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Star acoustic surveys of localized fish aggregations

I. J. Doonan, B. Bull, and R. F. Coombs

Doonan, I. J., Bull, B., and Coombs, R. F. 2003. Star acoustic surveys of localized fish
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‘‘Stars’’ are an alternative design for acoustically acoustically surveying isolated fish
aggregations in which transects cross at a centre point over an aggregation to form a
star or wheel-spoke pattern. The method was devised particularly for aggregations of
orange roughy (Hoplostethus altanticus Collett) to cope with the practical difficulties of
manoeuvring a vessel towing a transducer over a small, dense school of fish. Several
methods of analysing star patterns were considered including kriging and a method
that ignored the spatial arrangement of the transects. However, simulations of roughy
aggregations showed that the best approach was to transform from Cartesian to polar
coordinates and then use standard statistical methods (polar method). The polar
method was robust to shifts in the transect centre off the aggregation centre and
aggregation movement in a random way. Variance estimation was best with a polar
version of transitive kriging. Stars using the polar method were also better than the
usual parallel transect design when transect numbers were low but the results were
similar when six or more transects were used. However, in all the cases considered
parallel transects consistently overestimated the variance. We conclude that star
transects offer a robust and effective way of estimating the biomass of small, localized
aggregations of fish that minimizes vessel time, and yields good precision.

� 2003 Published by Elsevier Science Ltd on behalf of International Council for the Exploration
of the sea.

Keywords: fish aggregations, orange roughy, star acoustic survey.

I. J. Doonan, B. Bull, and R. F. Coombs: NIWA, Wellington, New Zealand. Correspon-
dence to I. J. Doonan: NIWA, PO Box 14-901, Kilbirnie, Wellington, New Zealand; tel:
+64-4-386 0300; e-mail: i.doonan@niwa.co.nz
2/2271507 by guest on 19 April 2024
Introduction

Many fish species form isolated, localized aggregations
up to two kilometres or so across. Particular examples
are tunas under fish-aggregation devices (FADs) and
deepwater species such as the orange roughy on
seamounts. Acoustic techniques are often the best way
of estimating the biomass of such aggregations but the
survey design poses some problems. One approach is to
use ‘‘stars’’ in which transects cross at a centre point
over an aggregation to form a star or wheel-spoke
pattern. Stars were first used by Depoutot (1987) for
tunas under FADs to track density distributions over
time and, more recently, Josse et al. (1999) have used
various star configurations to study tuna distributions
under FADs using an acoustic system with a hull-
mounted transducer. Independently we have adopted
star transects for estimating acoustically the biomass of
orange roughy (Hoplostethus altanticus Collett), smooth
oreo (Pseudocyttus maculates Gilchrist) and black oreo
(Allocyttus niger James, Inada, and Nakamura) on

seamounts and in spawning aggregations. Figure 1

1054–3139/03/020132+15 $30.00/0 � 2003 Published by Elsevier S
shows an echogram of a spawning aggregation of orange
roughy on Cameron’s seamount at the eastern end of the
Chatham Rise, New Zealand.

Acoustic surveys of these deepwater species in New
Zealand waters are usually on spawning aggregations
that form over a short period in mid-winter. There are a
number of physical problems, including poor weather
and great ranges, that make the use of a hull-mounted
transducer frequently unsatisfactory (Do & Coombs,
1989). Then again seamounts often have steep slopes on
which the bottom-shadowing effect is an important
consideration. To minimize these and other problems we
use a transducer mounted in a deep-towed underwater
vehicle.

Since the focus of our surveys is almost always on
estimating biomass for stock assessment we use a
stratified, random survey design, with randomly spaced
parallel transects normally (Jolly & Hampton, 1990).
However, there are practical difficulties in steaming
closely spaced parallel transects on small aggregations
and this led us to adopt stars initially because they are

easier to traverse and result in less wear-and-tear and

cience Ltd on behalf of International Council for the Exploration of the Sea.
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Figure 1. An example of an echogram on Cameron’s seamount on the Chatham Rise, July 2000. The distance for 100 transmits
is about 600 m.
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Figure 2. An example of a ship’s tracks for star (2000 survey,
dotted line) and parallel (1998 survey, solid line) transects on
Cameron’s seamount [centred on point (0,0)] on the north-east
Chatham Rise. Shaded area is the seamount base at 1050 m; the
top is at 784 m.
risk to the equipment. Figure 2 shows both parallel- and
star-transect tracks run over Cameron’s seamount and it
can be seen that stars give the more straightforward
transit to the next transect. We have found, in fact, that
stars can halve the turning time, yielding time savings of
up to 40% and significantly increasing the number of
transects that can be done. Josse et al. (1999) used star
surveys for similar reasons in general and because of the
need to achieve adequate coverage of aggregations in a
limited time (�2 h) in particular.

The precise geometry of the star is important in the
subsequent analysis as will be discussed later. However,
using a towed transducer inevitably means that it is very
difficult to steam an accurate star in which all transects
are evenly spaced and intersect at the same point. The
transducer is typically towed on up to 2 km of cable and
the effects of wind and currents mean that it is often
offset from the vessel track. Thus, although the vessel
may cross the centre of the school the towed transducer
may not. Some compensation of the vessel track is
possible so that the towed body passes close to the centre
each time. In some instances we have exaggerated this
effect with the aim of randomizing the transects with
respect to the aggregation. The resulting design is the
‘‘offset star’’ in which transects cut through the school at
random points but still on approximately equally spaced
bearings (Figure 3). Even with perfect tracking any
movement of the school will also induce an offset-star
effect.

Thus, although an ideal star can be achieved using a
hull-mounted transducer, if a towed system must be used
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the ideal star can only be approximated. In this paper we
derive four biomass estimators for star surveys and test
them with a simulation study designed to mimic an
orange roughy survey. These estimators are tested on
both ideal and offset stars and we attempt to determine
whether the latter provides an adequate approximation
to the former for analytical purposes. We also use the
simulations to compare star and parallel designs.
 e/60/1/13
Methods
2/227
Biomass estimators from star surveys
Figure 3. Transects for an offset star on a circular school.
Density d

Diameter s

Transect length t

True biomass B = π s
2 d( )2

Naive estimate B= t
s Bˆ

Figure 4. The naive estimate of biomass from a star on a
circular school of constant density is biased high.
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The problem
Our initial ‘‘naive’’ approach to analysing stars was to
treat them as if the transects were parallel. However, this
is generally not valid except in the extreme case where
the areal density is uniform within the school and the
stratum area fits over the school exactly. There are two
problems. First, if the centre of the star is placed at
the centre of a fish school then density trends within the
school will cause bias because the star over-samples the
school centre. For example, if the density at the centre is
relatively high the naive approach produces estimates
that are biased high. The second problem is that the
estimate of biomass increases as the stratum area
increases and this introduces an increasingly positive
bias. This can be demonstrated mathematically for a
circular school of uniform density (Figure 4). If t is the
transect length, s the school diameter, and d the weight
density within the school, then the true biomass is

B=school area�mean weight density in school

=�(s/2)2d
and the naive estimate is

B| =star area�average of transect mean densities

=�(t/2)2(sd/t)

=(t/s)B.

The naive estimate has the undesirable property of being
proportional to the transect length and there is a severe
upwards bias if the transects are substantially longer
than the school diameter. Thus, in general, this estimate
is only correct if the transect length is equal to the
diameter of the school and the weight density within the
school is uniform.

Subsequently we adopted the intuitive approach of
weighting data on the basis of position on the transect
relative to the centre (Bull et al., 2000), which avoids the
biases of the naive approach. Here we formally derive
this method mathematically by treating the transects as
parallel in polar coordinates. We then propose an alter-
native estimate of variance using a polar-coordinate
version of transitive kriging.

Another approach to analysing stars is to estimate the
school area and the density within the school separately.
We consider two approaches to this; first, a basic
method in which the transects are truncated at the
school edge – which defines the area – and using the
density from the truncated portion and second, a two-
stage kriging procedure in which the school bound is
initially estimated using ‘‘indicator kriging’’ and then the
density within the school is estimated using kriging.

The four estimators for biomass (polar, polar with
transitive kriging, basic, and two stage kriging) were
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compared using simulated data based on a series of
idealized orange roughy aggregations with variations
that are typically encountered on surveys. Figure 1
shows an echogram of a typical orange roughy aggrega-
tion on a seamount of the type reflected in the simula-
tions. No attempt has been made to compare estimators
over a broad range of conditions.
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Basic method

A simple estimation method is to truncate transects at
the edge of the school, estimate school biomass from
each transect as area�mean density and average the
results. Thus, if there are n transects, and after trunca-
tion the ith transect has length li and mean density di, the
biomass estimate is:

This corrects the bias from areal expansion of biomass,
but school density must be uniform for there to be no
bias.
 p.com
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Kriging method

Kriging is a prediction method that explicitly takes
spatial correlation into account and which divides the
variation into large-scale (surface or trends) and small-
scale variation (correlation and error variance). Cressie
(1991) describes the basic theory. Several flavours exist.
‘‘Ordinary’’ kriging, to start with the simplest, assumes
a constant mean over the region. This leads on to
‘‘universal’’ kriging, which estimates a mean surface and
then to more complicated analyses. Spatial correlation is
assumed to have some structure which is usually
expressed in a semivariogram, that can be modelled as a
function of the relative distance between two points, i.e.,
the correlation does not depend on location, at least in
the estimation window around a point used to predict its
value. Decomposing variation into large-scale and
small-scale is not, in general, identifiable so that one
person’s surface trend can be another’s correlation struc-
ture. Thus, using universal kriging need not necessarily
work better than ordinary kriging even when a trend is
involved. For example, Altman (2000) showed that
ordinary kriging performed more or less as well as
universal kriging in terms of mean squared error of
predictions for some one-dimensional data sets she
analyzed. Cressie (1991) gives an account of analyses on
the wolfcamp aquifer data which shows qualitatively
similar predicted surfaces of the piezometric head
whatever method is used, i.e., ordinary, universal or
median-polish kriging. Predictions are often done at a
point but can also be for the total amount in a cell
(block kriging). The correlation structure for the latter is
linked to that for point predictions but it is modified to
represent the average correlation within a cell and
between cells.

For biomass estimation we used a two-stage method
in which the extent of the mark was first estimated and
then the mean density within the mark. Following
Altman (2000) and Cressie (1991), we have only consid-
ered ordinary kriging here. The extent of the marks is
estimated using indicator kriging (Rossi et al., 1992).
The acoustic measurements are categorized as  or
- on the basis of the positions of marks visible
in the echogram. The indicator function Iin–mark is
defined as 1 if in mark and 0 if not. The semivariogram
of Iin–mark is estimated using the classical estimator of
Matheron (1965) and a spherical semivariogram model
with nugget is fitted using an approximate weighted-
least-squares procedure (Cressie, 1991 pp. 61, 97). The
survey area is divided into a square grid and ordinary
kriging is carried out to estimate the probability that
each square is in a mark. Squares for which the kriged
probability is at least 0.5 are designated as . In the
second stage the mean density of the  squares is
estimated using ordinary block kriging (Cressie, 1991
pp. 124). The estimated semivariogram of the biomass
densities includes only ‘‘mark’’ measurements. As in the
first stage a classical semivariogram estimator is used
and a spherical variogram with nugget is fitted using
weighted least squares. Block kriging is used to estimate
the mean density over all of the grid squares identified as
being . The mean density is then multiplied by the
total area of these squares to yield a biomass estimate.

Variance estimation for the kriging biomass estimate
is problematic: the block-kriging process yields a vari-
ance but this does not take into account the error in the
indicator krig or in the estimation and fitting of both
semivariograms. Bootstrapping does not provide an
alternative since no spatial-bootstrapping method is
known (Cressie, 1991).

Exponential semivariogram models with nugget were
also investigated but were found to fit simulated data
poorly. In addition, we tried carrying out the density
krig on the log-scale with bias correction, Cressie
(1991), but preliminary investigations showed that the
performance was relatively poor. In addition, the
block-kriging method cannot be used on the log-
scale, and it is not clear how else the variance for
the estimated mean density in the mark could be
estimated.
Polar method
In the polar method each density measurement is
weighted proportionally to its distance from the centre
of the star. A circular survey area is defined, centred on
the centre of the star, with the smallest radius necessary
to include the entire fish school. Transects which stop
short of the edge of the survey area are padded at the
ends with zero backscatter values until they reach the
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Figure 5. The polar method of estimating biomass for stars.
Each backscatter measurement (black dots) is a sample from a
ring (dashed circles) and is weighted in proportion to the area
of the ring.
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edge. If yij is the ith density measurement in the jth
transect and rij the corresponding distance from the
centre of the star, the weighted-mean biomass density
for the transect, wj, is given by

where we assume that there are m samples from the
centre out to the edge, defining r0j=0, and that we have
nominated one side of the centre to take positive i
indices and negative indices on the other side. If A is the
size of the survey area and n the number of transects
then the biomass estimate is:

B| =Aw̄ (1)

and its variance is estimated by

V| (B|)=A2V| (w̄)=A2V| (w)/n.

Each density measurement yi is a sample from a circle of
radius ri and some thickness � (Figure 5). The area of
the circle is �(ri+�/2)2��(ri��/2)2, which is propor-
tional to ri. Hence the measurements are weighted
proportionally to the areas they sample from. In prac-
tice, the yis are averaged over short sections of the
transects rather than calculated for individual acoustic
pings. The towed-body positions, and hence the ri, are
not known exactly. We estimate the path of the towed
body by assuming that it passes over the centre of the
star and that it moves at a speed equal to that of the
towing vessel at any time.

The polar method is best understood by visualizing
the star pattern in polar coordinates. In an ideal star,
where all transects pass over the same centre point,
the transects are parallel and evenly spaced in polar
coordinates. Each straight-line transect in Cartesian
coordinates becomes two parallel transects in polar
coordinates, separated by 180� (Figure 6). As a result we
can apply results for parallel transect designs to the
analysis of stars. The biomass estimate for parallel
transects can be recast as the double summation of the
estimated biomass density over the length and width of
the stratum area, i.e., as a 2-dimensional numerical
integration. The same summation carried out in polar
coordinates gives the polar method biomass estimate for
a star.

Consider a rectangular stratum with n evenly spaced
parallel transects each with m evenly spaced, biomass-
density measurements yij. The biomass estimate is

Let L and W be the dimensions of the stratum, so that
A=LW. The stratum can be divided into nm rectangular
cells each containing one density measurement, with
length �l=L/m, width �w=W/n, and area a=�l�w. The
estimate can then be recast as a double summation over
cells, using each density measurement as an estimate of
the mean density in the cell:

The true biomass is the equivalent double integral,

The same summation can be carried out in polar coor-
dinates for a star. In polar coordinates, the true biomass
is given by

where R is the radius of the survey area, � the angle, and
r the radius. If there are 2n radial transects (from n star
transects), and m evenly spaced density measurements,
there will be 2nm rectangular cells in polar coordinates
(r,�). The spacing between measurements on a transect is
R/m and the angle between evenly spaced radial
transects is
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The approximate biomass for the ij-th cell, using yij to
approximate y(r�) in the cell, is:

The total biomass is the sum over all the cells:

and, since

multiplying the above by R/R gives

Combining the 2n radial transects back into n star
transects, nominating one to take negative indices, and
noting that
the biomass is also given by

which is the polar-method biomass estimate (Equation
1).

A corollary is that the polar method is not valid for
offset stars. If transects do not pass over the centre of the
circle then they are not radial in polar coordinates
(Figure 7), and the centre of the survey area is not
represented in the double summation.

The double-summation method also requires that
there be no missing data – the entire circular survey
area must be filled with integration cells. We therefore
truncate long transects and pad short transects with
zeros so that the transects are all diameters of the same
circle.
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Figure 6. Representation of a star (left) in polar coordinates (right). Each star transect is converted to two radial transects. The
radial transects are parallel and evenly spaced in polar coordinates.
Polar method with kriging

Transitive kriging is a technique used to estimate bio-
mass over an area that has been sampled on a regular
one- or two-dimensional grid from a randomly dis-
tributed starting point (Petitgas, 1993; Bez et al., 1997).
The advantage of the method is that the variance
estimates take account of the correlation structure of the
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Figure 7. Representation of an offset star (left) in polar coordinates (right).
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spatial distribution of the fish. Here, we develop the
one-dimensional transitive kriging method in polar
coordinates and apply it to derive variance estimates for
the polar-method biomass estimator. The estimates take
account of the correlations between adjacent transects
caused by the spatial structure of the fish schools. Note
that the biomass estimate is the same as that for the
polar method above but the estimate of the variance is
different.

If an area is sampled on a one-dimensional grid, e.g.,
values on a line that are made up of summations along a
transect from a series of parallel transects, with spacing
�x and origin x0, and z(x) is the biomass density at x, the
transitive kriging biomass estimate (Petitgas, 1993) is
given by

(The sum to infinity is used on the assumption that
density is zero outside the survey area.) The true bio-
mass is given by

The correlation structure of the spatial distribution of
the fish is expressed in terms of the covariogram
The integrated covariogram is equal to Q2:

The variance of B| is estimated, on the assumption that
x0 is uniformly randomly distributed within origin grid
cell, as

The one-dimensional transitive kriging can be applied to
the weighted-mean density estimates for the radial
transects in the polar method. If the n radial transects
are on regularly spaced bearings then they form an
evenly spaced, one-dimensional grid in �-space, with
��=2�/n. It could be expected that a pair of radial
transects on similar bearings would yield more similar
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results than a pair of widely spaced transects, and hence
that the n weighted-mean density estimates would be
correlated. The transitive kriging takes account of these
correlations in its variance estimates.

Let w(�) be the weighted-mean density for the radius
at angle �, so the observed radial transect densities
are w1=w(�0), w2=w(�0+��) . . . wn=w(�0+(n�1)��).
Further, let z(�)=w(�)A/2�. Then the one-dimensional
transitive kriging estimate on z is:

which is the polar method biomass estimate B| . Now let
g(�) be the covariogram of z. The function g(�) must be
periodic, i.e., g(�)=g(�+2�), and symmetric about 0.
The limits of integration change accordingly:

and the variance of the biomass estimate is then

An estimate of the covariogram is required to evaluate
the variance. The empirical covariogram is estimated for
angles which are integer multiples of the angle between
transects,

where the (i+k) mod n notation keeps the index to 1
through to n and because the z are periodic it indexes the
same value as i+k.

The first term of the variance estimate is estimated
from the empirical covariogram. For the second term
it is necessary to estimate g(�) for other angles so a
parametric model is fitted to the empirical covario-
gram. The model should be periodic, positive definite,
and the largest value, although other points can have
this value, should occur at �=0. We use the cosine
model:

g(�)=a1+a2cos(a3�)

which was found to give good fits to the simulated
data. The model is fitted to ĝ(k�) for k from 1 to n/2,
using least squares. The fitting process does not use
ĝ(0) because it is inflated by the ‘‘nugget effect’’
i.e. small-scale random variation superposed on the
correlation structure).
Simulation testing

A simulation study was carried out to test the perform-
ance of the four estimators of biomass described in this
paper:

� polar method
� polar method with c.v.s calculated using polar transi-

tive kriging
� basic method
� two-stage kriging.

The estimators were evaluated using simulated data.
Biomass-density measurements were simulated at
10-ping intervals along star or offset-star transects. A
set of simulation models of increasing complexity and
‘‘reality’’ was defined. We anticipated that all estimators
would perform well with the simplest simulation models
but that their performance would degrade to varying
extents as the models became more complex and the
estimation became more challenging. An estimator
could be considered robust if it performed well with the
most complex models.

The models formed a hierarchy, with an extra feature
added at each level, in a progression towards real-
world complexity. Model 1 was the simplest and most
idealized. In models 2–5, the simulated schools became
increasingly complex in their size, position and struc-
ture. Models 6–8 incorporated random fluctuation and
temporal change. The parameters of the models were
loosely based on real data from acoustic surveys of New
Zealand seamounts (authors’ unpublished data).

The models were:

(1) Uniform circular: A single circular school centred
on the centre of the star was generated with con-
stant biomass density. The school diameter was
1 km.

(2) Density profile: As (1), but the biomass density was
highest at the centre of the school and decreased
linearly to zero at its edge.

(3) Elliptical school: As (2), but the school was
elliptical. The orientation was random: the lengths
of the major and minor axes were 1.4 and 0.7 km.

(4) Off-centre school: As (3), but the position of the
school was random. The centre of the school was
displaced in a random direction from the centre
of the star. The distance between the two was
normally distributed with mean 0 and standard
deviation 250 m.

(5) 3 small schools: As (4), but three smaller schools
were added at random positions. The schools were
distributed randomly around the hill at distances
uniformly distributed from 0.75 to 1.25 km from
the hilltop. They were circular, with areas one third
that of the main school. The biomass density at the
centres of the small schools was half that at the
centre of the main school and decreased to zero at
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the edges. The combined biomass of the small
schools was therefore half that of the main school.
The schools were allowed to overlap.

(6) Variation: As (5), but small-scale random variation
was added. A multiplicative random error was
applied to the biomass in each 10-ping section. The
error was mixture-normally distributed, with a
coefficient of variation of 0.3 with probability 0.9,
or 1.0 with probability 0.1. This error distribution
yields low levels of variation overall, with an occa-
sional large ‘‘blip’’.

(7) Schools move: As (6), but the schools moved
between transects. Each school moved in a different
random direction, with the main school moving
80 m and each smaller school moving 160 m
between each pair of transects.

(8) Transect variation: As (7), but a multiplicative
random error was applied to each transect, with
c.v. 0.3. This could represent the effects of diurnal
variation in fish abundance or vertical distribution,
or experimental error, perhaps related to weather
conditions.

Sets of simulated biomass-density values for models 1, 5,
and 6 are shown in Figure 8, alongside the associated
biomass-density profiles. (Models 2–4 are not shown
because they are simply steps towards model 5; models
7–8 are not shown because they include changes between
transects that are difficult to represent.)

Two survey designs were simulated:

� a star with three 3 km transects;
� an offset star with three 3 km transects, each offset

from the centre by a random distance (uniformly
distributed on [0, 300] m).

For each of the 16 combinations of model and design,
500 sets of simulated data were generated. Each of the
four estimators was applied to each dataset to produce a
biomass estimate and c.v. The biomass estimates were
expressed relative to the true biomass, which is the
integral of the underlying biomass density profile. A
value greater than 1 represents an overestimate.

The performances of the three biomass estimators
(basic, polar, kriging) are expressed in terms of system-
atic bias, variability (standard deviation), and overall
error (root-mean-squared error, RMSE). For models 6
and 8, additional tests with two and six transects were
run.

The four variance estimators (basic, polar, polar with
kriging, kriging) are also evaluated in terms of sys-
tematic bias, variability (standard deviation), and over-
all error (root-mean-squared error, RMSE), but only for
three-transect designs under models 6 and 8.

A comparison of the star survey with the usual
parallel transect design was also made using simulation
from model 8 – the most complicated and realistic – with
three and six transects. The survey area was defined as a
rectangle, with transects running west–east. The north–
south width of the survey area was equal to twice the
north–south width of the main school at the start of the
survey. (This width was chosen to be large enough to
include all the schools in most simulations; negative bias
could have been reduced slightly by increasing it further
but this would have been at the cost of more variability
and a higher RMSE.) The transects were evenly spaced
from a random starting point. Total backscatter was
estimated using the standard Jolly & Hampton (1990)
estimator.
Results

The performances of the three biomass estimators
(basic, polar, kriging) are summarized in Table 1. All
three estimators performed well for the basic model 1: it
would be of some concern if they did not. For offset
stars the basic and polar methods were biased low.

Model 2, in which the density of the school decreased
from the centre to the edge, introduced some problems
for the basic and polar methods. The basic method had
a large positive bias for true stars. This bias occurred
because all the transects passed through the centre of the
school where the density was highest. The polar and
kriging methods are designed to cope with over-
sampling and did not suffer this bias. However, for offset
stars, the polar method was biased low because transects
can miss the centre, in which case this area is not
represented in the weighted-mean density. This negative
bias in the polar method for offset stars appears in all
subsequent models.

By model 3, in which the school was elliptical, all
estimators had developed a small amount of variability
for stars and a moderate amount for offset stars. No new
biases were introduced.

In model 4, where the school’s position could be
off-centre, the bias of the basic method for star designs
was reduced since the transects need no longer pass
through the centre of the school. On the other hand, the
basic method gave highly variable estimates for model 4
and all higher models. The kriging method still per-
formed well and the polar method performed well for
stars but was biased low for offset stars, though less so
than in the simpler models.

Model 5, which included three small additional
schools, led to increased variability in all estimators
since transects are likely to miss some schools entirely.
No new biases were introduced.

The introduction of random variation in measured
densities in model 6 had little effect on the basic and
polar method but kriging performance was considerably
worsened with increased variability and positive bias.

Model 7, in which schools could move, had little effect
on any of the estimators.
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Figure 8. Comparison between simulation models 1, 5, and 6. Left-hand plots show the underlying backscatter-density profiles.
Right-hand plots show simulated backscatter data for 3-transect star designs; circle diameters indicate mean-backscatter values in
10-ping sections. Model 1 is the basic, simplified version; model 5 allows a more realistic school structure and adds three small
peripheral schools; model 6 includes random variation about the underlying density.
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Table 1. Biomass estimate: performance of the basic, polar, and kriging estimators on simulated data
using three transects, expressed in terms of bias, variability (standard deviation), and root-mean-
squared error (RMSE). Based on 500 simulations per design per model. Note that the results for the
polar method with kriging are the same as those for polar.

Estimator design Basic Polar Kriging

Model Model name Star Offset Star Offset Star Offset

(a) Bias
1 Uniform circular �0.01 �0.13 0.00 �0.12 �0.07 0.01
2 Density profile 0.49 0.06 0.01 �0.25 0.04 0.01
3 Elliptical school 0.46 0.00 0.00 �0.24 0.03 0.04
4 Off-centre school 0.09 �0.14 0.00 �0.16 0.04 0.02
5 Three small schools 0.17 �0.01 0.01 �0.10 0.03 0.04
6 Variation 0.14 �0.03 �0.02 �0.09 0.14 0.11
7 Schools move 0.12 �0.03 0.00 �0.08 0.17 0.13
8 Transect variation 0.12 �0.09 0.00 �0.12 0.20 0.09

(b) Standard deviation
1 Uniform circular 0.00 0.06 0.00 0.06 0.00 0.06
2 Density profile 0.00 0.18 0.00 0.12 0.00 0.06
3 Elliptical school 0.08 0.25 0.05 0.16 0.07 0.16
4 Off-centre school 0.36 0.34 0.10 0.26 0.11 0.20
5 Three small schools 0.39 0.39 0.25 0.29 0.26 0.29
6 Variation 0.41 0.41 0.25 0.31 0.37 0.37
7 Schools move 0.41 0.38 0.28 0.30 0.38 0.36
8 Transect variation 0.47 0.44 0.35 0.35 0.49 0.42

(c) RMSE
1 Uniform circular 0.01 0.15 0.00 0.14 0.07 0.06
2 Density profile 0.49 0.19 0.01 0.27 0.04 0.06
3 Elliptical school 0.46 0.25 0.05 0.29 0.07 0.16
4 Off-centre school 0.37 0.36 0.10 0.30 0.12 0.20
5 Three small schools 0.42 0.39 0.25 0.31 0.26 0.30
6 Variation 0.43 0.41 0.25 0.32 0.39 0.38
7 Schools move 0.43 0.39 0.28 0.31 0.41 0.38
8 Transect variation 0.48 0.45 0.35 0.37 0.53 0.43
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Table 2. Biomass estimation: performance of the basic, polar, and kriging estimators for 2-transect
designs. Note that the results for the polar method with kriging are the same as those for polar.

Estimator design Basic Polar Kriging

Model Model name Star Offset Star Offset Star Offset

(a) Bias
6 Variation 0.15 �0.05 �0.01 �0.10 0.30 0.22
8 Transect variation 0.11 �0.07 �0.01 �0.12 0.30 0.22

(b) Standard deviation
6 Variation 0.47 0.47 0.34 0.39 0.51 0.54
8 Transect variation 0.56 0.53 0.45 0.46 0.64 0.61

(c) RMSE
6 Variation 0.50 0.47 0.34 0.40 0.59 0.59
8 Transect variation 0.57 0.53 0.46 0.46 0.71 0.66
The final addition, in model 8, of between-transect
variability added substantial variability to each of the
estimators.

In the simulations with two transects (Table 2), for
models 6 and 8 none of the methods did well and all of
them had high variability as one might expect. The
kriging method especially was problematic and had
substantial bias. With 6 transects (Table 3), all methods
did substantially better.

The question of whether the estimated variances of
the estimators accurately reflect the true errors was
considered. If they do the estimated c.v.s for each model
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and design should be close to the true RMSE. Estimated
and true variabilities are compared in Figure 9, for
models 6 and 8 – two of the more complex, realistic
scenarios. Here, the polar method with kriging was
generally best (Table 4), in terms of RMSE with the
next-best estimate being up to 19% worse. Within the
polar method the transitive krig estimate was 18% better
on stars and 10% on offset stars (Table 4). The 2-phase
kriging estimate of variance was always biased low at
about half the true value.

Biomass estimates from the parallel-transect surveys
for model 8 did substantially worse than the polar
method when using three transects but the two per-
formed similarly when using six transects (Tables 2, 3, &
5). Variance estimates for the parallel design were biased
upwards, even with six transects and compared poorly
with the polar values (Table 5 and Figure 9).
Table 3. Biomass estimation: performance of the basic, polar, and kriging estimators for 6-transect
designs. Note that the results for the polar method with kriging are the same as those for polar.

Estimator design Basic Polar Kriging

Model Model name Star Offset Star Offset Star Offset

(a) Bias
6 Variation 0.15 �0.04 �0.01 �0.11 0.10 0.09
8 Transect variation 0.01 �0.12 0.00 �0.06 0.15 0.11

(b) Standard deviation
6 Variation 0.30 0.31 0.11 0.20 0.22 0.24
8 Transect variation 0.34 0.37 0.26 0.31 0.33 0.35

(c) RMSE
6 Variation 0.34 0.31 0.11 0.23 0.26 0.24
8 Transect variation 0.34 0.39 0.26 0.31 0.36 0.36
507 by guest on 19 April 2024
Discussion

To the best of our knowledge, this is the first use of
star-transect patterns and of polar transitive kriging
respectively to estimate the biomass of fish. Similar
designs have been used to track tuna under FADs and
they may have been used for exploratory mapping, but
not for biomass estimation per se. The polar method
gave the best results for the simulated orange roughy
surveys for both stars and offset stars when modest
amounts of variation were introduced. The variability in
star estimates was mainly due to multiple schools (model
5) and transect variation (model 8). For offset stars the
main sources of variability were the density profile
(model 2), and transect variation (model 8). Thus, the
simulation results show that the polar method is reason-
ably robust to the star centre being displaced from the
school centre and the effects of random, fish-aggregation
movement. There is a modest advantage in using transi-
tive kriging to estimate variance for the polar method
(Table 4). However, this was only the case for simula-
tions in which the star centre did not coincide with the
school centre which introduces some asymmetry into
the mean values in the transects as they traverse around
the star centre. If the centres do coincide then this
method had no advantage because the simulated aggre-
gation is isotropic.

Both types of star performed better than parallel
transects when a low number of transects were used but
the differences were minor when modest numbers were
employed. However, the variance estimates from offset
stars had a high bias and so were more poorly estimated
than those from stars. The poor variance estimation
from parallel transects could be improved by transitive
kriging because the density has structure in the simula-
tions, i.e., the highest density is in the middle of the
aggregation decreasing towards the edges. This structure
creates additional apparent variation over the aggrega-
tion that is incorporated into the sample variance esti-
mate. Transitive kriging or, perhaps, kriging will tend to
correct for the structural change and eliminate the
apparent variation.

Because of the time constraints imposed by short
spawning seasons and large areas needing to be covered
we have tended to use only small numbers, normally
between two and four, of transects on seamount surveys
(Figure 2). Stars perform best for this number of
transects and give better results overall than parallel
transects in terms of survey practicality, least survey
time and minimum variance,

In practice, as noted earlier, all star transects tend
towards offset stars to a greater or lesser extent
because of navigational inaccuracies and fish move-
ments. Moreover, as described in the introduction, if a
towed transducer is used an offset star is more or less
inevitable. The offset star simulated here had a cross-
over disc that was 600 m across compared to the
1000 m of the aggregation and was intended to reflect
an orange roughy survey situation. For our most
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Figure 9. Variance estimation: comparison of estimates with true errors using 3 transects: estimated c.v.s (histogram) vs. true
RMSE (vertical line) for each estimator, for models 6 and 8 with stars and offset stars. In the ideal case the histogram would be
tightly distributed about the line. Bias, standard deviation, and RMSE of the c.v. estimates are given for each case.
realistic model (model 8) offset stars had a negative
bias compared to true stars but this bias was swamped
by the variance component so that the RMSE was
similar for both. Hence, for the conditions simulated
here using a star with a towed transducer will yield
acceptable results.
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The simulation results show that at least three star
transects should be carried out on each seamount. The
precise number will depend on how many seamounts are
to be surveyed and for what purpose. Three per
seamount is sufficient for a typical orange roughy survey
that aims to estimate the total biomass over many
seamounts.

Simulations of roughy aggregations showed that the
best approach is to transform from Cartesian to polar
coordinates and then use standard statistical methods
(polar method). The polar method was robust to
shifts in the transect centre off the aggregation centre
and aggregation movement in a random way, i.e.,
offset designs can be analysed using the polar method.
Variance estimation was best with a polar version of
transitive kriging. Stars using the polar method were
also better than the usual parallel-transect design
when transect numbers were low but the results were
similar when six or more transects were used. How-
ever, in all cases considered parallel transects con-
sistently overestimated variance. We conclude that
star transects, by minimizing vessel time and yielding
good precision, offer a robust and effective way of
estimating the biomass of small, localized aggregations
of fish.
Acknowledgements

Funding for this research was provided by New Zealand
Ministry of Fisheries contract ORH199901. Allan Hicks
provided helpful comments on the manuscript.
Table 4. Variance estimation: performance of the polar and the polar with kriging estimators for
3-transect designs.

Estimator design Polar Polar with kriging

Model Model name Star Offset Star Offset

(a) Bias
6 Variation 0.12 0.06 0.04 0.01
8 Transect variation 0.05 0.04 �0.03 �0.03

(b) Standard deviation
6 Variation 0.18 0.17 0.16 0.16
8 Transect variation 0.18 0.20 0.16 0.18

(c) RMSE
6 Variation 0.21 0.18 0.17 0.16
8 Transect variation 0.19 0.20 0.16 0.18
Table 5. Biomass and variance estimation: performance of the estimators for parallel design on
model 8 using three and six transects.

Biomass performance C.v. performance

Number of parallel transects Number of parallel transects

3 6 3 6

Bias �0.12 �0.12 0.29 0.25
Standard deviation 0.48 0.30 0.25 0.20
RMSE 0.49 0.32 0.38 0.32
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