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We present an application of Bayesian hierarchical modelling of stockerecruitment (SR)
relationships aiming at estimating Biological Reference Points (BRP) for European Atlantic
salmon (Salmo salar) stocks. The structure of the hierarchical SR model developed
distinguishes two nested levels of randomness, within-river and between rivers. It is an
extension of the classical Ricker model, where the parameters of the Ricker function are
assumed to be different between rivers, but drawn from a common probability distribution
conditionally on two covariates: river size and latitude. The output of ultimate interest is the
posterior predictive distribution of the SR parameters and their associated BRP for a new
river with no SR data.

The flexible framework of the Bayesian hierarchical SR analysis is a step towards
making the most comprehensive use of detailed stock monitoring programs for improving
management advice. Posterior predictive inferences may be imprecise due to the relative
paucity of information introduced in the analysis compared to the variability of the
stochastic process modeled. Even in such cases, direct extrapolation of results from local
data-rich stocks should be dismissed as it can lead to a major underestimation of our
uncertainty about management parameters in sparse-data situations. The aggregation of
several stocks under a regional complex improves the precision of the posterior predictive
inferences. When several stocks are managed jointly, even imprecise knowledge about each
component of the aggregate can be valuable. The introduction of covariates to explain
between stock variations provides a significant gain in the precision of the posterior
predictive inferences. Because we must be able to measure the covariates for all the stocks
of interest, i.e. mostly sparse-data cases, the number of covariates which can be used in
practice is limited. The definition of the assemblage of stocks which we model as
exchangeable units, conditionally on the covariates, remains the most influential choice to
be made when attempting to transfer information from data-rich to sparse-data situations.
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Introduction

Over the recent years, the Bayesian treatment of hierarchi-

cal models has gained increasing interest in fisheries science

(Hilborn and Liermann, 1998). It has been applied to a wide

range of problems, mainly population size estimation (Su

et al., 2001; Rivot and Prévost, 2002; Wyatt, 2002), meta-

analysis of fundamental population dynamics processes

(Liermann and Hilborn, 1997; Myers, 2001) and Biological

Reference Points estimation (Myers and Mertz, 1998;

Prévost et al., 2001; Chen and Holtby, 2002; Dorn, 2002).

Covariates can be introduced into hierarchical models to ex-

plain variations between stocks and improve the estimation

precision of quantities of interest (Myers et al., 2001, 2002).

We present here an additional application of Bayesian hier-

archical modelling aiming at estimating Biological Refer-

ence Points for European Atlantic salmon (Salmo salar)

stocks.

The analysis of stock and recruitment (SR) data is the

most widely used approach for deriving Biological

Reference Points for salmon (Prévost and Chaput, 2001).

There are several hundreds of salmon stocks in the north

east Atlantic area, each having its own characteristics with

regard to the SR relationship. But resources to collect SR

data are limited and there are only a restricted number of

monitored rivers. In these rivers, adult returns, spawning

escapement and sometimes smolt production are estimated

yearly. Suitable SR series (both in terms of length and

reliability of observations) are available for only a handful

of monitored rivers spread throughout the European area of

distribution of the species. Extrapolation of knowledge

gained from monitored rivers to rivers for which SR data

are not available is therefore required.

How can the SR information from the monitored (i.e.

data-rich) rivers be used to set Biological Reference Points

for other (i.e. sparse-data) salmon rivers while accounting

for the major sources of uncertainty? Until recently, this

question was essentially addressed in practice by extrapo-

lating the Biological Reference Points determined from

a single river SR series to an entire region or country while

accounting only for the variations of size between rivers

(see the review of Prévost et al., 2001). When SR data are

available from several rivers which are considered to be

representative of an assemblage of rivers, the above question

can be reformulated as follows: what can be inferred about

the nature of the SR relationship for any new river of the

assemblage based on the data from the sampled rivers?

There are two nested sources of uncertainty in this situation.

The first level of uncertainty is associated with the fact that

there is relevant SR information available from a limited

number of rivers within the assemblage of rivers. The

second level of uncertainty relates to the limited number of

SR observations available within each river. The Bayesian

treatment of a hierarchical SR model, which we term a

Bayesian hierarchical SR analysis, provides a rigorous

framework for integrating these two nested levels of un-
certainty to derive a probability distribution of Biological

Reference Points for a river with no SR data.

Walters and Korman (2001) give a full and critical

exposure of the procedures relying on the classical SR

models used for analyzing a single stock data set. They

recommend the use of simple models for describing the

stochastic relation between the spawning stock and the

subsequent recruitment. They also advocate the adoption of

the Bayesian approach for uncertainty assessment: the

knowledge/uncertainty about Biological Reference Points

should be reflected by probability distributions given the

SR data in hand. From this basis, we propose an extension

of the classical single stock SR models allowing the joint

treatment of several SR data sets. Our hierarchical model is

similar to those already presented by some authors (e.g.

Myers et al., 2001, 2002; Dorn, 2002). At the within-river

level, it relies on a stochastic SR model depending on few

parameters. At the between-river level, variations in SR

parameters are again modeled according to a stochastic

model conditioned by environmental covariates. After

having assigned little informative prior probability distri-

butions, we proceed to the Bayesian treatment of our

hierarchical model using a set of 13 SR series gathered

from monitored salmon rivers located in western Europe.

Contrary to many studies which relied on partially Bayesian

approaches (Liermann and Hilborn, 1997; Myers and Mertz,

1998; Myers, 2001; Chen and Holtby, 2002), we adopt

a fully Bayesian setting for a more complete accounting of

uncertainty. Thanks toMonte CarloMarkov Chain (MCMC)

sampling techniques (Link et al., 2002) currently available

for the estimation of posterior distributions, a fully Bayesian

approach can be implemented without complicating the

practical realization of the analysis.

Material and methods

Rationale and fundamentals of the Bayesian
hierarchical SR analysis

The Bayesian approach provides a consistent framework

which allows the formulation of direct probabilistic state-

ments about various sorts of unknowns, e.g. model param-

eters, missing data, unobservable variables; it is the method

of choice to deal with uncertainty (Berger, 1985; Gelman

et al., 1995).

To make inferences from data in a Bayesian framework,

a probabilistic (i.e. stochastic) model, representing our prior

understanding of the process generating the observed data,

must be set. Here, our data are SR observations. We can use

standard SR models such as a Ricker curve with lognormal

random errors to represent the link between the stock and

the subsequent recruitment within any single river. Such a

single river SR model is controlled by a few parameters,

which directly are Biological Reference Points or from

which Biological Reference Points can be computed

(Walters and Korman, 2001). We denote by qi the SR
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parameters vector of the river i. In our case, inference based

on the data from the data-rich rivers about any sparse-data

river is of special interest. The model must therefore specify

the link between salmon rivers irrespective of whether SR

data are available for them. We translate the idea that all

salmon rivers belong to a common assemblage of rivers by

considering the qi’s as realizations from a common prob-

ability distribution. This probability distribution is itself

controlled by parameters, also called hyper-parameters. We

denote by Q the vector of hyper-parameters.

The conditioning structure corresponding to this general

setting can be represented by a Directed Acyclic Graph

(Figure 1; Spiegelhalter et al., 1996). It is a hierarchical

setting because:

- the distribution of the recruitment for any given level of

stock is controlled by the qi’s parameters, and

- the distribution of the qi’s parameters is controlled by the

Q hyper-parameters.

This hierarchical structure organizes the transfer of in-

formation sourced by the data-rich rivers SR data towards

the sparse-data rivers. The SR data from the monitored

rivers improve our knowledge about the qi’s. This in-

formation gained about the qi’s allows in turn to improve

our knowledge about Q. The information gained on Q
provides insight into the SR parameters of any new river for

which no SR data are available.
The hierarchical setting is midway between a complete

pooling of SR data sets and the independent treatment of

each single river SR series. Complete pooling of SR data

sets relies on the assumption that there is a unique SR

relationship common to all rivers, i.e. qi ¼ qj for any isj.

This is certainly an oversimplifying assumption. Con-

versely, full independence between rivers would mean that

there is nothing to learn from the monitored rivers about

the SR relationship of the other rivers. This is not sensible

either and contradictory to the very essence of monitored

river projects which aim at gaining knowledge useful in a

wider context. By considering the qi’s as realizations from a

common probability distribution, we acknowledge they can

be different between rivers while at the same time related.

This intermediate assumption opens the door for learning

through the transfer of information between rivers. Any

gain of information about a qi consequentially provides

information about the probability distribution of the qi’s,
thus bringing information about any qj, jsi. The Bayesian

treatment of a hierarchical model allows the data to tell us

how much can be learned from the monitored rivers.

Implicit but crucial in what has just been introduced is

the hypothesis of exchangeability of the rivers with regard

to their SR parameters. In our case, it means that, apart

from the SR data, we have no insight into the phenomena

causing variations in the SR relationship among rivers. In
s/article/60/6/1177/651308 by guest on 10 April 2024
Figure 1. The conditioning structure of the Bayesian hierarchical SR analysis as represented in a Directed Acyclic Graph. Nodes (ellipses)

are random variables. The plain arrows represent stochastic links, i.e. the distribution of a child node depends on its parents. Dashed arrows

represent deterministic links, i.e. the Biological Reference Points are functions of the qi’s. Si and Ri are the series of observed stock and

recruitment for the monitored river i. Ci is a vector of explanatory covariate of the qi’s. The frame means there are I monitored rivers with SR

data. The ‘‘new’’ index refers to any sparse-data river belonging to the assemblage fromwhich the data-rich rivers are a representative sample.
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independent identical distribution (iid) of the qi’s. If

covariates informative about the qi’s variations are avail-

able, then exchangeability can still be assumed, condition-

ally on the covariate. In practice, it is not enough to know

that a given variable influences the SR relationship (from

some experimental or detailed single site studies). To take

advantage of this knowledge, we must be able to measure

the covariates on every river of interest, i.e. not only for the

data-rich rivers, and also model the nature of the link

between the covariates and the qi’s. It is clear that these two
conditions limit the number of covariates which can be

used in practice, especially if we are interested in making

inferences for many sparse-data rivers which we know very

little about.

Treating the rivers as exchangeable in their SR

parameters implies we consider the set of monitored rivers

available as a representative sample from a broad assem-

blage about which we want to make inferences. It means

this assemblage must be defined and ideally monitored

rivers should have been picked at random. If we know they

have been, intentionally or not, selected on criteria which

can be influential on the qi’s, we should incorporate these

criteria as covariates in the analysis, and ensure that the

sample of monitored rivers widely covers the range of

possibilities regarding these criteria. If these conditions are

not met, we are at risk of having a biased view of the broad

assemblage of interest (Hilborn and Liermann, 1998).

Data

We define the assemblage of exchangeable rivers of interest

to our analysis as the salmon rivers located in western

Europe and under the influence of the Gulf Stream. This

covers a broad area including Spain, France, UK, Ireland,

Norway, the western coast of Sweden and the south-

western coast of Iceland. It is known that depending on

whether they benefit or not from the warming influence of

the Gulf Stream, the rivers differ markedly in their salmon
population dynamics (Scarnecchia, 1984; Scarnecchia

et al., 1989; Antonsson et al., 1996).

For semelparous species, it is most useful to express both

S and R variables in the same unit (Hilborn and Walters,

1992) because it allows to readily derive estimates of

management related parameters from SR analysis, such as

MSY, S* or h* (i.e., the stock producing MSY, or the

exploitation rate at MSY). Although there are exceptions,

Atlantic salmon can be treated as a semelparous species, i.e.

negligible numbers of adults spawn more than once (Mills,

1989). Because the eggs represent the end product of

a generation and the starting point of the next, both stock

and recruitment are expressed in terms of eggs. Re-

cruitment was assessed back to the coast, at the time when

adults aim at their natal rivers, and prior to any homewater

fishery. Removals in distant water fisheries (e.g. at Green-

land and Faroes) were considered as a source of random

variation in recruitment, as limited information was avail-

able to account for the effect of those losses. Measurement

errors are not taken into account.

Egg-to-egg SR series can be obtained from monitored

rivers, i.e. any river where at least the adult returns and

the fisheries are surveyed. Rivers inhabited mainly by sea-

trout e holding a comparatively small salmon population e
and rivers on which significant stocking programs are

conducted without information to apportion their contribu-

tion to adult returns were not considered. In addition, only

SR series with at least six SR data points since the year of

birth 1985 were retained for the analysis. The limitation to

the most recent cohorts (after 1985) aims at obtaining

Biological Reference Points relevant to the current status of

the stocks (see also the more sophisticated time tapering

technique proposed by Shepherd (1997)). Non-stationarity

in SR relationships is a well-known problem and older data

often do not reflect current conditions (Walters and

Korman, 2001). Preliminary analysis (not reported here)

of the longest SR series available revealed an overall drop

in recruitment around the mid-1980s. Data from 13 rivers

were retained for analysis (Table 1; Figure 2), ranging from
 10 April 2024
Table 1. The location, size and SR time series length of the monitored Atlantic salmon rivers retained for analysis.

River Country Latitude ((North)
Riverine wetted area

accessible to salmon (m2) Number of SR observations

Nivelle France 43 320 995 12
Oir France 48.5 48 000 14
Frome UK (England) 50.5 876 420 12
Dee UK (England) 53 6 170 000 9
Burrishoole Ireland 54 155 000 12
Lune UK (England) 54.5 4 230 000 7
Bush UK (N. Ireland) 55 845 500 13
Mourne UK (N. Ireland) 55 10 360 560 13
Faughan UK (N. Ireland) 55 882 380 11
Girnock Burn UK (Scotland) 57 58 764 12
North Esk UK (Scotland) 57 2 100 000 6
Laerdalselva Norway 61 704 000 8
Ellidaar Iceland 64 199 711 10
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Figure 2. The Atlantic salmon SR series retained for analysis. s and r are the stock and recruitment variables after standardization for river

size expressed in eggs per m2 of riverine wetted area accessible to salmon. The Ricker curve with parameters set at the median of their

posterior distribution are indicated.
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the south of France to the south of Iceland. Two are

spawning tributaries, the Girnock Burn and the Oir R. The

collection and pre-processing procedures used to obtain

data ready for analysis are described in detail by Crozier

et al. (2003).

Among the many covariates we can conceive to explain

differences between rivers in their SR parameters, river size

is the most evident. The size of a stock is constrained by the

size of its river of origin because of the riverine Atlantic

salmon ecology. For instance, individuals have a territorial

behavior at the juvenile stage and during spawning, and

compete for limited spatial resources (Elliott, 2001). Prévost

et al. (2001) reviewed the many ways of assessing river size
as a limiting factor for salmon production. Currently, the

riverine wetted surface area accessible to salmon appears to

be the ‘‘lowest common denominator’’ which can be used

throughout western Europe. Such a measurement is not yet

available for all the salmon rivers, but it could be obtained

relatively easily from map based measurements, supported

by GIS (Crozier et al., 2003).

Given the very limited information available on the bulk

of the salmon rivers, it is difficult to find candidate covari-

ates for explaining variations in SR parameters among rivers.

Geographical location is probably the only variable readily

accessible. We examined latitude because it shows

association with the ecology of Atlantic salmon. For
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instance, it is well known that mean smolt age increases

with latitude (Metcalfe and Thorpe, 1990). Koenings et al.

(1993) also found a positive latitudinal gradient for smolt-

to-adult survival in sockeye salmon (Oncorhynchus nerka).

The salmon rivers of England and Wales were used as

examples of sparse-data cases to which the transfer of in-

formation from the data-rich rivers could be applied. The

riverine wetted surface area accessible to salmon and the

latitude are known for each of these streams (Anon., 2002).

Model

Within a river, the recruitment process is modeled by means

of a Ricker function with independent lognormal process

errors. Conditionally on the initial stock level, recruitment

observations are assumed to be exchangeable. The follow-

ing formulation adapted from Schnute and Kronlund (1996)

is used:

Ri;jwlognormalðlogðRickerðSi;jÞÞ;sÞ ð1Þ

RickerðSi;jÞ ¼ Si;jðexpðh�i Þ=ð1� h�i ÞÞ
!expð�ðh�i =ðð1� h�i ÞR�

i ÞÞSi;jÞ ð2Þ

where

Ri,j is the recruitment of the cohort born in year j from the

river i,

Si,j is spawning stock of year j� 1 from the river i,

Ricker(Si,j) is the value of a Ricker function with

parameters (h*i, R*i) at Si,j,

s is the standard deviation of the normal distribution of

log(Ri,j),

h*i is the exploitation rate at MSY for the river i, and

R*i is the value of the Ricker function at MSY for the

river i.

We assume s, the dispersion parameter of the lognormal

distribution pðRi;j KSi;j; h
)
i ;R

)
i Þ, is fixed across rivers. This

simplifying hypothesis is motivated by two reasons:

- s is difficult to estimate on a river by river basis when

only short SR series are available. By assuming that

s does not vary among rivers we can cumulate the

information from all the SR series.

- s is not a parameter of interest but a nuisance parameter.

Marginal posterior probability distributions of quantities

of interest will be obtained by integrating over s and the

existence of several or a single s will never appear in the

end product of the analyses.

Testing of alternative assumptions revealed that the post-

erior inferences on quantities of interest were not sensitive

to the modelling hypothesis about s (see Appendix A).

Any other SR related parameter or Biological Reference

Point can be calculated from h*i and R*i. The North

Atlantic Salmon Conservation Organization (NASCO)

recommends the use of the stock level that maximizes the

long term average surplus (i.e. MSY) as the standard
Conservation Limit (CL; Potter, 2001). Denoting S*i this

Biological Reference Point for the river i:

S�
i ¼ ð1� h�i ÞR�

i ð3Þ

The parameters of the Ricker function are assumed to be

different among rivers, but drawn from a common proba-

bility distribution conditionally on the covariates. The river

size must be most influential on R*i, i.e. the bigger the river

the higher should be R*i. This can be translated into

R�
i ¼ r�i Wi ð4Þ

where

Wi is the riverine wetted area accessible to salmon (m2),

and

r*i is the egg recruitment rate per m2 of riverine wetted

area accessible to salmon at MSY.

A preliminary analysis of the monitored rivers SR series

was performed on a river by river basis to obtain point

estimates of the r*i’s and the h*i’s (results not reported

here). It revealed an increasing latitudinal gradient in the

r*i’s. Although less evident, the same pattern seemed to

exist for the h*i’s. The gradient on r*i is incorporated in the

model by writing:

r�iwlognormalðri;s
rÞ ð5Þ

ri ¼ AþBlati ð6Þ
This logelinear relationship is consistent with the

lognormal structure of the SR model used at the
within-river level and with the constraint that r*i must
be positive.

Because h*i varies between 0 and 1, it is assigned a beta

distribution with parameters ai and bi:

h�iwbetaðai;biÞ ð7Þ

The mean of this beta distribution is:

hi ¼ ai=ðai þ biÞ ð8Þ
We use the following formulation to introduce the

dependency of hi on latitude:

logitðhiÞ ¼ CþDlati ð9Þ
The logit function is used to transform from parameter
space ]0,1[ to ]�N,+N[.

The variance of the h*i distribution is:

sh
i ¼ hið1�hiÞ=ðai þ bi þ 1Þ ð10Þ

Thus, conditionally on hi, the variance of the h*i
distribution is proportional to 1=ðai þ bi þ 1Þ. This
quantity is a scale parameter directly connected to the
‘‘sample size’’ of the beta distribution, the later having

an intuitive meaning (Congdon, 2001). It is also
independent from the mean of the beta distribution,
i.e. hi carries no information about it. We assume this

scale parameter is constant across rivers and denote it as
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g. This assumption is equivalent to that made for the
distribution of r*i (Equation (5)) where sr is fixed across
rivers.

A, B, C, D, sr and g are called hyper-parameters, i.e. the

parameters which, conditionally on the covariates, de-

termine the distribution of the parameters h*i and R*i.

Denoting I the number of monitored rivers considered, the

model has 2Iþ 7 parameters: two SR parameters for each

monitored river plus seven free parameters, the hyper-

parameters and the residual dispersion of recruitment s,
which do not depend on any other parameter.

To complete the setting of a full probability model, prior

probability distributions are assigned to the free parameters

(Table 2). Little informative and independent priors are

chosen inspired from recommendations of Box and Tiao

(1973). For s and sr the standard non-informative but

improper prior for standard deviation parameters, i.e.

pðsÞf1=s and pðsrÞf1=sr, is approximated by a proper

gamma law with shape and scale parameters equal to 0.001

and 1000 (Gelman et al., 1995). Uniform distributions are

assigned to the regression coefficients A, B, C and D.

Because g ranges by construction between 0 and 1, it is

assigned a beta prior. g is also a scale parameter. We

Table 2. Summary of the main parameters and quantities of interest
of the model. The prior distributions are indicated only for the free
parameters.

Parameter Definition Prior distribution

s Equation (1) Gamma (0.001,1000)

Hyper-parameters
A Equation (6) Uniform
B Equation (6) Uniform
sr Equation (5) Gamma (0.001,1000)
C Equation (9) Uniform
D Equation (9) Uniform
g Equation (10) and

following section
Beta (0.001,1)

Parameters dependent on hyper-parameters
r*i Equations (4)e(6)
h*i Equations (2)

and (7)

Parameters dependent on other parameters
R*i Equations (2)

and (4)
S*i Equation (3)
s*i Equation (14)

Predicted parameters in the absence of SR data
R*new Equivalent to R*i
r*new Equivalent to r*i
h*new Equivalent to h*i
S*new Equivalent to S*i
s*new Equivalent to s*i
CLreg Sum of S*new’s

and S*i’s for a region
choose a beta (0.001,1) prior as a proper distribution which

approximates the standard non-informative inverse prior for

scale parameters.

Bayesian treatment

The Bayesian treatment of the model amounts to deriving

the joint posterior distribution of all the parameters condi-

tionally on the observed data, pðq;Q;sKSR;W; latÞ where

q¼ ðq1;.;qi;.qIÞ with qi ¼ ðh�i ;R�
i Þ;

Q¼ ðg;A;B;C;D;srÞ;

SR is the set of SR series from the monitored rivers,

W¼ ðW1;.;Wi;.;WIÞ;

lat¼ ðlat1;.; lati;.; latIÞ:

The joint posterior pðq;Q;sKSR;W; latÞ and any mar-

ginal distribution were approximated using MCMC sam-

pling (Gelman et al., 1995). Gibbs sampling was applied by

means of the Winbugs software (Spiegelhalter et al., 2000).

Convergence of MCMC sampling toward the target dis-

tribution was verified in two steps. We first ran simulta-

neously four chains with contrasted starting values. We

checked their mixing by means of the GelmaneRubin

statistic as modified by Brooks and Gelman (1998), a tool

included in Winbugs. Good mixing was reached for all the

model parameters after 10 000 iterations. Based on this first

step, the first 10 000 iterations of a single chain were

discarded and a 10 000 sample was then obtained by

carrying on sampling for 100 000 additional iterations and

retaining one draw every ten. The stationary of the resulting

Markov Chain has been verified for all the free parameters,

i.e. A, B, C, D, g and sr, by means of the Geweke (1992)

diagnostic as implemented by the R-CODA software (Best

et al., 1995). All posterior distributions presented thereafter

are approximated by means of this 10 000 sample.

Transfer of information and posterior
predictions in sparse-data situations

The distribution of ultimate interest in our case is the

posterior predictive of the SR parameters for a new river

with no SR data

pðqnew KSR;W; lat;Wnew; latnewÞ ð11Þ

where

qnew ¼ ðh)new;R)
newÞ, the SR parameters for a new river

with no SR data,

Wnew is the riverine wetted area accessible to salmon of

the new river with no SR data, and

latnew is the latitude of the new river with no SR data.
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This probability distribution can be written as:

pðqnew KSR;W; lat;Wnew; latnewÞ

¼
Z

pðqnew KQ;Wnew; latnewÞpðQKSR;W; latÞ dQ ð12Þ

The posterior predictive is thus obtained by averaging

(i.e. integrating) pðqnew KQ;Wnew; latnewÞ over the posterior
distribution of the hyper-parameters. pðqnew KQ;Wnew;
latnewÞ is known. It is the product of two conditionally
independent distributions pðR)

new KQ;Wnew; latnewÞ and

pðh)new KQ;Wnew; latnewÞ. According to Equations (4)e(6),
pðR)

new KQ;Wnew; latnewÞ is a lognormal distribution which
dispersion parameter is sr and which location parameter

is a function Wnew, latnew, A and B. According to
Equations (7)e(9), pðh)new KQ;Wnew; latnewÞ is a beta dis-
tribution which scale parameter is g and which location

parameter is a function of latnew, C and D.
The posterior of the hyper-parameters, pðQKSR;W; latÞ,

is the distribution through which the SR information

coming from the data-rich rivers is transferred to any

sparse-data river. It can be expressed as:

pðQKSR;W; latÞ

¼ pðQÞ
Z

.

Z Y
½pðqi KQ;Wi; latiÞpðSRi KqiÞ dqi� ð13Þ

In this expression we see that the information provided
by each of the SRi series is incorporated through the

likelihood pðSRi KqiÞ of the parameters of the river i. In
this way, the information coming from each data-rich
river is judiciously weighed according to how informa-
tive it is about the SR related parameters.

Once a posterior sample of Q has been obtained by

MCMC, it is easy to get a sample from pðqnew KSR;Wnew

latnewÞ for any sparse-data river given its associated Wnew

and latnew values. For any sampled value of Q, values of

R*new and h*new can be drawn independently from their

known distributions pðR)
new KQ;Wnew; latnewÞ and pðh)new KQ;

Wnew; latnewÞ. Sampling of the posterior predictive dis-

tribution of the NASCO CL, noted as S*new, is then

straightforward: an S*new value is associated to each draw

of qnew through Equation (3).

For providing scientific advice for the management of

mixed stock fisheries, CLs determined at an aggregated

regional level are most useful. Regional CLs are key

elements in the procedures used at the International Council

for the Exploration of the Sea (ICES) to elaborate scientific

advice in response to questions from NASCO (Potter,

2001). A regional CL (CLreg) can be defined as the sum of

all the river CLs of a given region. The posterior

distribution of CLreg can be denoted as:

pðCLreg KSR;W; lat;Wreg; latregÞ ð14Þ
where

SR is the set of SR series from the monitored rivers,

latreg is the vector of latitudinal positions of the rivers of

the region of interest, and
Wreg is the vector of riverine wetted areas of the rivers

of the region of interest.

The CLs of the sparse-data rivers are independent

conditionally on the hyper-parameters Q. In other words,

they depend on the SR data collected from the data-rich

rivers only through the hyper-parameters. Therefore, it is

straightforward to get a sample of CLreg values to

approximate the CLreg posterior predictive distribution. It

amounts, for each draw of Q in its posterior distribution, to

successively and independently draw an S*new value for

each river in the region of interest, and then calculate the

sum of these river CLs to generate a CLreg value.

Because CLreg is a sum of variables with (conditionally)

independent distributions, the precision of the posterior

distribution of CLreg will be improved compared to that of

an individual river S*new. Even imprecise SR related

parameters estimates obtained for sparse-data rivers could

then be valuable information when aggregated at a regional

level. This approach is applied to the salmon rivers of

England and Wales.

Results

Monitored rivers vary widely in size (Table 1), from 48 000

(Oir R.) to 10.4 million m2 (Mourne R.) of riverine wetted

area accessible to salmon. Comparisons between SR data

series can be made after removing the river size effect by

looking at SR rates per m2 of riverine wetted area accessible

to salmon, denoted as s and r. Contrast in s is poor for

various rivers as shown by the width of the inter-quartile

range (Figure 3). Within-river contrast in r is similar to that

of s. There is a tendency of increasing r when moving

northward. Such a pattern is much less evident for s.

The posterior probability that B!0 is null while that of

D!0 is 0.05. Our choice of introducing latitude as a co-

variate for explaining variations between rivers in both

r* and h* is thus validated. The increasing latitudinal gra-

dient in r* is obvious in Figure 4. h* is often poorly estimated

(Figure 5) and the latitudinal gradient is less evident.

As for R* and r* (Equation (4)), we define:

s� ¼ S�=W ð15Þ
the egg deposition rate per m2 of riverine wetted area
accessible to salmon at MSY, which is more easily

comparable between rivers as it is standardized for the
river size variations. The posterior distributions of s* for
the monitored rivers reveal (Figure 6):

- considerable within-river uncertainty in some cases

despite SR data being available (e.g. the Lune R. and

the Laerdalselva R.),

- significant variations among rivers, even within a rela-

tively narrow latitudinal range (e.g. the Bush R., the

Mourne R. and the Faughan R., all located in Northern

Ireland), and

- an increasing trend with latitude.
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Figure 3. Box plots of the stock (upper panel) and recruitment (lower panel) series from the data-rich rivers. Raw data are standardized for

river size and expressed in eggs per m2 of riverine wetted area accessible to salmon. Each box plot displays on a log scale the 10th, 25th,

50th, 75th, 90th percentiles and all values outside the 10th to 90th percentiles interval. Rivers are ordered by increasing latitude.
The distributions of ultimate interest are the posterior

predictive distributions, which represent our uncertainty/

knowledge for sparse-data rivers without SR observations.

The marginal posterior predictive distribution of r*new,

h*new and s*new at various latitudes covering the salmon
distribution range in the NEAC area (45(, 50(, 55(, 60(
and 65( North) indicate that when moving northward, sal-

mon stocks can sustain higher exploitation rates, can pro-

duce higher recruitment at MSY, but at the same time

should be set at higher CLs (Table 3, Figure 6). All the
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Figure 4. Box plots of the posterior distributions of r* (the egg recruitment rate per m2 of riverine wetted area accessible to salmon at

MSY) for the data-rich rivers. Each box plot displays on a log scale the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles. Rivers are

ordered by increasing latitude.

Figure 5. Box plots of the posterior distributions of h* (the exploitation rate at MSY) for the data-rich rivers. Each box plot displays the

5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles. Rivers are ordered by increasing latitude.
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Figure 6. Box plots of the distributions of s* (egg deposition rate per m2 of riverine wetted area accessible to salmon at MSY). Gray:

posteriors for the data-rich rivers. White: predictive posteriors for any sparse-data river located at 45(, 50(, 55(, 60( and 65( North

latitude. Each box plot displays on a log scale the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles. Rivers are ordered by increasing

latitude.
 rticle/60/6/1177/651308 by guest on 10 April 2024
posterior predictive distributions are very wide, suggesting

that there is great uncertainty in the spawning stock, the

recruitment and the exploitation rates at MSY for a sparse-

data river.

There are 70 salmon rivers in England and Wales located

between 55.5( and 50.5( North. They vary in size from

80 000 to 14 million m2 of riverine wetted area accessible

to salmon (median 610 000; Anon., 2002), thus covering a

size range comparable with that of the data-rich rivers. We

compare the posterior predictive distribution of CLreg for

England and Wales with that of its river components. In

order to make this comparison independently from a size

effect, the average egg deposition rate corresponding to the

England and Wales CLreg is calculated by dividing CLreg by

the sum of the riverine wetted area accessible to salmon of

all the England and Wales salmon rivers. The posterior

predictive distribution of this average rate is more precise

than that of the s*new of its individual river components

(Figure 7). The average egg deposition rate corresponding

to the England and Wales CLreg is less precisely estimated

than s* for the Frome and Dee Rivers, two England and

Wales data-rich rivers. This does not hold for the Lune

River, because the SR data are essentially uninformative

about s* due to a lack of contrast in the stock variable

(Figure 3). For the Lune R., the posterior of s* is close to

the predictive posterior of s*new, i.e. in the absence of SR

data (Figure 6). Despite the variance reduction due to the
averaging effect when dealing with broad regions such as

England and Wales, the posterior predictive distribution of

CLreg for England and Wales remains relatively wide. The

80% probability interval (10th to 90th percentile interval) is

286e776 million eggs.

Discussion

A chief merit of the hierarchical approach we implemented

in the Bayesian hierarchical SR analysis, is that it provides

a common and consistent framework for the joint analysis

of several monitored stocks data sets. This is a step towards

making extensive use of detailed stock monitoring programs

for improving management advice. The hierarchical

modelling allows the transfer of information from the

data-rich stocks towards the others while acknowledging the

existence of differences between stocks. These differences

are a source of uncertainty when extrapolating to sparse-

data situations. For Atlantic salmon, this is an improvement

over current practices and methods proposed for setting and

transporting Biological Reference Points. These completely

ignore uncertainty (Elson, 1957, 1975; Potter, 2001), or

when accounting for some (Chaput et al., 1998; Caron et al.,

1999) unrealistically assume that there is no variation

between rivers, or when acknowledging some differences

between rivers still rely on a single monitored river SR data

set (Prévost and Porcher, 1996; Milner et al., 2000).
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Table 3. Summary statistics (mean, standard deviation, 10th percentile, median, 90th percentile) of the marginal posterior distributions for
the free parameters of the hierarchical SR model and of the posterior predictive distribution of h*new and r*new (the egg recruitment rate
per m2 of riverine wetted area accessible to salmon at MSY) at various latitudes.

Mean Std. dev 10th Median 90th

Posterior distributions of free parameters
s 0.48 0.03 0.44 0.48 0.52

Hyper-parameters
A �11.94 3.11 �15.81 �11.85 �8.21
B 0.26 0.06 0.19 0.26 0.33
sr 0.79 0.22 0.56 0.75 1.08
C �4.74 3.10 �8.65 �4.63 �0.91
D 0.09 0.06 0.02 0.09 0.16
g 0.14 0.06 0.07 0.13 0.22

Posterior predictive distributions
Latitude (( North) Parameter
45 h*new 0.34 0.21 0.08 0.32 0.63
50 h*new 0.44 0.20 0.18 0.44 0.71
55 h*new 0.55 0.19 0.29 0.56 0.80
60 h*new 0.65 0.20 0.38 0.68 0.90
65 h*new 0.73 0.20 0.45 0.77 0.96
45 r*new 1.41 3.29 0.23 0.83 2.77
50 r*new 4.70 7.74 1.00 3.05 9.14
55 r*new 16.84 30.44 3.91 11.14 30.89
60 r*new 68.54 279.42 13.25 40.17 127.90
65 r*new 279.10 785.28 40.52 149.50 535.00
/icesjm
s/article/60/6/1177/651308 by guest on 10 April 2024
The hierarchical framework is also flexible; it potentially

can accommodate any type of model representing single

stock dynamics. The Bayesian hierarchical SR analysis as

presented here does not address two of the well-known

pitfalls of SR analysis (Walters and Korman, 2001), mea-

surement errors on the SR variables and the time series

structure of the SR data sets (Meyer and Millar, 2000; Rivot

et al., 2001; Schnute and Kronlund, 2002), but there is no

impediment to incorporating more realistic or complex

models in the near future. By allowing the derivation of

posterior predictive distributions, the hierarchical Bayesian

setting provides a way of describing probabilistically our

knowledge about ‘‘the states of nature’’ even in sparse-data

situations, thus opening the door for decision analysis along

the lines presented by Punt and Hilborn (1997) and Hilborn

(2001).

However, posterior predictive inferences may be very

imprecise. This point is well exemplified in our case study.

Recruitment is known to be a highly variable process

(Fogarty et al., 1991) and thus SR related parameters could

not be estimated precisely with short SR series (Figures

4e6). This is especially true when the contrast in stock size

is poor (Figure 3). In addition, many features, other than

riverine wetted area accessible to salmon and latitude, can

cause variations in the recruitment process between rivers.

We should not expect to be able to provide precise estimates

of SR related parameters on the basis of the limited data

used in our analysis and more generally from the scarce

information currently available for the vast majority of the

salmon rivers.
Given the narrower posterior distributions obtained for

Biological Reference Points on the data-rich rivers, it might

be tempting to directly extrapolate those distributions

across neighboring rivers rather than using posterior pre-

dictive distributions incorporating information from far away

stocks. The joint treatment of the several SR series pre-

sented herein is a strong warning against such practices. It

clearly shows that, even in a narrow geographical range, s*

can vary widely (see for instance the three monitored rivers

from Northern Ireland; Figure 6). Over-reliance on local

data-rich stocks should be dismissed as it can lead to a

major underestimation of our uncertainty about manage-

ment parameters for sparse-data rivers.

The aggregation of several stocks under a regional

complex improves the precision of the posterior predictive

inferences. When several stocks are managed jointly, even

imprecise knowledge about each component of the aggre-

gate can be valuable. This is well exemplified by our case

study on the salmon rivers of England and Wales. The

location of the posterior predictive distribution of the egg

deposition rate corresponding to CLreg for England and

Wales is very close to that of s*new at 55( North (Figure 7),

despite the fact the salmon rivers of England and Wales are

well spread between 50( and 55( North. Summing over

many rivers CLs drawn from distributions which do not

exclude very high values tend to exclude low values for the

aggregated CLreg. Consequently, deriving a point estimate

regional CL by summing the most likely river CL values is

not equivalent to the most likely value of a sum of CLs.

Ignoring the wide and skewed uncertainty in s*new would
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Figure 7. Box plots of distributions of egg deposition rate per m2 of riverine wetted area accessible to salmon: (i) the posterior predictive

of the average egg deposition rate corresponding to CLreg for England and Wales (in gray); (ii) the posterior predictive of s*new for any

river located at 50( and 55( North (in white) and (iii) the posterior of s* for the data-rich rivers located in England and Wales (in dark

gray). Each box plot displays on a log scale the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles.
s/article/60/6/1177/651308 by guest on 10 April 2024
lead to an underestimation of the regional CL for England

and Wales. In the context of providing management advice,

acknowledging uncertainty associated to each stock com-

ponent matters when setting a CL for a regional aggregate.

The introduction of the river size and latitude covariates

for explaining between stock variations resulted in

a significant gain of precision for the posterior predictive

inferences. Without these two covariates, the variations

they generate between stocks would have been treated as

random noise, thus blurring all posterior predictions for

sparse-data stocks. Nevertheless, very limited information

is incorporated in our Bayesian hierarchical SR analysis.

Additional knowledge on the monitored rivers e e.g.

sympatric brown trout (Salmo trutta), presence of lakes,

and habitat quality e is ignored. There is certainly ample

room for improvement by taking greater advantage of the

scientific knowledge available about factors influencing SR

processes at the river level. But it is not enough to identify

a factor that influences the stock dynamics. The operational

translation of this knowledge in the implementation of

a broad scale analysis also requires that the relevant data

are made available over a broad geographical range and in

a standardized manner. Moreover, the nature of the link

between a factor and the population dynamics processes

must be translated into a formal relationship between

a relevant covariate and the SR parameters. Taking the

example of the presence of trout and the recruitment

process in salmon, we know there are interactions between

juvenile salmon and trout in streams (Heggenes et al.,
1999). However, not only are data on trout populations not

available for all the European salmon rivers, but the

identification of a relevant covariate and the modalities of

its effect on SR parameters are also unclear. The presence

of trout is thus only one of the many factors which causes

random (unpredictable) variations in the SR relationship

among rivers. Such difficulties should not prevent trying to

identify relevant and practically usable covariates to

improve the posterior predictive inferences. In our case,

the introduction in the Bayesian hierarchical SR analysis of

an indication of slope along the stretches of a river

colonized by salmon could be a valuable track to explore.

Slope is related to the quality of habitat for juveniles

(Amiro, 1993) and it could be measured over a broad

geographical range by means of GIS. Data collection

regarding candidate covariates should at first be limited to

the monitored stocks in order to assess their potential in

explaining differences between stocks in their dynamics.

Covariates could also be used to assess the risk of bias in

the inferences made from the available set of data-rich

stocks. This set is regarded as a representative sample of a

larger assemblage (e.g. the salmon rivers of Europe in-

fluenced by the Gulf stream in our case study) covering the

full range of possible values of the covariates. In most cases

this remains arguable. The set of data-rich salmon rivers we

analyzed contain only one lacustrine system (the Burrish-

oole) and Scandinavia is under-represented (Table 1). The

little or non-represented categories of rivers might exhibit

consistent differences in their SR relationship compared to
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the data-rich rivers. In the absence of data we have

limited capability to assess the associated potential bias.

Taking the presence of lakes as an example, we are left with

the following choice. If we assume the presence of lakes

has a consistent positive (or negative) effect on salmon

recruitment, not accounted for by the W variable as used in

Equation (4), then we should discard the Burrishoole R. and

restrict the analysis and the subsequent inferences to river-

ine-only systems. Alternatively, if we assume lakes have an

unpredictable random effect on the recruitment, then we can

use the current set of monitored rivers to make inferences

about all the rivers. This latter option is not a contradiction to

the results of the Bayesian hierarchical SR analysis reported

herein: the Burrishoole R. does not appear as an outlier

(Figures 4e6) when compared to the riverine-only systems.

Before using the Bayesian hierarchical SR analysis or

any other Bayesian hierarchical modelling approach for

management advice, a decision must be explicitly made,

communicated and discussed about the exact contour of the

assemblage of stocks from which the data-rich stocks are

seen as a representative sample. Gurevitch et al. (2001)

provide statistical guidelines for the combination of

ecological data sets in the perspective of a meta-analysis.

The definition of the assemblage of stocks which we model

as exchangeable units, conditionally on the covariates,

remains the most influential choice to be made when

attempting to transfer information from data-rich to sparse-

data situations. Longer SR time series would help in

reducing the uncertainty of population dynamics related

parameters, as far as the contrast in the independent/control

variables (i.e. spawning stock in our case study) increases

with time. Walters and Korman (2001) even suggest to

deliberately manipulate some stocks through management

experiments to get more informative data. However, what-

ever the precision of our posterior inferences in data-rich

situations, it is the large between-stocks residual variation

left after accounting for the effect of the readily available

covariates (i.e. river size and latitude in our case study)

which impedes precise posterior predictions in sparse-data

situations. For improving precision, the introduction of

additional covariates informative about the population

dynamics related parameters of interest is required.
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Appendix A

In order to assess the sensitivity of our results to the

modelling hypothesis about the dispersion parameter of the

lognormal distribution pðRi;j KSi;j; h
)
i ;R

)
i Þ, we replaced the

assumption of a fixed s across rivers by the radically

contrasted option of different and fully unrelated (in-

dependent) si’s. Apart from this change, we reprocessed

the data using exactly the same approach and compared the

posterior inferences for all the free parameters which

govern the quantities of interest in our hierarchical SR

model (Tables 3 and A.1). The si’s vary among rivers but

their posterior distributions substantially overlap. The 80%
posterior probability intervals derived under the full

independence hypothesis are wider than that obtained

under the complete pulling hypothesis. The single river

80% probability intervals do not necessarily overlap with

that obtained when ignoring variation between rivers.

Despite these differences with regard to the nuisance

parameter s, the posterior distributions of the hyper-

parameters are little changed. Intermediate assumption

about the si’s, such as a hierarchical structure or

a latitudinal gradient, were also tested. As expected they

produce similar results (not reported here) thus confirming,

in our case study, the overall insensitivity of the posterior

inferences to the modelling hypothesis about the si’s.
d from
 https://academ

ic.oup.com
/icesjm

s/article/60/6/1177/651308 by guest
Table A.1. Summary statistics (mean, standard deviation, 10th percentile, median, 90th percentile) of the marginal posterior distributions
of the free parameters of the hierarchical SR model under the hypothesis of fully independent si’s dispersion parameters of the lognormal
distributions pðRi;j KSi;j; h

)
i ;R

)
i Þ.

River Parameter Mean Std. dev 10th Median 90th

Nivelle s 0.85 0.20 0.63 0.81 1.11
Oir s 0.85 0.19 0.64 0.82 1.10
Frome s 0.48 0.12 0.36 0.46 0.64
Dee s 0.21 0.07 0.14 0.20 0.29
Burrishoole s 0.35 0.09 0.25 0.33 0.45
Lune s 0.20 0.09 0.12 0.18 0.31
Bush s 0.58 0.14 0.43 0.56 0.75
Mourne s 0.48 0.13 0.34 0.45 0.64
Faughan s 0.48 0.15 0.33 0.44 0.66
Girnock Burn s 0.36 0.09 0.26 0.34 0.47
North Esk s 0.20 0.08 0.12 0.18 0.30
Laerdalselva s 0.21 0.07 0.14 0.19 0.29
Ellidaar s 0.29 0.08 0.21 0.27 0.39

Hyper-parameters
A �11.00 3.10 �14.96 �10.91 �7.23
B 0.24 0.06 0.17 0.24 0.32
sr 0.79 0.21 0.56 0.75 1.05
C �3.84 3.05 �7.73 �3.65 �0.16
D 0.08 0.06 0.01 0.07 0.15
g 0.11 0.06 0.05 0.10 0.19
 on 10 April 2024
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