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A novel tag-recovery model with two size classes for estimating
fishing and natural mortality, with implications for the southern
rock lobster (Jasus edwardsii) in Tasmania, Australia

Robert J. Latour, John M. Hoenig, Daniel A. Hepworth, and Stewart D. Frusher

Latour, R. J., Hoenig, J. M., Hepworth, D. A., and Frusher, S. D. 2003. A novel
tag-recovery model with two size classes for estimating fishing and natural mortality,
with implications for the southern rock lobster (Jasus edwardsii) in Tasmania,
Australia. – ICES Journal of Marine Science, 60: 1075–1085.

Multi-year tag-recovery models can be used to derive estimates of age- and year-specific
annual survival rates and year-specific instantaneous fishing and natural mortality rates. The
latter, which are often of interest to fisheries managers, usually can only be estimated when
the tag-reporting rate (k) and the short-term tag-induced mortality and tag-shedding rate (/)
are known a priori. We present a new multi-year tagging model that permits estimation of
instantaneous mortality rates independently of /k, provided tagged animals from two
adjacent size groups are released simultaneously. If the two size groups comprise animals
just above and below the minimum harvestable size limit, then it is possible to estimate
year-specific instantaneous fishing and natural mortality rates after 2 yr of tagging and tag-
recovery. In addition to the standard assumptions of multi-year tag-recovery models, it is
necessary to assume that recruited animals have equal selectivity, pre-recruited animals
become fully recruited in 1 or 2 yr, and the size groups experience the same natural
mortality rate. Applicability of the model to the Tasmania southern rock lobster (Jasus
edwardsii) fishery is evaluated using a simulation model and parameters based on data from
the lobster fishery; assumptions are likely to be met and precision should be adequate if at
least 1000 animals are tagged per year in each size group.
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Introduction

The models developed by Brownie et al. (1985) form the

basis of many modern approaches to estimating mortality

rates of exploited populations from tag-recovery data. The

models are designed for situations where cohorts of tagged

animals are released at known intervals, generally a year

apart. If all tagged animals are fully vulnerable to harvesting

at the timeof release, then the ratio of tag-recoveries from two

cohorts released a year apart reflects the fact that the first

cohort has experienced one more year of mortality than the

second cohort. Consequently, this ratio can be used to derive

an estimate of the finite annual survival rate. This class of

models can also be parameterized in terms of age-dependent

finiteannual survival and tag-recovery rates.Supposeacohort

of 5-yr-old animals is released in the first year of a tagging
1054–3139/03/101075þ11 $30.00 � 2003 International Cou
study and a similar cohort of 6-yr-old animals is released in

the second year. During the first year, the 5-yr-old cohort will

experience 1 yr of mortality and become age 6. In the second

year of the study, both cohorts will be age 6 and should

experience the same exploitation rate. As a result, the ratio of

tag-recoveries from the two cohorts can be used to estimate

the survival rate of the 5-yr-old cohort in the first year.

Generally, only information on the total mortality rate

can be obtained from the Brownie et al. (1985) models;

separation of mortality into its fishing and natural

components is theoretically possible but not reliable unless

massive amounts of tag-recoveries have been obtained

(Youngs, 1974; Hoenig et al., 1998). Pollock et al. (1991)

showed that if information is available about the tag-

reporting rate, then it is feasible to estimate the individual

components of mortality. Hoenig et al. (1998) utilized the
ncil for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
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work by Pollock et al. (1991) to reparameterize the

Brownie et al. (1985) models in terms of instantaneous

mortality rates and tag-reporting rate. Although the Hoenig

et al. (1998) models can be used to estimate natural and

year-specific fishing mortality rates directly from tag-

recovery data, external information on the tag-reporting

rate is generally required to get reliable estimates.

This apparent rule that the tag-reporting rate must be

known (and typically known precisely) to calculate esti-

mates of fishing and natural mortality has often

plagued practical applications of multi-year tag-recovery

models (Latour et al., 2001a). However, Hearn et al. (1998)

developed an important exception to this rule by showing

that it is possible to design a tag-recovery study where the

components of mortality can be estimated from a general-

ized Brownie et al. (1985) model without external

information on tag-reporting rate. Their approach involves

tagging before and after the fishing season so that natural

mortality can be measured between fishing seasons. Under

this design, the difference between total mortality (which

can be derived from Brownie et al., 1985) and natural

mortality provides the estimate of fishing mortality.

In this paper, we draw on the theory associated with the

age-structured version of the Brownie et al. (1985) models

and the models developed by Hearn et al. (1998) and Hoenig

et al. (1998) to develop a new model to infer mortality rates

when tagged animals from two adjacent size groups are

released simultaneously. If the two size groups comprise

animals just above and below the minimum harvestable size

limit, then it is possible to estimate year-specific instan-

taneous fishing and natural mortality rates independently of

the tag-reporting rate after 2 yr of tagging and tag-

recovery. In addition to the standard assumptions of multi-

year tag-recovery models (see Pollock et al., 1991, 2001;

Latour et al., 2001b for detailed discussions of these as-

sumptions), it is necessary to assume that all recruited

animals have equal selectivity, the pre-recruited contingent

of the tagged population grows to become fully recruited

in 1 yr (this assumption is relaxed in the Appendix), that

they experience no fishing mortality during that first year,

and that the two size groups experience the same natural

mortality rate and tag-reporting rate. Consequently, this

model may be most appropriate for a crustacean fishery in
which growth of the sublegal animals to legal size is by

a discrete growth pulse such as a molt that occurs between

fishing seasons. As such, we present the model in the

context of the Tasmania southern rock lobster (Jasus

edwardsii) fishery since it largely meets these assumptions.

Methods

Development of the model

The structure of the model in its most general form is based

on three types of parameters: year-specific instantaneous

fishing mortality rates, year-specific instantaneous natural

mortality rates, and year-specific tag-recovery rates. As

with all tag-recovery models, it is possible to impose

restrictions on the parameters to ultimately obtain a more

parsimonious model (e.g. assume natural mortality is

constant over time). As described above, two size groups

of animals must be tagged within the same year under the

assumption that the pre-recruited animals are within one

annual molt of reaching the minimum legal size limit. To

develop the model, let rijp and rijr denote the number of pre-

recruited and fully recruited animals, respectively, tagged

in year i that are recovered in year j. The matrix of tag-

recoveries, R, for a study with I yr of tagging and J yr of

tag-recovery (J� I) takes the form

R ¼

r11r r12r r13r � � � r1Jr
0 r12p r13p � � � r1Jp
� r22r r23r � � � r2Jr
� 0 r23p � � � r2Jp

..

. ..
. ..

. . .
. ..

.

� � � � � � rIJr
� � � � � � xp

2
6666666664

3
7777777775
; ð1Þ

where

xp ¼
0 if I ¼ J;
rIJp otherwise:

�
Application of multi-year tag-recovery models generally

involves constructing a matrix of expected values and com-

paring them to the observed data. The same approach will be

needed to derive parameter estimates for this model. The

matrix of expected values corresponding to Equation (1)

under a time-specific parameterization is
4

EðRÞ ¼

N1rf1 N1r e
�ðF1þM1Þf2 N1r e

�ðF1þF2þM1þM2Þf3 � � � N1r e
�
PJ�1

k¼1
ðFkþMkÞfJ

0 N1p e
�M1 f2 N1p e

�ðF2þM1þM2Þf3 � � � N1p e
�
PJ�1

k¼2
Fk�
PJ�1

k¼1
Mk fJ

� N2rf2 N2r e
�ðF2þM2Þf3 � � � N2r e

�
PJ�1

k¼2
ðFkþMkÞfJ

� 0 N2p e
�M2 f3 � � � N2p e

�
PJ�1

k¼3
Fk�
PJ�1

k¼2
Mk fJ

..

. ..
. ..

. . .
. ..

.

� � � � � � yr

� � � � � � yp

2
6666666666666664

3
7777777777777775

; ð2Þ
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where Nir and Nip represent the number of fully and

pre-recruited animals, respectively, tagged in year i, Fi is

the instantaneous fishing mortality rate in year i for legal-

sized animals, Mi the instantaneous natural mortality rate

in year i, and fi is the tag-recovery rate in year i for

legal-sized animals. The expected values correspond-

ing to the (I,J,r) and (I,J,p) cells in the matrix are as

follows:

yr ¼
NIrfJ if I ¼ J;

NIr e
�
PJ�1

k¼I
ðFkþMkÞfJ otherwise;

�
ð3Þ

and

yp ¼

0 if I ¼ J;

NIp e
�MI fJ if J ¼ Iþ 1;

NIp e
�
PJ�1

k¼Iþ1
Fk�
PJ�1

k¼I
Mk fJ otherwise:

8>><
>>: ð4Þ

Moment estimators

To illustrate the logical basis for parameter estimation, the

following moment estimators are developed for the case

where I¼ J. As with the Brownie et al. (1985) models, the

tag-recovery rates can be estimated by computing simple

ratios of the form

f̂f j ¼
rjjr

Njr

; ðj ¼ 1; . . . ; JÞ; ð5Þ

where the ^ denotes an estimate. To estimate the fishing

mortality rate in year i, ratios involving tag-recoveries from

recruited and pre-recruited animals that were tagged in year

i must be constructed. Specifically, these ratios lead to ex-

pressions of the form:

F̂F1 ¼ �loge
N1pr1jr

N1rr1jp

� �
; ð j ¼ 2; . . . ; JÞ;

F̂F2 ¼ �loge
N2pr2jr

N2rr2jp

� �
; ð j ¼ 3; . . . ; JÞ;

..

.

F̂FI�1 ¼ �loge

NI�1prI�1Ir

NI�1rrI�1Ip

� �
: ð6Þ

Note that it is possible to obtain a fishing mortality estimate

from one tagging event (provided tag-recoveries are

tabulated for at least 2 yr) and it is not possible to estimate

the fishing mortality rate in the most recent year of tag-

recovery unless additional assumptions are made.

To estimate the natural mortality rate in year i, ratios

involving tag-recoveries from pre-recruited and recruited

animals in years i and iþ1, respectively, must be

constructed. These ratios, in turn, lead to expressions of

the form:
M̂M1 ¼ �loge

N2rr1jp

N1pr2jr

� �
; ð j ¼ 2; . . . ; JÞ;

M̂M2 ¼ �loge

N3rr2jp

N2pr3jr

� �
; ð j ¼ 3; . . . ; JÞ;

..

.

M̂MI�1 ¼ �loge

NIrrI�1Ip

NI�1prIIr

� �
: ð7Þ

It is not possible to estimate the tag-reporting rate, k
directly from the model. However, given year-specific

estimates of mortality (which can be obtained directly from

the model) and knowledge of the timing of the fishery, it is

possible to obtain an estimate of the exploitation rate.

Specifically, for either a pulse (Type I) or a continuous

(Type II) fishery (Ricker, 1975), the estimated exploitation

rate in year i, ûui, takes the form

ûui ¼
1� e�

^

Fi for a Type I fishery;
F̂Fi

F̂FiþM̂Mi

ð1� e�ð
^

Fiþ
^

MiÞÞ for a Type II fishery:

8<
: ð8Þ

If the exploitation rate estimate is used in combination

with the tag-recovery rate estimate (which can also be

obtained directly from the model), it is then possible to

derive an estimate of the tag-reporting rate. Thus,

k̂k ¼ f̂f i

ûuûui
; ð9Þ

where ûu is an estimate, obtained external to the analysis, of

the probability that an animal survives any initial tag-

shedding and tag-induced mortality (Pollock et al., 1991;

Hoenig et al., 1998). If k and M are assumed to be constants

over time, and the timing of the fishery is known, then the

tag-recovery rate in the last year of tag-recovery can be

used to estimate the fishing mortality rate in that year.

The likelihood function

The method of maximum likelihood is typically used to

obtain parameter estimates from multi-year tag-recovery

models because it is generally more efficient than applying

moment estimators. The method consists of two steps. First,

the probability of observing a particular set of tag-

recoveries is expressed in terms of the unknown mortality

and tag-recovery parameters. The resulting mathematical

expression is called the likelihood function. Second, the

values of the parameters that maximize the likelihood

function are found. Those values, which are the maximum

likelihood parameter estimates, yield the highest probabil-

ity for observing the actual number of tag-recoveries. For

the size-structured model presented herein, the quantities

rijr and rijp simply represent realizations of the random

variables Rijr and Rijp, respectively. Although these random
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variables are modeled by the expressions in the matrix of

Equation (2), for convenience let EðRijrÞ ¼ NijrPijr and

EðRijpÞ ¼ NijpPijp. The tag-recoveries over time from each

tagged cohort are assumed to follow a multinomial

probability distribution, and if we assume independence

among all tagged cohorts, the overall product likelihood

takes the form

K /
YI
i¼1

YJ
j¼i

P
rijr
ijr

 !
1�

XJ

j¼i

Pijr

 !Nir �
PJ

j¼i
rijr

�
YI
i¼1

YJ
j¼iþ1

P
rijp
ijp

 !
1�

XJ

j¼iþ1

Pijp

 !Nip �
PJ

j¼iþ1
rijp

: ð10Þ

Maximizing the likelihood in Equation (10) can be ac-

complished numerically through an iterative process.

Potential application to southern rock lobsters

The southern rock lobster (J. edwardsii) is an extremely

important natural resource to the island of Tasmania,

Australia, with recent landings exceeding A$50 million in

value (Frusher, 2001). However, reports of high exploita-

tion rates generated concern for this fishery. As a result, in

1992 the Tasmania Aquaculture and Fisheries Institute

(formerly the Department of Primary Industry and Fisher-

ies) commenced a fishery independent catch sampling

project to provide fishery assessment parameters. Results

from this project and the mandatory catch and effort log-

book data from the commercial fishery form the basis of

annual stock assessments of the fishery.

The overall stock assessment is based on fitting

a population dynamics model to rock lobster data from

each of eight defined zones around Tasmania (Punt and

Kennedy, 1997). These eight areas are assessed separately

because of significant spatial variation in growth rates, size

at maturity, and catch rates. Incorporated within the model

are area-specific descriptions of lobster growth, size-

specific maturity rates, length-specific fecundity, and an

estimate of the natural mortality. Growth rates are one of

the most important inputs to the model and fortunately, in

recent years, scientists in Tasmania have been conducting

a large-scale tagging study on rock lobsters to obtain such

information.

Southern rock lobster life history and fishery

considerations

Here we outline the salient features of southern rock lobster

life history and the associated fishery, as they pertain to the

application of the two-size category model. Inherent to the

model formulation is the assumption that lobsters do not

undertake skip molting. To date, scientists working with

rock lobsters in Tasmania have never observed an incidence

of skip molting. In general, molting frequency and growth

of rock lobsters varies regionally. Off southern Tasmania,

lobsters molt once per year over a wide range of sizes
including the sizes in the commercial catch, while off

northern Tasmania, animals molt twice per year and tend to

experience higher annual growth increments. Although

rock lobster growth is variable, it has been characterized

rather well. Lobsters tend not to feed at the time of molting

and tagging data suggest that rock lobsters undergo limited

movements (Pearn, 1994).

The southern rock lobster fishery employs traps with

either a single escape gap (57mm� 400mm) or two escape

gaps (each 57mm� 200mm). Compliance with the

mandate to equip traps with an escape gap(s) is considered

to be excellent, primarily because measuring the gap

dimensions is not difficult and commonly performed by

enforcement personnel. Compliance with the size regula-

tions is also considered excellent since the penalties for

violation are severe, ranging from an A$200 fine for

possession of a single undersized lobster to license

forfeiture for possession of 200 or more undersized

lobsters. Measurement error is believed to be minimal

because fishers use standardized measures certified by the

weights and measures authorities to determine the length of

captured lobsters.

Tagging protocol

The tagging protocol described by Frusher and Hoenig

(2001a) is generally suited for the study contemplated here.

However, we offer a few more suggestions that would help

minimize the possibility of assumption violation when

applying the two-size class model. First, since the new

model requires mixing among all tagged cohorts and

because rock lobsters have limited movements, it is

important to tag at the same fixed locations during each

tagging event. Second, it is important that undersized and

legal-sized lobsters be treated identically. Ideally, the same

person should tag all lobsters captured for a given study;

doing so would more easily allow for (if necessary)

adjusting for short-term tag-loss and tag-induced mortality.

However, since multiple taggers are usually needed to carry

out a tagging study, efforts should be directed toward

minimizing the heterogeneity among the tagged cohorts

(attributed by multiple taggers) to perhaps having the same

person tag all captured lobsters on a particular day. In

addition, when multiple taggers are employed, the name of

each tagger should be recorded so that differences in taggers

can be evaluated and, if necessary, adjustments to the data

during the analysis can be made. Holding studies would be

valuable to evaluate short-term tag-loss and tag-induced

mortality, particularly when a tagging program is just be-

ginning.

Need for model simulations

Although the aforementioned tagging study conducted by

the Tasmania Aquaculture and Fisheries Institute was

designed to obtain estimates of growth rates for the stock

assessment model, Frusher and Hoenig (2001a) showed that
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the data from the north-western region of the fishery could

be analyzed to yield information on mortality. Upon

reviewing the available tag-recovery data, we found that

insufficient numbers of sublegal-sized lobsters were tagged

to utilize the two-size category model that we have

developed. We therefore conducted a series of model

simulations that were based on the results of previous tag-

recovery data analysis efforts to determine the precision that

might be obtained with the new model (note that the

precision of the natural mortality estimates obtained by

Frusher and Hoenig (2001a) was poor).

Simulation design

Frusher and Hoenig (2001a) conducted a comprehensive

analysis of rock lobster tag-recovery data from northwest

Tasmania, Australia. They combined elements of the

instantaneous rates tag-recovery models (Hoenig et al.,

1998) with the twice-a-year tagging models (Hearn et al.,

1998) to derive estimates of fishing and natural mortality

rates and tag-reporting rate. The data analyzed represented

tagging efforts from 1992 to 1995 and tag-recovery

tabulation from 1992 to 1997. The number of rock lobsters

tagged during these years (both sexes combined) ranged

from 553 to 1869 and results of the analysis indicated that

from 1991 to 1997 fishing mortality rates were high

ðF ffi 1:00� 1:20 yr�1Þ, the natural mortality rate was low

ðM ffi 0:00� 0:10 yr�1Þ, and that tag-reporting was low

ðk ffi 0:20� 0:23Þ.
To determine if the two-size category model yields

biased parameter estimates for sample sizes likely to be

used in practice, and also to answer sample size questions

as they pertain to precision, we conducted a series of

simulations based on the aforementioned values of fishing

and natural mortality. Each scenario considered was

simulated 5000 times. Scenarios reflecting 5 yr of tagging

and tag-recovery with annual cohort sizes of 250, 500, and

1000 lobsters were considered. Natural mortality was held

constant over all simulations at 0.05 yr�1; the product /k
was held constant at 0.21. For each cohort size, fishing

mortality rates of 0.5, 1.0, and 1.5 yr�1 were chosen and

held constant over time. Since the tag-recovery rates are

a function of the fishing mortality rates (i.e. Equations (8)

and (9) for a Type II fishery), the respective fishing

mortality values led to tag-recovery rates of 0.08, 0.13, and

0.16 when the exploitation rates were multiplied by a value

of /k of 0.21. Program SURVIV (White, 1983) was used to

perform all simulations. For all scenarios, a 10-parameter

model that specified time-specific tag-recovery and fishing

mortality rates and a constant natural mortality rate (i.e. f1,

f2, f3, f4, f5, F1, F2, F3, F4, and M) was fit to the data, and for

the simulation that specified a tagged cohort size of 1000

lobsters, a fishing mortality rate of 1.0 yr�1, and a tag-

recovery rate of 0.13, an additional three-parameter model

that reflected constant tag-recovery and fishing mortality

rates (i.e. f, F, and M) was fit to the data.
Two additional scenarios were examined to determine if

the model could successfully detect changes in the rates of

fishing mortality. Assuming an annual tagged cohort size of

1000 lobsters and the aforementioned constant natural

mortality rate of 0.05 yr�1, the first scenario specified

respective fishing mortality and tag-recovery rates of 1.0

yr�1 and 0.13 for years 1–3 and 1.5 yr�1 and 0.16 for years

4–5, while the second scenario specified respective fishing

mortality and tag-recovery rates of 1.0 yr�1 and 0.13 for

years 1–2 and 1.5 yr�1 and 0.16 for years 3–5. Again, each

scenario was simulated 5000 times and only the 10-

parameter model was fit to the data.

Results

Simulation results

For each simulation, we examined the mean and standard

deviation of the 5000 parameter estimates to assess model

performance. We also examined the mean of the 5000

estimated standard errors of each parameter and found that

these means were either the same or only slightly larger

than the observed standard deviations of the simulation

estimates. As such, we discuss precision in the context of

the observed standard deviations.

For all simulations, the bias (i.e. the difference between

the mean estimate and the true parameter value in mag-

nitude) was negligible, always being less than or equal to

0.02 for both the fishing and natural mortality estimates,

and equal to zero for the tag-recovery rate estimates (Tables

1–3). However, the standard deviations of the simulated

fishing and natural mortality estimates were not always

negligible and, in fact, were quite high when the annual

tagged cohort size was only 250 lobsters (Table 1). These

standard deviations decreased to more reasonable levels

when the annual tagged cohort size increased to 1000

lobsters, which suggests that sample sizes smaller than

1000 tagged lobsters of each size class per year may not be

sufficient to obtain precise parameter estimates from the

model (Tables 1–3 and Figure 1). Across simulations where

the annual tagged cohort size was the same, the standard

deviations of the respective fishing and natural mortality

estimates increased as the fishing mortality rate increased

from 0.5 to 1.5 yr�1. Despite this trend, the loss in precision

when the fishing mortality rates were 1.0 and 1.5 yr�1 was

not substantial enough to prevent qualitative conclusions

being made that fishing mortality is high and natural

mortality is low.

For the simulations where the true fishing mortality rates

changed in years 4–5 and years 3–5, respectively, the

standard deviations of the parameter estimates were rea-

sonable and similar to all the simulations that specified a

tagged cohort size of 1000 lobsters per year (Table 2). For

the scenario in which fishing mortality increased for years

4–5, approximately 50% of the estimated fishing mortality

rates in year 4 were between 1.4 and 1.6 (Figure 2). The

same is true for the fishing mortality estimates in years 3
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Table 1. Simulation results (mean parameter estimates and observed standard deviations) from the time-specific model when the number of
tagged lobsters ranged from 250 to 1000 yr�1 and three pairs of fishing mortality and tag-recovery rates (0.5 yr�1, 0.08), (1.0 yr�1, 0.13),
and (1.5 yr�1, 0.16) were held constant over time. The natural mortality rate was held constant at 0.05 yr�1. The mean tag-recovery rate
estimates (not presented here) exactly matched the specified values with a standard deviation less than or equal to 0.06 for all scenarios.

True Mean estimate (SD)

Number tagged F F1 F2 F3 F4 M

250 0.5 0.50 (0.23) 0.48 (0.19) 0.49 (0.20) 0.48 (0.24) 0.07 (0.08)
1.0 1.01 (0.26) 0.98 (0.20) 1.00 (0.20) 0.99 (0.23) 0.07 (0.07)
1.5 1.52 (0.34) 1.50 (0.24) 1.50 (0.23) 1.50 (0.26) 0.07 (0.07)

500 0.5 0.50 (0.16) 0.49 (0.14) 0.49 (0.15) 0.49 (0.17) 0.06 (0.06)
1.0 1.01 (0.18) 0.99 (0.14) 0.99 (0.15) 1.00 (0.16) 0.06 (0.06)
1.5 1.52 (0.23) 1.50 (0.17) 1.50 (0.17) 1.50 (0.18) 0.06 (0.05)

1000 0.5 0.50 (0.11) 0.49 (0.10) 0.49 (0.10) 0.49 (0.12) 0.06 (0.05)
1.0 1.00 (0.13) 1.00 (0.10) 1.00 (0.10) 1.00 (0.12) 0.05 (0.04)
1.5 1.50 (0.16) 1.50 (0.12) 1.50 (0.12) 1.50 (0.13) 0.05 (0.04)
s://academ
ic.oup.com

/icesjm
s/article/60/5/1075/765950 by guest on 19 April 202
and 4 from the scenario in which the fishing mortality rate

increased in the final 3 yr of the study (Figure 3). These

results, combined with reasonable standard deviations,

suggest that the model is able to detect changes in fishing

mortality from one year to the next. In the context of lobster

management, this is an important characteristic, since the

detection of changes in fishing mortality is critical if this

model is to be used for the evaluation of management

strategies in relation to fishery dynamics.

The standard deviation of the estimate of fishing

mortality from the simulation where the fitted model

reflected constant tag-recovery, fishing, and natural

mortality rates was substantially smaller than those from

simulations where the fitted model was time-specific

(Table 3). This result suggests that the restricted model

can yield reliable parameter estimates, provided it is safe

to assume that fishing mortality has not fluctuated

substantially over time. However, there was no significant

improvement in the precision of the natural mortality

estimate from the constant parameter model when

compared to that of the time-specific model. In the

simulations when the tagged cohort size was 1000 lobsters

per year, the standard deviation of the estimated natural

mortality rate was 0.04–0.05, regardless of the model

parameterization considered.
4

Discussion

We have developed a two-size category multi-year tag-

recovery model that permits direct estimation of instanta-

neous year-specific fishing and natural mortality rates. A key

and extremely attractive characteristic of this model is that

these rates of mortality can be estimated in the absence of

information on the tag-reporting rate. However, in exchange

for this lack of dependence on the tag-reporting rate, it is

necessary to make some additional assumptions about the

selectivity of the fishery and the size-specific rates of growth

and natural mortality of the species under study. At first

glance, these assumptions may appear restrictive and

unreasonable, and for some fisheries (e.g. those where

selectivity varies with size or that involve long-lived species

where there may be differential natural mortality rates by

age), we acknowledge that this model may not be

appropriate. However, for the rock lobster fishery in

Tasmania, Australia (and other fisheries with similar

characteristics), we contend that these additional assump-

tions serve only to provide an alternative burden to the

researcher, since the uncertainty associated with most tag-

reporting rate estimates equally plagues (directly or in-

directly) analyses involving the models developed by Seber

(1970), Brownie et al. (1985), and Hoenig et al. (1998).
Table 2. Simulation results (mean parameter estimates and standard deviations) from the time-specific model when the fishing mortality
increased from 1.0 to 1.5 yr�1 in years 4–5 and years 3–5, respectively. The tag-recovery rates were held constant at 0.13 and 0.16 when
the fishing mortality rates were 1.0 and 1.5 yr�1, respectively. The natural mortality rate was 0.05 yr�1 and the number of tagged lobsters
was fixed at 1000 yr�1. The mean tag-recovery rate estimates (not presented here) exactly matched the specified values with a standard
deviation less than or equal to 0.01 for all scenarios.

True Mean estimate (SD)

Number tagged F F1 F2 F3 F4 M

1000 F4, F5¼ 1.50 1.00 (0.13) 1.00 (0.10) 1.00 (0.10) 1.50 (0.12) 0.05 (0.04)
1000 F3–F5¼ 1.50 1.00 (0.13) 1.00 (0.10) 1.50 (0.11) 1.50 (0.13) 0.07 (0.05)
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If this alternative burden can be absorbed, or at

a minimum, if the degree to which violation of these

additional assumptions can be characterized, application of

this model does possess some unique advantages over other

multi-year tag-recovery models. In terms of parameter

estimability as a function of the number of tagging and tag-

recovery events, the two-size category model systemati-

cally yields the most information when compared to that

yielded by other tag-recovery models (Table 4). For

example, the two-size category model only requires data

from one tagging and two tag-recovery events to yield

a fishing mortality rate estimate. With all other models,

either more years of tagging or additional information about

the fishery and/or auxiliary parameters are necessary to

obtain such an estimate. Similarly, after 2 yr of tagging and

tag-recovery, it is possible to estimate a fishing and natural

mortality rate directly from the data with the two-sized

category model. Given this amount of data, only the class

Table 3. Simulation results (mean parameter estimates and standard
deviations) from the constant parameter model when the tag-
recovery and natural mortality rates were held constant at 0.13 and
0.05 yr�1, respectively, and the fishing mortality rate was 1.00
yr�1. The number of tagged lobsters was 1000 yr�1. The mean tag-
recovery rate estimate (not presented here) was 0.13 with a standard
deviation of 0.004.

True Mean estimates (SD)

Number tagged F F M

1000 1.00 1.00 (0.07) 0.05 (0.04)
of models developed by Hoenig et al. (1998) is able to yield

similar parameter estimates, provided the tag-reporting rate

and the short-term tag-induced shedding/mortality rate are

known (note that the Hoenig et al. (1998) formulation can

yield two fishing and one natural mortality rate if these

auxiliary parameters are known).

The simulation results suggest that the model yields

accurate parameter estimates. However, the standard

deviations of the simulated fishing and natural mortality

estimates were unacceptable when the number of tagged

lobsters per year was less than 1000. These results suggest

that either the annual tagged sample or the tag-reporting

rate needs to be increased if the two-size category model is

going to be used to derive precise estimates of mortality for

the Tasmanian lobster fishery. Of the two, the more likely

option is to focus on increasing the tag-reporting rate, since

tagging 1000 lobsters per year is currently the limit of what

can be accomplished in one cruise in Tasmania.

As expected, when the restricted parameterization of the

model was applied, the standard deviation of the estimated

fishing mortality rate decreased substantially. Situations

where management regulations that specify the same target

annual fishing mortality rate have been in place for several

years combined with evidence that suggests fishing

pressure has not changed substantially over that time

period might permit applying this parameterization. Efforts

should be made to improve the precision of parameter

estimates when applying the two-size category model (and

other tag-recovery models), since in some instances

a restricted model parameterization may fit the data equally

as well as the most general parameterization. As a strategy

for data analysis, we suggest fitting a suite of biologically
5/765950 by guest on 19 April 2024
Figure 1. Mean parameter estimates with standard deviations when the time-specific (F1, F2, F3, F4, M, f1, f2, f3, f4, and f5) model was fit to

data reflecting 1000 tagged lobsters per year and various levels of fishing mortality. For all simulations, the natural mortality rate was 0.05

yr�1 and the tag-recovery rates were 0.08, 0.13, and 0.16 when the fishing mortality rates were 0.5, 1.0, and 1.5 yr�1, respectively.
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Figure 2. The probability of estimating an increase of a given amount in the year 4 fishing mortality rate when the actual increase was 0.5.

The vertical and horizontal lines delineate that there is a 50% chance (75–25%) of estimating an increase of 0.4–0.6 in the fishing mortality

rate when the actual increase was 0.5.
.oup.com
/icesjm

s/article/60/5/1075
reasonable model parameterizations to the data and

assessing model fit using model selection techniques based

on Akaike’s Information Criterion (AIC; Akaike, 1973;

Burnham and Anderson, 1992; Burnham et al., 1995) and

other related measures such as quasi-likelihood AIC

(Akaike, 1985). An inherent benefit of using these model

selection techniques is that parameter estimates can be

calculated as a weighted average from the results of

multiple models rather than from a single ‘‘best’’ model

(Buckland et al., 1997; Burnham and Anderson, 1998).
/

Application to rock lobsters

Here we provide a more detailed discussion of the

assumptions of the two-size category model to further

evaluate its usefulness as a stock assessment tool for rock

lobsters. Our discussion focuses on the new assumptions

that are specific to this model, since the potential violation

of the standard tag-recovery model assumptions has been

characterized previously (Frusher and Hoenig, 2001a).

The structure of the two-size category model specifies

that all tagged recruited animals experience the same
765950 by guest on 19 April 2024
Figure 3. The probability of estimating an increase of a given amount in the fishing mortality rate in years 3 and 4 when the actual increase

was 0.5. The solid curve reflects the simulation results for F3, while the dotted curve depicts that for F4. As in Figure 2, the vertical and

horizontal lines delineate that there is a 50% chance (75–25%) of estimating an increase of 0.4–0.6 in the fishing mortality rate when the

actual increase was 0.5.
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Table 4. Estimable parameters as a function of the number of years of tagging and tag-recovery from the time-specific parameterizations of
several classes of tag-recovery models (refer to text for parameter definitions). Timing refers to knowledge of when during the year the
fishery occurs. A Type I fishery (Ricker, 1975) is one in which the fishery occurs as a short pulse at the start of the year. A Type I+ (defined
here) is one in which the fishing occurs over a portion of the year (but not the full year) starting at the beginning of the year.

Number of tagging

Estimable parameters from model

(t) and tag-recovery
(r) events Seber (1970)

Brownie et al.
(1985)

Hoenig et al.
(1998) Hearn et al. (1998) New model

t¼ 1, r¼ 1 None f1 F1 given /k and Type I None f1
t¼ 1, r¼ 2 None f1 F1 given /k and Type I F1, /k

a if Type I;
nothing if Type Iþ

f1, F1 given
(and /k if Type I)

t¼ 2, r¼ 2 S1 S1, f1 F1, F2, M given /k and
timing

F1, M, /k for Type I or
Type Iþ

f1, f2, F1, M
(and /k F2 given timing)

aWe include the product /k even though the Hearn et al. (1998) formulation does not explicitly include the parameter /.
m
 https://academ

ic.oup.com
/icesjm

s/article/60/5/10
within-year rate of fishing mortality. Frusher and Hoenig

(2001b) examined southern rock lobster selectivity in

Tasmania and demonstrated that the selectivity of lobsters

changes with size and during the fishing season in

response to the removal of larger lobsters. With respect

to the potential application of the two-size category model

presented herein, these findings imply that the same

narrow range of sizes of lobsters should be tagged each

year. For pre-recruited lobsters, the idea of a narrow size

range is already inherent to the model formulation, since

all pre-recruited lobsters that are tagged are assumed to be

within one growth increment of the legal size limit

(Figure 4).

The model also specifies that all animals (pre-recruited or

recruited) experience the same within-year rate of natural
mortality. This assumption is not likely to be violated since

studies have shown that the natural mortality rate for rock

lobsters near or above the legal size limit is very low

(ffi 0:05 yr�1, see Frusher andHoenig, 2001a) and is unlikely

to vary substantially with size since the size classes defined

near the legal size limit are likely to be narrow.

The last of the newly introduced assumptions requires

knowledge of rock lobster growth, since a lower size limit

for the pre-recruits must be defined knowing that lobsters

within that size class will be of legal size after 1 yr at

liberty. Growth of rock lobsters in Tasmania varies sub-

stantially over space and between sexes. Molting is rela-

tively synchronized with similar sized lobsters molting at

approximately the same time in the same region. Male lob-

sters at or near the legal size limit molt from August to
75/765950 by guest on 19 April 2024
Figure 4. Incremental growth data derived from capture/recapture studies conducted on male rock lobsters that were at liberty 350–365

days in southern Tasmania from 1992 to 2000. A simple linear regression model was fit to the data to describe post-molt size as a function

of pre-molt size. Note that if the lower size limit for the pre-recruited size class is set at 107mm CL, the assumption that these animals will

grow to become legal-sized (110mm CL) in 1 yr will be met. The data were jittered slightly for display.
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November in southern Tasmanian and somewhat later in

northern Tasmania (Frusher, 1997). Female rock lobsters in

the same respective areas molt from April to May and

generally have slower growth rates than males. The fishing

season commences in November (normally mid-November

but the actual date has changed over time) when both sexes

are fished. The female fishing season closes at the end of

April in anticipation of their molting season. Females

caught in traps from May to August when it is still legal to

capture males are released to the sea. The male fishing

season is open from November to August of the following

year. Males then molt during the closed period of

September/October and the subsequent fishing season has

access to full recruitment to the fishery.

To determine a suitable lower size limit for the pre-

recruited size class, we examined growth increment data

from capture/recapture studies conducted on male rock

lobsters in southern Tasmania from 1992 to 2000. Growth

data from lobsters that were tagged in November and

recaptured the following November just before the fishing

season (time at liberty ranged from 350 to 365 days) were

considered. A simple linear regression model was developed

to describe post-molt size as a function of pre-molt size, and

also to assess the probability of growing to the legal size limit

of 110mm CL within one molt (Figure 4). The results of the

analysis suggest that if the lower size limit for the pre-

recruited size class is set at 107mm CL, the assumption that

these animals will grow to become legal sized (110mm CL)

in 1 yr will be met. However, a lower limit of 107mm CL

presents a narrow size range for the pre-recruited group,

which, in turn, raises sample size issues since it may not be

possible to tag an adequate number of lobsters between 107

and 109mm CL. A lower limit of 106mm CL would reduce

sample size problems, but the growth data indicate that not

all pre-molt lobsters that are 106mmCL grow to legal size in

1 yr (only two out of five reached or exceeded the 110mm

CL legal size limit).

To accommodate the problems that arise from variable

growth rates, we generalized themodel presented inEquation

(2) to allow the transition to the fully recruited size class to

take more than 1 yr (Appendix). To apply this model

formulation, it is necessary to know the number of years

required for the pre-recruited size class to grow to legal size,

and the probability of growing to that size after each of those

years, given that the growth probability in the final year is 1.0.

Although the generalization in Appendix A is formulated

under the assumption that the transition to the fully recruited

size class requires only 2 yr, it should be noted that the model

can be adjusted to accommodate a longer transition.
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Appendix

Model generalization allowing for variable growth

For some populations, growth may be highly variable and it may not be possible to identify an obvious minimum size

above which all tagged animals will grow to the legal limit after 1 yr at liberty. To accommodate this situation, we have

developed a generalization to the two-size category model that allows for variable growth rates among the individuals in

the pre-recruited size class. For ease of display, the case where the transition to the fully recruited size class takes at most

2 yr is presented. However, the expected cell probabilities of the model can be easily modified to allow this transition to

take more than 2 yr if necessary.

To develop the generalization, let the parameter g represent the fraction of the pre-recruited animals that reaches legal

size after 1 yr at liberty (note that g must be estimated externally). The remaining pre-recruits are assumed to reach legal

size after one more year. The matrix of tag-recoveries for a study with I yr of tagging and J yr of tag-recovery for the

generalized model is exactly the same as that of the original model (refer to Equation (1)). However, the matrix of expected

values is not identical, since the expected number of tag-recoveries associated with the pre-recruited cohorts must be

adjusted to account for the transition to the recruited size class taking up to 2 yr. The matrix of expected values

corresponding to Equation (1) under a time-specific parameterization is:

The expected value corresponding to the (I,J,r) cell is the same as that defined by Equation (3), while the expected value

corresponding to the (I,J,p) cell is

For populations that have not been well studied, it may be difficult to obtain information on growth and ultimately an

estimate of g. However, for populations that are formally managed, information on growth and other types of fundamental

biological data is generally available. As such, the additional requirement to derive an external estimate of g should not be

problematic.
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