariance structure. In order to give the
simulated data the strong skewness observed in the Lake
Erie data the generated densities were exponentiated.
This ensured that the points on the final simulated grid
had a lognormal distribution. After experimentation
with several sets of variogram parameters four model
specifications were selected for sampling. The selected
models (Table 2) represent stocks with no local corre-
lation (‘‘Random’’), with strong local correlation over a
large range (‘‘Big Patches’’), and with strong local
correlation over a smaller range (‘‘Small Patches’’). A
fourth stock (‘‘Rare Patches’’) represents strong local
correlation with relatively high background noise or
‘‘nugget’’, which is most similar to the Lake Erie smelt
data. All of the test stocks were generated with a
constant mean, which implies no large-scale spatial
pattern. A number of realizations were generated for
each of the spatial models; grids ‘‘typical’’ of each spatial
model are shown in Figure 2. The four grids in Figure 2
were standardized to have an equal ‘‘true population’’
total fish. For ease of interpretation the conclusions were
based largely on comparison of these four standardized
test stocks. These conclusions were, however, verified
over 20 realizations of the stochastic spatial surface for
each model.

Sampling and estimation for the traditional designs
were performed using one-stage cluster sampling formu-
las (Cochran, 1977; Thompson, 1992). Equal allocation
of transects to strata was used in stratified designs.
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Traditional designs included random selection of 10
transects, systematic selection of 10 transects with a
random start and three stratified, random sampling
designs. Stratified designs divided the study grid along
the long axis into two strata with five transects/stratum,
into five strata with two transects per stratum and along
both axes of the study grid to form 10 strata, with two
(half-length) transects in each stratum. Results were
similar for the three types of stratification and so only
the two-stratum design is presented here.

ACS sampling was performed according to
Thompson and Seber (1996, Section 4.7) with the
transects as primary units and the individual grid
cells as secondary units (Figure 1). A ‘‘neighbourhood’’
definition of four adjacent cells – the four cells sharing a
common boundary with the target cell – was used as in
other work on ACS. For both ACS designs the critical
value defining networks was set at the 80th percentile of
the true distribution of the grid points. Other studies
(Conners, 1999) have shown that this is near the optimal
critical value for a skewed population and that final
estimates are not sensitive to small differences in critical
value. In order to minimize the computations net-
work statistics (tk, wk, �k) were tabulated for the entire
grid and so each sampling simulation simply looked
up values for the networks intersected by the sample.
Calculation of two-way inclusion probabilities for the
HT estimator proved to be complex; for a detailed
algorithm and computer code, see Conners (1999).
Output from the sampling simulations for ACS designs
included the final sample size after addition of adaptive
units. Initial sample sizes for ACS designs were selected
to give expected final sample sizes as close as possible, in
total number of secondary units sampled, to the fixed
size of the traditional designs.
Field trial of ACS for hydroacoustic surveys

In addition to the simulation study, we used one night of
the 1998 Lake Erie survey to test the practicality of a
field implementation of an ACS design. Ship time was
provided by the NYSDEC. The ACS trial consisted of
one initial transect followed by the addition of adaptive
sampling units. As a definition of the ACS ‘‘neighbour-
hood’’ we added units along transect segments parallel
to the initial transect at a spacing of 1.5 km, collecting
hydroacoustic data over the range of latitude where
units above the critical value had been observed.
Results
Simulation study

The simulation study showed clear differences in the
behaviour of the estimators between traditional and
ACS methods (Table 3). The estimators from traditional
cluster sampling, based on the sample mean, were
unbiased but did not have a symmetric distribution.
Figure 3 shows the relative errors of estimation [(T| �T)/
T] from cluster sampling with stratified, random transect
selection. The distribution of the estimator is markedly
right-skewed with a large fraction of estimates lower
than the true stock size but a few estimates much higher
than the true total. While most of the sampling repli-
cates produced estimates close to the true total, relative
errors close to �1 (T| near 0) and above +1 (T| more
than twice T) were not uncommon. This skewness
was evident in estimators from all traditional cluster
sampling designs.

The positive skewness in the traditional estimators
was a result of a small effective sample size from a
strongly skewed underlying distribution. Traditional
one-stage, cluster-sampling designs are, in effect, a ran-
dom sample of transect totals. The effective sample size
is equal only to the number of transects in the survey.
Depending on the presence and number of high-density
‘‘patches’’ intersected by a transect, transect totals can
vary widely (Figure 2). The presence of spatial corre-
lation tends to create a strongly skewed distribution of
transect totals. Smaller patch size and the increased
rarity of patches increases the variance and skewness of
the transect totals (Figure 2). For the simulations a
sample of 10 transects (10% of the total study area) was
selected and so estimation of the stock size is based on
ten transect totals. This effective sample size is too small
to give the sample mean a Normal distribution or
anything even approximating one. In many field surveys
this pattern would be compounded by large-scale trends
in density and variation in the length of transects. While
skewness in the estimator can be reduced by increasing
the number of transects, for many surveys a larger
number of transects would not be feasible.

Adaptive cluster sampling both increased the effi-
ciency of estimation over traditional sampling designs
and produced estimators with a more symmetric distri-
bution (Figure 3). Simulated ACS designs included both
systematic and stratified random designs for initial
transect selection. Both initial designs produced estima-
tors with symmetric distributions and reduced error
frequency relative to traditional designs. The reduced
frequency of estimates in the ‘‘upper tail’’ could be an
important consideration for a resource manager using
estimated stock size to set fishery regulations.

Table 3 summarizes the features of the distribution of
the estimated stock size over the 5000 replicates of each
sampling design. This table compares the results for
fixed-size traditional designs with ACS designs that have
an average final sample size closest to the same number
of secondary units. The relative variance of estimation
for the different sampling designs is most easily seen
by looking at the coefficient of variation or CV. For
the stock (random) with no spatial correlation both
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Figure 3. Distribution of the Relative Errors (T| �T)/T over
5000 sampling replicates. The results are shown for the four
standardized test stocks. ‘‘Traditional’’ is stratified random
sampling and ‘‘ACS’’ is ACS sampling from a stratified random
design. Note the high skewness of the traditional estimator.
traditional designs and the stratified ACS design pro-
duced CVs in the range of 0.32–0.37. For the stocks with
positive spatial correlation, however, use of ACS
reduced the CV compared to all three traditional
designs. The stock with small patches had a CV of
0.37–0.38 for traditional sampling designs but 0.21–0.23
for the ACS designs. For the stock with big patches
ACS reduced the CV from 0.65–0.70 for traditional
designs to 0.31–0.32. The stock with rare patches
showed a reduction in CV from 0.90–0.99 to 0.39–0.44.
For a particular stock ACS with the initial systematic
design performed less efficiently than ACS from a strati-
fied random design, as a result of stronger limitation on
final sample size. This point will be discussed later in the
text.

In order to be sure that the results were not an artifact
of particular test stocks the simulations were repeated
over stocks from 20 realizations of each of the four
spatial models. A check of variance components showed
that uncertainty in estimation due to sampling was
greater than that due to the stochastic variation in the
underlying model. The greater efficiency of ACS over
traditional designs was consistent over the repeated
realizations of the correlated spatial models. For each
model the stratified ACS estimator was the statistical
‘‘best’’ estimator, in that it minimized the mean squared
error over both the spatial super-population model and
random sample selection (Hedayat and Sinha, 1991,
Chapter 10; Bellhouse, 1977).

Table 3 shows the ‘‘Relative Efficiency’’ for each
sampling design. This measure compares the variance of
the sampling estimator to the theoretical variance of a
simple random sample of ‘‘equivalent’’ size:

where �2 is the true variance of the simulated test stock
and neq is the size of the ‘‘equivalent’’ sample. Following
Seber and Thompson (1994, Table 4.4), the ‘‘equivalent’’
sample size is 500 units for the fixed-size designs and the
average final sample size for ACS designs. A Relative
Efficiency greater than one indicates that the sampling
estimator has a smaller variance than is expected from
simple random sampling, or that it is more efficient than
simple random sampling. Fixed-size cluster designs were
more efficient than SRS only when systematic and
stratified cluster designs were applied to the stock with
big patches. These two designs are known to be efficient
for situations where the local covariance, in this case
covariance between the transect totals, is monotonically
decreasing (Ripley, 1981, page 25). ACS designs were
more efficient than ‘‘equivalent’’ SRS for both the
small and the rare target stocks. This is consistent with
the results of previous authors (Thompson, 1991b;
Christman, 1997), who have demonstrated that ACS is
more efficient than SRS when the target stock is rare or
highly aggregated or both. For the ‘‘rare patches’’ stock
the relative efficiency of ACS designs is over three times
that of SRS. The ACS designs were not efficient for the
‘‘big patches’’ stock because the large final sample size
made the equivalent SRS variance small.

Thompson and Seber (1996, page 129) and Christman
(1997) compared the relative efficiencies of the two ACS
estimation procedures (the HH and HT estimators).
These authors also found that both estimators had a
relative efficiency >1 for target stocks that were rare or
highly aggregated or both but lower efficiency for more
dispersed stocks. Both authors also note that the HT
estimator has better efficiency – lower variance – than
the HH estimator, with the difference becoming more
pronounced as the initial sample size is increased. In our
simulations the initial sample size never exceeded 10%,
and the two estimators gave very similar results. Both
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estimation procedures also gave reasonable estimates of
the variance of T.

One of the greatest concerns about the implementa-
tion of ACS is the random nature of the final sample size
and the possibility that the final sample might grow too
large to be feasible. Distributions of final sample size, in
secondary units, for some of the simulated ACS samples
are shown in Table 4. The difference between initial and
final sample size was strongly related to the spatial
distribution of the stock. For the stock with no spatial
correlation the average final sample sizes were only
11–13% larger than the initial sample regardless of the
initial sample size or design. For this stock none of the
final sample sizes exceeded 1.25 times the initial sample
size. The ‘‘small’’ and ‘‘rare’’ stocks, which both have
strong correlation over a short range, had a greater
increase in average final sample size over initial size.
Final sample size for these stocks was 1.5–1.7 times the
initial sample size using stratified random ACS and
1.7–2.1 times the initial sample size when starting from a
systematic sample. The stock with a few ‘‘big’’ clusters
showed the greatest increase in final sample size with the
average final sample sizes for this stock being 2–4 times
the size of the initial sample.

For all of the test stocks the increase from initial to
final sample size was larger when the initial design was
systematic that when a stratified random initial design
was used. In the case of the ‘‘small’’ and ‘‘rare’’ stocks,
this effect produced substantial differences. These differ-
ences occur because our algorithm for stratified ACS
treated each stratum as a separate entity. This meant
that adaptive sampling for clusters located near the edge
of the stratum was stopped at the stratum boundary and
not allowed to expand into adjacent strata. Thompson
and Seber (1996, p. 134) state that terminating a net-
work at the stratum boundary is slightly less efficient
than using complete networks but ACS estimators will
still be design-unbiased for the stratum totals and may
be combined into an overall estimate assuming indepen-
dence of the strata. Defining networks in this way makes
the strata into ‘‘partition boundaries’’ that limit the
potential size of any network and this is one of the
strategies suggested by Thompson and Seber (1996,
p. 161) as a means of controlling the final sample size. In
our simulations this stratified design clearly acted to
reduce the final sample sizes and gave slightly higher
efficiencies than the systematic design.
Table 4. Distribution of final sample size over 5000 random samples for ACS designs. Sample size in
terms of secondary units, including adaptively added units.

Standardized
test
stock

Initial
sample
design

Initial
sample

size

Average
final
size

Standard
deviation

90th
percentile

Final/
initial

90%/
initial

Random Stratified 400 449 10.0 462 1.12 1.16
Systematic 400 455 5.9 461 1.14 1.15

Small Stratified 400 674 50.4 736 1.68 1.84
Systematic 250 521 42.0 572 2.09 2.29

Rare Stratified 400 602 38.4 651 1.50 1.63
Systematic 250 473 48.3 550 1.89 2.20

Big Stratified 400 1087 89.2 1158 2.72 2.90
Systematic 100 684 276.7 863 6.84 8.63
Results of the field trial

One night of the 1998 Lake Erie smelt survey was used
to test the practicality of the field implementation of
ACS. The trial showed that use of an ACS design
is feasible but identified some potential problems.
Real-time data analysis capability and differentially cor-
rected GPS are needed to identify units meeting the ACS
criterion during the survey and accurately position
adaptive units. The capabilities of the survey vessel are
important, especially the relative travel speeds with and
without data collection.

The simulation experiment and theoretical work use
an ACS ‘‘neighbourhood’’ definition of four-adjacent-
cells but this definition is not practical for an actual
hydroacoustic survey. We followed a ‘‘neighbourhood’’
definition of parallel transect segments by using Loran
navigation lines as approximate parallels. Adaptive units
for ACS were identified as segments of parallel transects
over the same latitude as units above the critical density.
Four of the 24 sampling units in the initial segment met
an ACS criterion of density greater than 5000 smelt/ha;
three of these were near the southern shoreline and one
was further north (Figure 4). Adaptive transect segments
were surveyed on either side of the initial transect over
the latitude range of both ‘‘patches’’. This meant that
data were collected on some extra units not strictly
needed for ACS. These extra units may be useful for
other purposes (e.g. mapping of the high-density
patches), but they increase the final sample size and
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decrease the efficiency of ACS. A survey vessel with a
high travelling speed when not sampling would increase
the efficiency of ACS by reducing the travel time
between sampled units and facilitating the collection of
data at the right points only. The addition of adaptive
segments was halted to the west at the boundary of
the sampling stratum and to the east by approaching
daylight.

The field trial illustrated the greatest concern with the
application of ACS viz. the detection of a large patch
that results in a large final sample size. With only one
night of sampling we were unable to complete all of
the adaptive sampling of the detected network. Using
greater spacing between adaptive segments could
decrease the amount of adaptive sampling but too great
a distance may affect the accurate estimation of the
patch total. More research is needed on the best ‘‘neigh-
bourhood’’ definition, given patches of an expected size
and shape, for use with ACS.
Smelt density (fish/h)

4000 0 4000 8000 m
N

> 10 000
5000–10 000
1000–5000
500–1000
100–500
0–100

Figure 4. Data from a field trial of ACS on Lake Erie. Each circle represents a five-minute integrated sampling unit; shaded units
meet ACS criterion of yij>5000 fish/hectare. The long centre transect is the initial transect.
Conclusions

The advent of hydroacoustic stock assessment has
resulted in dramatic increases in the amount of data that
can be collected but lack of independence between
adjacent sampling units can restrict the applicability of
design-based theory in this setting. Cluster sampling
designs are effective for a spatially dispersed stock when
transect totals are reasonably consistent over the study
area. A target stock with a spatially patchy distribution,
however, will have a strongly skewed distribution of
transect totals. This will lead to high variance and poor
performance of traditional estimators. Patchy spatial
distributions can be caused by irregular distributions of
microhabitat, by behavioural traits such as schooling or
by a combination of factors. Strong local correlation is
common in fisheries and many other environmental
applications.

Adaptive cluster sampling (ACS) was designed for
spatially patchy or rare events or both scenarios
together. In simulations ACS performed better than
traditional cluster sampling designs whenever local
correlation was present. ACS estimators exhibited an
unbiased, symmetric distribution with a consistently
lower variance than traditional designs. The coefficient
of variation for the most variable of the test stocks
was reduced from 0.9 for traditional cluster sampling to
0.4 using ACS (Table 3). ACS also provided greater
protection against gross mis-estimatation of total stock
size. Figure 5 summarizes the frequency with which the
estimated totals fall within a fixed percentage of the true
total. For the stock with small patches, ACS designs
reduced the frequency of ‘‘poor’’ estimates (relative
error more than 50%) to less than three percent,
and substantially increased the percentage of ‘‘good’’
estimates (within 10% of the true total). For the simu-
lated stock with rare patches that most closely resembled
the Lake Erie smelt data more than half the estimates
from traditional designs were ‘‘poor’’. Using ACS
designs to survey this stock both decreased the fre-
quency of ‘‘poor’’ estimates and increased the frequency
of ‘‘good’’ estimates. This difference in tail behaviour of
the estimators may not seem significant in a statistical
sense but when estimated stock size is the basis for
management policy a reduced frequency of large over-
estimates may be very important.

The greatest limitation to practical use of ACS is the
uncertainty in the final sample size: there is always a
possibility that the final sample will outgrow either the
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available budget or the schedule. Some recent research
has addressed methods to limit the final size of an ACS
sample (Salehi and Seber 1997a,b; Brown and Manly
1998). Thompson and Seber (1996) discuss general ways
to limit the final sample size. One practical approach is
to implement ACS within a stratified initial design, with
the adaptive sample ending at stratum boundaries. This
adds both operational and design flexibility to the
survey; ACS parameters and sampling intensity can
be adjusted as the survey progresses as long as the
parameters are consistent over each stratum. A large
sample in one stratum could be partially offset by using
greater transect spacing or a higher critical value in
subsequent strata. It may also be possible to use a form
of post-stratification to analyse portions of the survey
that are interrupted by weather or equipment problems.
A field trial on Lake Erie demonstrated that ACS is
feasible for hydroacoustic surveys. More research is
needed on the optimal definition of the ACS ‘‘neigh-
bourhood’’ in a line-transect setting and on tradeoff

effects between the number and length of the transects
used.

ACS retains the unbiased and non-parametric prop-
erties of design-based estimation but allows increased
sampling in high-density areas that are of greater bio-
logical interest. For many fish stocks most of the popu-
lation is located in a few high-density areas and so
increasing the sampling effort in them makes both
statistical and biological sense. In these circumstances
ACS provides improved precision of stock estimation
and is less sensitive to errors caused by the highly
skewed distribution of density data. The greater the
degree of spatial aggregation exhibited by the stock, the
greater is the potential efficiency gain from using ACS.
Strong skewness or kurtosis in density data is a good
indication that ACS designs may be effective for a
particular stock and worth the extra effort in survey
design and field execution.
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Figure 5. Comparison of the frequency of ‘‘Good’’ estimates
(within 10% of the true total) and ‘‘Poor’’ estimates (more than
50% off of the true total) from traditional and adaptive cluster
sampling designs.
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