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This paper deals particularly with some methods of treating ichthyo-
metric data. The methods are, however, applicable to many other

cases of frequency distributions. They have special reference to the
graduation of length-measurements of fish made by means of a pin on
celluloid slips1), in which case the measurements are originally un-
graduated and may be graduated subsequently in any way desired. The
methods are, however, applicable in modified form to the case of mea-
surements made originally in class-intervals, for instance centimetre
intervals.

To avoid too theoretical a discussion it is proposed to explain the
treatment of the data entirely by means of examples. The first examples
given are taken from measurements of plaice made on celluloid slips.
The fish were taken in an inshore trawl in early August (Aug. 1st—8th)
1928 on the inshore grounds near Beer in Devonshire. The plaice taken
on each day were measured on one slip, with the exception of those
taken in a few hauls which were for some reason or another not compar-
able with the remainder. Fig. (1 a) shows the distribution of the pin-
pricks on the slip for 3/8 28. On all slips a line was drawn at 15 cms.
from the block against which the noses of the fish were pressed. The
frequency distribution of the pin-pricks is not easy to grasp when they
are dispersed widely on the slips and therefore the pin-pricks were pro-
jected with a parallel ruler near to a line at right angles to the 15 cms.
line by which each slip was orientated. Fig. 1 (b) to (h) shows the distri-

') Journ. du Conseil, Vol. Ill, No. 3, p. 380.
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bution of pin-pricks after this projecting process, (c) to (h) giving the
distribution for each day separately, (ft) giving the total.

Before proceeding, it should be mentioned that only the measurements
of the I-group *) are shown on these slips, those of the older fish being
omitted. On a glance at Fig. 1 it is at once obvious that the measurements
fall into subgroups, and cannot by any stretch of imagination be regarded
as conforming to a simplex frequency distribution. The subgroups, which
have been numbered 1 to 6 according to their number content, are
indicated by horizontal lines. It is not, of course, possible to find the
exact centre or the exact range of each subgroup, but the fact that a
connecting line, varying only 1/i cm. from straightness can be drawn
through the apparent centres of corresponding subgroups in each day's
data seems sufficient proof of their reality2). Some of the subgroups seem
to be again divisible into subgroups of a lower order, but there would
appear to be no advantage to be gained by carrying analysis further
than the main subgroups. It is necessary, however, to have regard for
the main subgroups, for the following reasons. A subgroup is of such narrow
spread that its position is given accurately enough even if it is represented
by only a very few fish. Thus the positions of corresponding subgroups
may be compared in different samples though all the subgroups may
not be represented in each sample and may appear in quite different
proportions in different samples. Consistency in position is the test of
correspondence between subgroups. It has been suggested that the appear-
ance of subgroups is due to errors of random sampling, but when there
is consistency in their positions this cannot be the case. Errors due to
random sampling certainly may account for the fact that the subgroups
do not conform very nearly to a smooth frequency curve and may account
in part for variations in their apparent representation. The main object
of fitting a frequency curve to a group of measurements or drawing a
smooth curve near the points corresponding to rough data is to smooth
out irregularities due to random sampling. The curve is held to give a
result more nearly in correspondence with that which would be obtained
if the whole "sampled universe" were measured than that obtained from
the rough points themselves. Given that the curve is well chosen and
that the roughnesses of the data are really due to random sampling, this
belief is in general justified by results. It is necessary, however, so to

x) As shown by otolith readings.
2) For a practical method for resolving such complex frequency distributions

into their component sub-groups, see WOLLASTON & HODGSON, Journ. du Conseil,
Vol. IV, No. 2, p. 207 et seq.
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Fig. 2.

group the original measurements and to choose such a method of drawing
a curve that consis tent irregularities are not obscured.

If we have continuous and ungraduated original data as given on
celluloid measuring slips we can graduate them in any desired manner.
We may put them into half-centimetre, centimetre or other equal class-
intervals or we may use variable intervals on the axis of abscissae. The
curves in continuous line in Fig. 2 are drawn in as smooth a manner as
possible through the points representing the data shown in Fig. 1 after
grouping at each centimetre, that is to say all measurements between
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14.5 and 15.5 cms. are grouped together and so on. We may change the
limits of grouping, taking 15.5, 16.5 and so on as the centres. The resulting
curves are shown in broken line in Fig. 2; the two sets of curves are fairly
consistent on the whole as to the positions of the chief modes, though
the proportionate representation of some of the subgroups is not in
agreement in the two sets. The subgroups 1, 2, 3, 4 and 5 would be
placed in the same order of magnitude whether we had one set of groupings
or the other, and this is sufficient proof of their reality. The dots and
crosses are really points on the same curve, but if we draw this curve
we shall find that we begin to reproduce inconsistent irregularities in
the data. Overlapping grouping carried to the limit will reproduce all
the irregularities of the original data and this does not seem desirable
unless large samples are being dealt with, in which case irregularities
due to random sampling may be expected to disappear. Fig. la shows
the curve for all the measurements shown in Fig. 1 (c to K). There are
sufficient data here for the method of overlapping to be used, the points
on the curve corresponding to the number of pin-pricks in centimetre
intervals which overlap the adjacent intervals to the extent of half a
centimetre. Since the original data are continuous, this is a t rue
interpolat ion method and is not at all analogous to methods of
smoothing which, in data of measurements originally grouped in
centimetres, combine the data of several centimetre intervals into
larger intervals overlapping each other. These latter methods are
quite artificial, while the former is merely a means of using additional
information inherent in the data themselves. It is useless to attempt
interpolation by overlapping centimetre intervals in cases where the
original data are grouped in centimetre intervals. The intermediate points
on the resulting "curve" would of course lie on straight lines between
the original points and not on a continuous curve at all. Fig. 2 (a) shows
well the great advantage of having originally ungrouped data. It also
indicates that, in cases where the data are originally grouped in cms.,
drawing a continuous curve through the centimetre points on the
assumption that the group is complex and made up of subgroups fairly
nearly symmetrical and of narrow range is likely to give a result far nearer
the truth than either smoothing out the original "roughnesses" by
drawing a continuous simplex curve near the points or joining them
simply by straight lines. The last method is, of course, known to be
wrong in every case. It often hides statistical facts, instead of showing
them clearly which is supposed to be the main function of diagrams.
It is undoubtedly one of the worst possible ways of graphing data and
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it is difficult to comprehend why it should be so persistently used in
fishery research.

Before proceeding to discuss the question of grouping data in variable
intervals, it is advisable to consider generally the question of growth
and growth-rate. Assuming that a number of plaice-eggs are hatched
simultaneously, the resulting fish, growing up under natural conditions,
will not all have the same length after a year, but these lengths will form
a frequency-curve. The curve will be unimodal if there are a large number
of variable subjective and objective conditions which influence growth,
but of which the variation is continuous and such that the fish may all
be said to have lived "under the same conditions" during the period.
To attempt to define more precisely this somewhat vague phrase might
introduce mere mathematical abstractions without a counterpart in
Nature. Growth of a group of fish during the first year is thus what
we may term divergent. The lengths of the larvae on hatching would
spread over only two or three millimetres at most. The lengths of the
same fish after a year's growth would undoubtedly spread over at least
two centimetres. Thus to obtain a frequency-curve for larvae we should
have to group the measurements in millimetres or half-millimetres; to
obtain a corresponding curve for the year-old fish, grouping would have
to be in centimetres or half-centimetres. We may now'make another
definition, namely that of "parallel growth" of a group of fish. In "parallel
growth" the result at the end of the period is the same as if every fish
had grown the same amount in the given period, thus, in our hypothetical
group, the measurements at the end of a year would still have to be
grouped in millimetres or half-millimetres to form a frequency-curve.
The third type of growth is the convergent or compensatory type. In
this type, at the end of any period the group has less "spread" than
at the beginning of the period. We are not referring at the moment
to growth-type pertaining to a particular fish. In that case divergent
growth may be defined as growth persistently greater or persistently
less than the average. It is quite clear that, though every fish in a
group may indulge, during any subperiod, in any one of the three
types of growth, the -growth of the group as a whole must be divergent.
Anything else would be absurd in the period of free giowth, before the
onset of maturity introduces a point of discontinuity. It is impossible of
course to trace the growth of an individual fish under natural conditions
by observations on the fish itself. We may, however, trace the life-history
of a plaice by calculation from the otolith, by a method corresponding
to that used in calculating the growth of a herring from its scales. This
use of otoliths has been tested in the case of about 50 fish which were
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marked in late summer and autumn in the Poole district of Dorset and
the Beer district of Devon and which were recaptured at various times
in the year after marking. At the time of year at which the fish were
marked the edges of otoliths show, nearly always, dark growth. In every
case the calculated position of the edge of the otolith on marking proved
to be in the ''dark growth" of the preceding year or just on the edge
of the white growth, thus, exactly where one would expect it to have
been in reality. This method of course does not assume that the size of

&
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Fig. 3.

an otolith is proportional to that of the fish to which it belongs. This
proportion varies quite widely owing to differences in shape of otoliths.
The method assumes only that in each fish the otolith grows, in length
as measured from the nucleus, proportionally to the fish. The average
length of the otoliths has been found to be approximately a linear function
of that of the fish, in spite of the variation in shape. It thus appears
to be quite safe to assume that in most cases the otolith gives a picture
of the past growth of a plaice, the picture being probably as reliable
as that given by scale readings in the case of the herring. As compared
to such scale-calculations, otolith calculations show the advantage that
their reliability may, in any district, be tested on fish marked in autumn
or winter. This question will be dealt with much more fully in a sub-
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sequent paper. It is introduced here merely because it provides a means
for testing whether growth, in a given sample of fish, has been divergent,
in the sense that growth in the individual fish has been on the whole
divergent.

Calling the length-increment in the first year of life tv that in the
second year t2 and so on, as in the corresponding herring-scale work, we
may compare these increments and examine whether a large "/" in one
year is correlated with a large "/" in another year or the reverse. Thus
we may find out whether the growth in the years dealt with has been
divergent, parallel or convergent. It is of little use attempting to correlate
/j with a subsequent increment, since the value of tx depends so very
much on the time at which the corresponding fish was spawned. The
spawning-season extends over four months, and this spread is quite suf-
ficient to give a very wide "range" to tv Correlation between /2 and t3

should, however, give a useful picture. If positive, growth in the 3rd
and 4th years of the life of the fish is divergent, if absent, growth is
parallel, if negative, growth is convergent. Fig. (3) shows the correlation
between t2 and t3 in the case of all the otoliths which were preserved
after being taken from fish of 3 years old and upwards during the years
1924 to 1927 in the Poole district. Selection of these otoliths for pre-
servation was quite haphazard since the idea of using them for growth
calculations only arose last year (1929).

Fig. (3) shows that correlation between t2 and t3 is in this case quite
definitely positive, and therefore that individual growth is divergent in
general. Fig. (4) shows Zx, Z2, and Z3 for the same collection of plaice1).
In this figure m represents the median, qx and q2 the quartiles. In Fig. (5)
the total range and the interquartile range of Z1( Z2 and Z3 are given com-
pared to the median lengths. It will be seen t h a t the in te rquar t i l e
range is propor t ional to the median length. The total range in
13 may well be affected by the onset of maturity in the fourth year in
the case of fish with an abnormally large l2. Therefore the variation of
the interquartile range is probably a more reliable index of increasing
spread of a group than the total range of Zx and Z2.

In cases such as the above, the sizes of the class-intervals should be
proportional to the size of the variales. If a one-centimetre interval is
used for fish of 15 cms., a 2-cm. interval should be used for those of
30 cms., a half-centimetre interval for fish of 7 to 8 cms. and so on.
If this is not done, it cannot be expected that only modes or sub-
groups of the same order will be shown in curves of different year

*) h> h> h — calculated length of fish at first appearance of 1st, 2nd and 3rd
•white ring on otolith.
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classes to be compared. If the modes in the I-group are considered
significant for comparison, there will be too few modes in the 0-group,
too many in the I I-group, and any law there may be connecting the
modes in the groups will be obscured.

Table (1) gives the end-points and midpoints of class-interval scal-
culated on the hypothesis that a 1-cm. interval is correct for fish of
15 cms. the other class intervals being proportional to the length of the
variates. The ordinates below the 15-cm. point are smaller than those
for equal class-intervals, and above that point are larger. Therefore, if

Lzngth at Median (cms)

Fig. 5.

it is desired to compare a curve drawn from proportionally grouped data
with a curve drawn from equally-grouped data, each class-frequency in
the former must be multiplied by the reciprocal of the length of the
class interval measured in centimetres. If this is not done the two curves
will have different areas. The reciprocals are given in Table (1).
The end points are calculated as follows. The end-points of the class-
interval 15 are 14.5 and 15.5. Thus any end-point, say "n + 1" is given

15 5
by multiplying the end-point "n" by —'— or 1.069. Any end-point "n— 1"

14 5
is obtained by multiplying "n" by —— or .93541). If the original data

lo. o
*) The continuous use of a decimal to four places only gives rise to an error

which becomes serious in the upper intervals. Table 1 was calculated, with a
mechanical calculating-machine, using the greatest number possible of significant
figures.
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are ungrouped we may use the overlapping method of grouping, as was
done in the case of centimetre-grouping, by taking, as intermediate
ordinates, the data falling between adjacent mid-points in the proportional
series. By continued overlapping, every character of the original collec-
tion of data will be reproduced in the curves.

Fig. (6) shows curves drawn from the data given in Fig. 1, grouped

, 1929

11 12 13 to 15 16 17 18 19 20 2/ S3 23 24- 35 26 37 88 39
Proportional Intervals Cegu&//gec/)

Fig. 7.

in proportional intervals. The positions and relative richness of the sub-
grovjos 1, 2, and 3 are well shown in the curves, but the smaller sub-
groups 4, 5, and 6 are apt to become included in the ends of the larger
groups. Whether this matters or not depends on the purpose for which
the curves are drawn. If this purpose is the comparison of the n year old
fish of one year with the (n + 1) year old fish of the next year with the
object of deducing growth between the two years, it is probably sufficient
to limit ourselves to the richer subgroups and to neglect the "tail-groups".
These in any case form but a very small proportion of the whole col-
lection.

In comparing the I-group with the I I-group, using proportional class-
intervals, it is assumed, ipso (ado, that the range of each group is pro-
portional to the size of the variates. If that assumption is correct, for
the purpose of comparison the class-intervals should be regarded all as
equal, and the ordinates should not be multiplied by the reciprocals.
Fig. (7) shows such a curve for all the fish of the I-group measured in the
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Beer district in August 1928, compared with that for all the fish of the
II-group measured there in August 1929. There were not nearly so many
fish of the II-group as of the I-group, therefore the curves have been
drawn on different scales, chosen so as to make the highest ordinate of
each curve about equal. In drawing the I-group curve we may be guided
by our knowledge of the component subgroups obtained from examination
of the original data or of the "overlapping centimetre" curve Fig. (2 a).
The II-group curve cannot reasonably be drawn except as shown, having
regard to the fact that all frequency-groups so far examined, pertaining
to a year-class of plaice from either the Poole or the Beer district, resolve
into component subgroups approximately symmetrical and of narrow
range. It will be seen then that the subgroups of the I-group 1928 are
all represented in the II-group 1929, and their comparative representation,
their order of importance, is the same in the two curves. The spread
of the II-group curve is, however, still greater than that of the I-group
curve. If the same population is being sampled in both cases, we are
forced to the conclusion that the increase of spread with size is even
greater than directly proportional. It may be, however, that the net did
not take all the fish on the lower side of the I-group in 1928. When
they enter the II-group these fish will of course be properly sampled.
This method gives what would appear to be a reliable method of growth-
determination. The main mode in the I-group is at 18.3 divisions
( = 18.645 cms.), and that in the II-group at 24.6 divisions ( = 28.344 cms.)
the growth between August 1928 and August 1929 is thus 9.7 cms. This
method of estimating growth assumes, of course, that the same popula-
tion is being dealt with in both cases, but the similarity in shape of the
two curves appears to indicate that at least the main mode in one curve
corresponds to that of the other. The modes are much better suited for
growth-rate calculations than are the means. The central mode would
be very little changed as to position by the addition of a large number
of fish of subgroup 3, while the mean would be much reduced by the
same addition. If it is required to deduce the growth rate of the whole
of the I—II-group represented by the samples, the curves may be resolved
into components as shown in broken line in Fig. (7). This diagram is
only intended as an indication of the way in which the problem may
be attacked. Strictly speaking, if these component curves are symmetrical
when the variates are grouped in equal class intervals, they should
be positively skew1) when the variates are grouped in proportional
intervals "equalized". To resolve the whole, however, into the most

*) If the mean is greater than the mode, skewness is termed positive and
vice oersd.
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probable skew components is an elusive problem at best. It may be
preferable to carry out the resolution on curves drawn on the original
"unequalized" proportional intervals, and to assume that they are sym-
metrical in the absence of other indications. It should be mentioned,
though, that in cases where the individual variates themselves show
proportionally divergent growth* positive skewness in the frequency
curve is produced. It is quite possible that such positive skewness is
what may be expected in frequency-curves of fish measurements. The
solution of such a problem, however, requires much wider research than
has been undertaken up to the present time. In a case such as the present,

15 16 17 18 19 20 11 &2
Proportional Class- Intervals

Fig. 8.

the subgroups are of such small range that failure to assign the correct
skewness would have little effect on the indicated positions of the modes.
These are all we require for growth-calculations on the basis of comparison
of frequency-curves.

In such growth-calculations it is usually necessary to use pro-
portional class-intervals for the reasons already stated. This is illustrated
in Fig. (8). This figure shows, in unbroken line, the II-group of 1929,
in proportional class-intervals unequalized, the ordinates being multiplied
by the corresponding reciprocals; the broken line is the frequency-curve
for the same data in centimetre class-intervals. The latter curve shows
four closely placed modes on the left-hand side.

The majority of fish measurement data are originally grouped in
equal class-intervals. The rigid method of proportional grouping cannot
be used with such data, but it may be modified to meet such cases. We
may assume that each frequency is equally distributed throughout its
class-interval. This is straining Nature no more, indeed much less, than
the usual assumption that it is concentrated at the centre of the class-
interval. We may now allot the appropriate proportions of each frequency
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Table 1. P ropor t iona te In te rva ls (15 = 15 cms.).
End-points, Centre-points, Reciprocals of Lengths.

o
1
2. . .
3. .
4
5. . .
6. .
7.
8
9. . .

10. .
11. ..
12. .
13
14. ..
15. . .
16.
17.. .
18. .
19
20
21...
22. ..
23. ..
24.
25
26...
27. ..
28
29...
30.
31. ..
32.
33.
34. ..
35.. .
36.. .
37.
38...
39...
40...
41...
42...
43.. .
44. ..
45. . .

Interval
Ranges
Cms.

5.33— 5.70
5.70— 6.09
6.09— 6.51
6.51— 6.96
6.96— 7.44
7.44— 7.96
7.96— 8.50
8.50— 9.09
9.09— 9.72
9.72— 10.39

10.39— 11.10
11.10— 11.87
11.87— 12.69
12.69— 13.56
13.56— 14.50
14.50— 15.50
15.50— 16.57
16.57— i7.7i

17.71— 18.93
18.93— 20.24
20.24— 21.63
21.63— 23.13
23.13— 24.72
24.72— 26.43
26.43— 28.25
28.25— 30.20
30.20— 32.28
32.28— 34.51
34.51— 36.89
36.89— 39.43
39.43— 42.15
42.15— 45.06
45.06— 48.16
48.16— 51.48
51.48— 55.04
55.04— 58.83
58.83— 62.89
62.89— 67.23
67.23— 71.86
71.86— 76.82
76.82— 82.12
82.12— 87.78
87.78— 93.83
93.83—100.30
100.30—107.22
107.22—114.62

Reciprocal of
Length of Inter-

val in cms.

2.70270
2.56410
2.38095
2.22222
2.08333
1.92308
1.85185
1.69492
1.58730
1.49254
1.40845
1.29870
1.21951
1.14943
1.06383
1.00000
0.93458
0.87719
0.81967
0.76336
0.71942
0.66667
0.62893
0.58480
0.54945
0.51282
0.48077
0.44843
0.42017
0.39370
0.36765
0.34364
0.32258
0.30120
0.28090
0.26385
0.24631
0.23041
0.21598
0.20161
0.18870
0.17668
0.16529
0.15456
0.14451
0.13514

Midpoint
Cms.

5.52
5.90
6.30
6.74
7.20
7.70
8.23
8.80
9.41

10.06
10.75
11.49
12.28
13.13
14.03
15.00
16.04
17.14
18.32
19.59
20.94
22.38
23.93
25.58
27.34
29.23
31.24
33.40
35.70
38.16
40.79
43.61
46.61
49.82
53.26
56.94
60.86
65.06
69.55
74.34
79.47
84.95
90.81
97.07

103.76
110.92
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Table 2. Length-Measurements of Plaice of the II-group 1929,
originally in cm. groups, showing Allotment to Proportional Intervals.

Cms.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

No.

0
2
2
4
5
7
9

12
13
13
15
11
10

9
2
2
3
0

Prop.
Ints.

18
19
20
21
22
23
24
25
26
27
28
29

Proportions of cm. ins

.39 X

.07 X

.76 X

.27 X

17+.93X 18
18+ 19+.24 X
20+.63 X 21

•

20

21+ 22+.13x23
.77 X 23 + .72 X 24
.28 X
.57 X
.75 X
.8 X
.72 X
.49 X

24+25+.43 X
26+ 27+.25 X
28 + 29 +.20 X
30 + 31 +.28 X
32+ 33+.51 x
34 + 35 +.89 X

26
28
30
32
34
36

No to

2 +
1.5+ 2
1 + 5
5.5+ 6.
2.5+12
7.5+13

11 +11
8 + 9
1.5+ 2
1.5+ 0

nearest

5
5

+1
5

+5.5
+4
+2
+ -5
+1.5
+0

.5

0
= 2.5
= 4.0
= 7.0
= 12.0
= 20.0
= 24.5
= 24.0
= 17.5
= 5.0
= 1.5

0
118

Nos. of
origin-
ally un-

group-
ed data

0
3
4
6

15
18
23
24
19
4
3
0

Tf9

to the corresponding proportional class-interval. Thus the proportional
interval "15" contains half the frequency of the 14 cm. class-interval,
half that of the 15 cm. class-interval, the proportional interval 29 con-
tains .11 of the frequency of the 36 cm. class-interval plus the whole
frequencies of 37 and 38 cms. + .43 of the 39 cm. interval.

The result cannot be expected to be so near to reality as that obtained
from ungrouped original data. By its use, however, we do obtain the
benefit of allowance of increasing spread of a group with increase in size
of the variates.

It will be interesting to test this modified method on the figures
illustrated by Fig. (8). Table (2) shows the working, and compares the
result with the figures in the original groups, from which Fig. (8) was
constructed, but before multiplication by reciprocals: it will be seen
that the figures given by the modified method agree fairly well with
the original figures. The position of the three chief subgroups is indicated
fairly well if the draughtsman remembers to draw the curve on the
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assumption that it is made up of components nearly symmetrical and
of narrow spread. The curve is certainly superior, for the purposes of
comparison with other curves, to the centimetre curve. It shows, how-
ever, that our original assumption that a frequency is equally distributed
in its class-interval has an unnaturally "smoothing" effect and serves
to emphasize the great superiority of ungrouped original data over
originally grouped data.
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