
ICES Journal of Marine Science, 61: 176e183. 2004
doi:10.1016/j.icesjms.2003.12.001

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/61/
Time-series analysis of abundance indices of young fish

G. Gudmundsson

Gudmundsson, G. 2004. Time-series analysis of abundance indices of young fish. e ICES
Journal of Marine Science, 61: 176e183.

Catch-at-age analysis provides estimates of stock size at ages when the fish have reached
catchable size. Survey indices contain information about relative cohort size at younger
ages. The present analysis is concerned with survey indices of juveniles up to the youngest
age where stock estimates, based on time-series analysis of catch-at-age data, are available.
A stock estimate at that age from catch-at-age data is also included. A common model
of the relationship between stock size and survey indices is combined with the model
describing the decline of a stock by natural mortality. Random variations in natural
mortality are defined separately from sampling variations and irregular catchability in the
survey. The stock size and magnitudes of the random variations are estimated by the
Kalman filter, which also provides predictions of future recruitment to the catchable stock.
Analysis of observations of Icelandic cod reveals a large deviation from proportionality
in the relationship between the index and the stock estimates in the youngest ages, but
haddock data are compatible with proportionality. Variations in natural mortality during the
second to fourth year of cod and the second to third year of haddock are not a major factor
in variations of stock size.

� 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.

Keywords: Icelandic cod, Icelandic haddock, Kalman filter, natural mortality, recruitment.

Received 24 March 2003; accepted 5 December 2003.

G. Gudmundsson: Central Bank of Iceland and Marine Research Institute, Reykjavik,
Central Bank of Iceland, Kalkofnsvegur 1, 150 Reykjavik, Iceland: tel: +354 5699694; fax:
+354 5699608; e-mail: gudmg@centbk.is
2/176/620104 by guest on 19 April 2024
Introduction

Survey indices provide information about relative stock size

at the time of the survey. By combining this information

with estimates of stock size from catch-at-age analysis,

indices of younger fish can be used to predict recruitment

to the catchable stock. Various statistical methods have

been employed for this purpose (Rosenberg et al., 1992;

Shepherd, 1997).

Myers and Cadigan (1993a, b) investigated survey indices

of young fish from many stocks. Their analysis was mainly

concerned with natural mortality and not with prediction of

recruitment, and data or estimates from catch-at-age anal-

ysis were not included.

The present methodology is intended for stocks where

annual survey indices can be obtained for a few years from

each cohort before substantial exploitation begins. Catch-

ability in surveys varies with age and size of the fish,

particularly for the youngest ages. Before young fish enter

the commercial fishery, their numbers decline due to natural

mortality. The indices are subject to measurement errors

and irregular variations in catchability. When a survey

index is used to predict stock size at an older, catchable age,
1054-3139/$30 � 2004 International Cou
irregular variations in natural mortality between these ages

contribute to the prediction error. With the time-series

methodology, it is possible, at least theoretically, to esti-

mate the magnitude of these variations separately from the

irregular component of the survey indices.

We analyse in some detail abundance indices from a trawl

survey on Icelandic cod in ages from 1 to 4 years from 1985

to 2002. For comparison with the results of Myers and

Cadigan (1993a, b), we also include results from the anal-

ysis of haddock in ages from 1 to 3 years. The survey is

carried out annually in March and was described by Pálsson

et al. (1989). The cod data from the Marine Research

Institute in Reykjavik (MRI, 2002, Table 3.1.10) are pre-

sented in Table 1. Estimates of the stock at 4 years of age,

obtained by time-series analysis of catch-at-age data from

the same report, are also included in Table 1. When the

survey data become available, the last available catch-at-

age data are from the previous year. The analysis is carried

out in accordance with this, with catch-at-age results from

1985 to 2001. The main spawning period of Icelandic cod

is in April. Notice that all fish hatched in year t are assigned

age 0 during that year and 1 at the beginning of year tþ 1.

Recruitment estimates provide additional information about
ncil for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
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the stock size at the youngest age in the catch-at-age

analysis used in the management rules for this stock

(Baldursson et al., 1996). Predictions made further ahead

affect economic planning by fisheries and the government.

The relative magnitudes of the survey indices for cod at

each age vary much more than the stock estimates. Higher

irregular variations of the indices may have some part in

this, but visual examination of Table 1 shows that it is mainly

a systematic feature of the data; an index of a cohort that

is large or small in any particular year in the indices, retains

its relative position during the 4 years included here.

Model

The number of fish is treated as a continuous variable and

the basic model of change in cohort size is

dN¼�ZN dt;

where N is the number of fish and Z is the rate of mortality.

For interpretation of annual data, it is customary to solve

the equation, assuming that Z is constant during the year, so

that

Nat ¼ Na�1;t�1 e
�Za�1;t�1: ð1Þ

Nat is the number of fish of age a at the beginning of year t

and Zat is the mortality rate of fish of age a during year t.

In the present work, observations consist of survey

indices of year-class strength of young fish. One series

of estimates of the stock size in numbers in the youngest

age where substantial commercial catches begin is also

included. This series is based on catch-at-age analysis.

They are highly variable in magnitude. In order to stabilize

Table 1. Survey indices of Icelandic cod for ages 1e4 and
estimates of stock size at age 4 from catch-at-age analysis.

Survey indices

Stock
(million fish)Age 1 Age 2 Age 3 Age 4

1985 16.54 112.3 35.4 48.2 104
1986 15.10 61.0 95.7 22.5 108
1987 3.65 28.9 104.0 83.5 248
1988 3.45 7.5 72.7 104.9 206
1989 4.09 17.3 22.4 80.1 131
1990 5.57 12.1 26.7 14.3 68
1991 3.95 16.3 18.2 30.7 102
1992 0.72 17.5 33.8 19.1 75
1993 3.58 4.8 35.1 39.3 135
1994 13.76 16.0 8.9 27.1 98
1995 1.17 29.3 26.2 9.4 57
1996 3.63 5.4 41.9 28.3 126
1997 1.21 22.4 13.7 56.5 133
1998 7.98 5.5 29.8 16.0 73
1999 7.38 34.3 7.1 42.3 140
2000 18.81 28.5 55.6 7.2 46
2001 12.09 24.1 37.0 38.3 145
2002 0.91 38.7 41.2 40.3
variances and bring them closer to normality, it is

convenient to work with logarithmic values and we denote

the logarithmic stock values by nat. The indices are related

with the stock values through the model

iat ¼ qa þ4anat þ 3at: ð2Þ

The logarithmic value of the index is iat. Catchability of the

survey (qa) varies with age and we also allow for variation

with stock size by the parameter 4a. Irregular variations in

catchability are indistinguishable from measurement errors

and we include both in the residuals 3at, defined as serially

uncorrelated, normally distributed with zero mean and

variance s3a
2.

The actual age range will usually be from 0 or 1 to an

age A, where estimates of stock size can be obtained from

catch-at-age analysis. We cannot estimate absolute stock

size in the ages below A from these data without some

further information about the magnitude of catchability or

mortality. No such knowledge will be assumed here.

Let us first ignore the possibility that natural mortality

depends upon stock size and separate systematic and ran-

dom variations,

Zat ¼ xa þ zat; ð3Þ

where xa is a constant age-dependent mortality rate and zat
represents random variations in the mortality, assumed to

be normally distributed, serially uncorrelated with zero

mean. From Equations (1) and (3) we obtain

nA;tþA�a ¼ na;t �
XA�1�a

i¼0

ðxaþi þ zaþi;tþiÞ; a!A: ð4Þ

Suppose now that Nat is known in year t and denote the

expected log-value of the cohort when it reaches age A

by rat,

rat ¼ EfnA;tþA�a KNatg ¼ nat �
XA�1�a

i¼0

xaþi

¼ nA;tþA�a þ
XA�1�a

i¼0

zaþi;tþi; a!A; rAt ¼ nAt: ð5Þ

From Equations (2) and (5) we obtain

iat ¼ qa þ4a

XA�1�a

i¼0

xaþi þ4arat þ 3at: ð6Þ

Without some external knowledge about the magnitude

of catchability and mortality at each age we cannot separate

these effects with the present data so we simplify the mea-

surement equations of the indices to

iat ¼ Qa þ4arat þ 3at; ð7Þ

where the constants Qa include effects of both age-

dependent catchability and mortality.
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At age A, the stock has been estimated from catch-at-

age analysis. We regard these estimates as observations and

denote them by a hat,

n̂At ¼ nAt þ 3nt ¼ rAt þ 3n;t: ð8Þ

The errors, 3n,t, are defined as normally distributed, in-

dependent of 3at and serially uncorrelated.

The unobserved variables rat are called state variables.

Their true values are connected by the relationship

rat ¼ ra�1;t�1 þ dat: ð9Þ

The residual dat ¼ za�1;t�1, i.e. the difference between rat
and ra�1,t�1, consists of the irregular component in the

natural mortality at age a� 1 during year t� 1. A separate

equation must be defined for the youngest age included in

the analysis. Let this be a ¼ 1. From Equation (5) we have

r1t ¼ n1t �
XA�2

i¼0

x1þi: ð10Þ

The age-dependent mortality rates x1+i are unknown constant
values. The simplest assumption about the unknown values

of n1t is that they are independent, normally distributed with

a fixed mean, n0, and variance sd1
2. However, in the pre-

sent analysis it is not possible to estimate n0 separately

from the unknown value of
PA�2

i¼0 x1þi and we define

r0 ¼ n0 �
XA�2

i¼0

x1þi; ð11Þ

and

r1;t ¼ r0 þ d1t; ð12Þ

where the residuals d1t have variance sd1
2. This equation

represents our knowledge about the respective cohort

before the first observation from it in the survey data, i.e.

i1t. The model could be expanded to include information

from a stock-spawning relationship or possible trend but

this will not be considered here. The residuals d1t represent
irregular variations in spawning and natural mortality

before fish reach age 1.

Natural mortality could depend upon stock size as

discussed by Myers and Cadigan (1993a). This can be

expressed in various ways, but for the present estimation

procedure a convenient model is

rat ¼ ra�1;t�1 þ gðra�1;t�1 � r0Þ þ dat; ð13Þ

where rat is now the expected cohort size at age A apart

from the stock-dependent variations in natural mortality,

represented by gðra�1;t�1 � r0Þ.

Estimation

The unobserved series of state variables, ra,t, are estimated

from the observed indices and the catch-at-age estimates at
age A by means of the Kalman filter. As the present models

are linear in the state variables, no modification or extension

of the Kalman filter is needed. This algorithm proceeds

from initial values by predicting the state variables rat in the

next period by their models with the expected value

0 inserted for the residuals dat. The predicted values of rat
are used to predict the observed indices and n̂At according

to the models in Equations (7) and (8) and to calculate the

prediction errors. These errors contain information about

the estimates of state variables employed in the predictions.

An overprediction of iat in Equation (7) indicates that rat
was too large and should be adjusted. But the random

element, represented by 3at, also contributes to the predic-

tion error of iat. If the variance of 3at is large, compared

with the uncertainty of the state variable, the adjustment

should be small. The function of the Kalman filter is to

determine the appropriate updating of the state variables in

accordance with the prediction errors of the measurements

and to calculate the covariance matrix of the updated esti-

mates. A formal description of the application of the

Kalman filter to the present model is given in Appendix 1.

In order to apply the Kalman filter, we need initial values

of the state variables in ages from 1 to A� 1 years in the

year before the first observations. All parameters in

Equations (7), (8), (9), (12), and (13) must be known,

including the full specification of the covariance matrices

of dat and 3at. In reality, these parameters are not known but

can be estimated by the likelihood function of the prediction

errors, i.e. we find the parameters by which the Kalman

filter produces the best predictions of iat and n̂At. Approxi-

mate standard deviations of estimated parameters are

obtained from the Hessian matrix. The estimated covariance

matrix of the state variables does not include uncertainty in

parameter estimates and tends to underestimate the actual

uncertainty, but not by an order of magnitude.

The direct estimation of the stock in Equation (8) is

obtained by time-series analysis of the catch-at-age data

(Gudmundsson, 1994). The best estimates of this stock at

catchable ages are obtained from a joint analysis of these

data and the survey indices. However, the uncertainty in

specifying the correlation between 3n,t from a joint analysis

and the residuals 3at in Equation (2) counteracts this advant-
age. In the present analysis, we use stock estimates obtained

without using data other than the catch-at-age where we can

safely assume that there is no correlation with 3at. It is only
in the last years that substantial differences may emerge

between different estimation procedures.

Time-series estimation of nAt from catch-at-age data also

provides estimates of the standard deviation of this

estimate. But this estimation is rather inaccurate. It depends

upon the method used for stabilizing variances and various

somewhat arbitrary specifications of covariance matrices.

Estimates of stocks and mortality rates in the last year are

less accurate than in previous years, but the reverse applies

to the assessment of the accuracy. In the present analysis,

the standard deviation of 3n,t in the last year, 2001, is
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obtained from the catch-at-age analysis. The standard

deviation from 1985e1997 is estimated as a constant value

sn, and the values from 1998e2000 as a linear interpola-

tion between sn and the value in 2001.

The number of parameters is high. With four ages

included there are two 4!4 covariance matrices, two

parameters, Qa and 4a, for each age in the measurement

equations for the indices, and sn, r0 and g. With T years

of observations the size of Tþ A� 1 cohorts must be

determined, although only the A� 1 initial values of rat
enter as separate estimated parameters. The number of

quantities to be determined is thus very high compared with

the number of observations, but this is a common feature of

cohort analyses of fish stocks.

It is necessary to introduce various simplifications in

order to keep down the number of parameters and obtain

well-determined estimates. The likelihood function is used

to test the validity of parameter restrictions. The next

section describes the specification and estimation with

observations of Icelandic cod. Much of this will be common

with data from other stocks, but not necessarily every detail.

The values of raT, obtained by the Kalman filter in the

last year of observation, are our predictions of the recruit-

ment to the stock at age A in the years from T to Tþ A� 1,

based on the whole data set. The Kalman filter estimates of

rat in earlier years are based on the data up to and including

year t. However, subsequent observations contain further

information about these values. Estimates of rat, based on

the whole data set, are obtained by a recursive procedure

called ‘‘smoothing’’.

Examination of residuals is an important aspect of

applied time-series analysis. Observed residuals are the

difference between the observed series and values predicted

by the models. In the present analysis, the residuals are the

prediction errors of iat and n̂At one year ahead. They are

composed of the stochastic elements represented by 3at and
3nt in Equations (7) and (8) and also the errors produced by

inaccurate estimation of the state variables rat. The residuals

should be serially uncorrelated with all other residuals, but

correlations of the prediction errors at different ages within

the year are allowed in the model.

The prediction errors should have zero mean, but the

variances differ in accordance with the different variances

of the residuals in Equations (7), (8), (9), (12), and (13).

The calculated residuals are therefore standardized by

dividing by the calculated standard deviation of the

respective residuals. Test statistics are calculated jointly

for the standardized residuals from Equation (7). Two test

statistics for normality are calculated, g1 for skewness and

g2 for kurtosis. Both are approximately distributed as

N(0;1) under the null hypothesis of normal distribution of

the residuals. Two first-order serial correlation coefficients,

rt and rc, are calculated. They represent the correlation

between the residual at (a,t) with the residuals at (a; t� 1)

and (a� 1; t� 1), respectively. They are approximately

normally distributed with zero mean and variances
fAðT� 1Þg�1
and fðA� 1ÞðT� 1Þg�1

under the null

hypothesis of no serial correlation (Gudmundsson, 1986).

The Kalman filter, parameter estimation, and smoothing

are described in textbooks on time-series analysis (e.g. by

Harvey, 1989).

Examples

We describe here in some detail the parameter estimation

and recruitment prediction of Icelandic cod. Parameter

estimates for Icelandic haddock, obtained by similar

methods, are also presented.

The survey indices of Icelandic cod in Table 1 are cal-

culated in the same way at all ages. Most of the spawning

takes place in the weeks immediately after the survey so the

youngest age sampled in this survey is 1 year. There is a

0-group survey in August (Astthorsson et al., 1994). The

0-group index is more volatile than the trawl survey

indices, and possible misspecification of the relationship

with the stock values, including the stochastic aspect, could

be damaging for the analysis. It is therefore not included in

the present analysis, although the results convey some

information about cohort strength.

The standard deviation of the stock estimation at 4 years

of age in 2001 from the catch-at-age analysis is 0.17 and

the present estimation of sn from 1985e1997 is 0.105

(Table 2). This estimate is too high according to the catch-

at-age analysis, but as other results are not much affected if

we use a lower value for this parameter, only results

obtained with this value of sn will be presented. As n̂At
refers to the stock at the beginning of the year, the residuals

3nt also include irregular mortality until the survey is

carried out. But this is not a major factor because catches of

4-year-old cod are small during this period. The assumption

of no serial correlation of the residuals in Equation (6) is

incorrect for the last values, but they have bigger variances

and thus exert less influence upon the results.

For Icelandic cod, we use A ¼ 4 years and must then

specify and estimate the 4!4 covariance matrix of the

residuals 3at in Equation (2). These residuals represent

measurement errors and variations in catchability. We

know from analysis of catch-at-age data and survey indices

that estimation of joint variations in catchability from ages

4 to 9 years yields large and highly significant values

(Gudmundsson, 1998). The convenient prior assumption of

independent residuals is therefore inappropriate.

Estimation of six covariances for the measurement

equations with these data is not feasible; one parameter

must suffice to account for possible correlations. The

present specification defines all 3at as independent and adds

an extra residual, k3t with variance sk3
2, to Equation (7),

iat ¼ Qa þ4anat þ 3at þ k3t: ð14Þ

The total variance of the residuals at age a is then s3a
2þ

sk3
2 and the covariances are all sk3

2. The covariance
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matrix of the residuals of the state variables is defined in the

same way by adding kdt to Equations (9), (12), and (13).

The standard deviation of 31t, representing measurement

errors and catchability variations in the survey for the

1-year-old fish, is much higher than for the older fish. The

possibility that the large variations at 1 year of age are not

highly correlated with variations in the older ages was

investigated by excluding kat when a ¼ 1 and found to fit

better. The results for cod presented in our tables were

obtained with this option. The residual variations at older

ages are highly correlated, indicating that variations in

catchability are more important than sampling variations.

The possibility of defining the covariance matrix with

correlations declining with increasing age-difference was

also investigated, but the present formulation was easier to

estimate and fitted slightly better.

Free estimation of the ten parameters, s3a, sk3, sda, and

skd produces rather badly determined values for most

Table 2. Parameter estimates and residual statistics. q is estimated
and g is fixed in the first cod-column and in the haddock-column.
In the second cod-column, q is fixed and g is estimated. Estimated
standard deviations of the parameters are presented in parentheses
below the respective parameter values.

Cod Cod Haddock

s31 0.276 0.285 0.200
(0.100) (0.090) (0.094)

s3,2�A 0.068 0.071 0.000
(0.058) (0.058) (0.109)

sk3 0.159 0.158 0.214
(0.037) (0.038) (0.098)

sd1 0.387 0.515 0.735
(0.100) (0.106) (0.267)

sd,2�A 0.069 0.072 0.082
(0.026) (0.030) (0.085)

skd 0 0 0
sn 0.106 0.105 0.160

(0.023) (0.026) (0.051)
41 2.31 1.75 0.93

(0.29) (0.15) (0.49)
q �0.189 0 0.066

(0.089) (0.071)
g 0 �0.091 0

(0.035)
g1 �0.61 �0.61 0.08
g2 �1.48 �1.49 �1.29
rt 0.04 0.04 �0.13
rc �0.17 �0.15 0.10

s3a: measurement errors and variations in catchability at age a; sk3:
joint variations in catchability; sda: irregular variations in natural
mortality at age a; skd: joint irregular variations in natural mortality;
sn: errors in stock estimates from catch-at-age analysis at 4 years’
age; 41: constant in a model of stock-dependent catchability;
q: coefficient of age in a model of stock-dependent catchability;
g: coefficient in age-dependent natural mortality; g1: test for
skewness, N(0;1); g2: test for kurtosis, N(0;1); rt: test for first-order
serial correlation in time, N(0;0.122) for cod, N(0;0.142) for
haddock; rc: test for first-order serial correlation within cohorts,
N(0;0.142) for cod, N(0;0.182) for haddock.
parameters. But the restriction to use the same parameter for

the standard deviation of 3at for ages 2e4 years and another

for dat in these ages is acceptable (log L drops by 2.9).

According to the estimated values (Table 2), the varia-

tions of natural mortality, represented by sd,2e4, are much

lower than variations in stock size at age 1, represented by

sd1. The variations in cohort size at 4 years of age are

therefore dominated by variations in spawning and natural

mortality in the first year. There is no indication of cor-

relation within each year between the residuals dat, associ-
ated with variations in natural mortality, regardless of the

choice of specification.

We are estimating recruitment to A ¼ 4 years for cod in

this study but there are also some recorded catches in

younger ages. The effect of correcting for catches at 3 years

was investigated but had negligible effect upon the good-

ness-of-fit and did not improve it. The correction was not

applied in the results presented here. Unrecorded discards

are equivalent to natural mortality in this analysis. Although

we cannot determine relative variations in catchability in

the younger ages without knowing the natural mortality

rate, it is obvious from Table 1 that catchability at 1 year of

age is much lower than in the higher ages.

The parameters Qa are estimated separately at each age,

but as we do not know the relative contribution of regular

variations with age in catchability and natural mortality, the

values are of little interest. The estimated values of 4a are

of the order of 2 and the log-likelihood function drops by

about 30 by fixing all 4a ¼ 1. The plausible assumption of

proportionality between index and stock size is therefore

incompatible with these data. But a linear change of 4a

with age is acceptable so we can represent the four values

by two parameters,

4a ¼ 41 þ qða� 1Þ: ð15Þ

The estimated values of q in Table 2 are obtained by

assuming that natural mortality is not stock-dependent,

i.e. with g ¼ 0. Joint estimation of q and g results in

insignificant values of both parameters. The negative value

of q implies that stock-dependent catchability decreases

with increasing age. For cod, results of estimation with q
fixed at 0 are also presented in Table 2. A negative g
implies that natural mortality of large cohorts is higher than

for small cohorts. Most other parameters are little affected

by which of the variables q or g is included, but the initial

stock-size variation, represented by sd1, is bigger with g.
The variation subsequently decreases with age because of

the stock-dependent mortality. Note that 41 is much bigger

than 1 so that the catchability is still strongly stock-

dependent. Log L differs by 0.2 depending on whether g or

q is estimated, which is negligible. It is therefore not

possible, with the present data and models, to distinguish

between variation with age of stock-dependent catchability

in the survey, and stock-dependent natural mortality.

The smoothed estimates of rat, obtained with g ¼ 0, are

presented in Table 3, transformed from logarithmic values
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to stock size in numbers. The variations in these values

within each cohort represent the estimated effects of the

irregular variations in natural mortality, denoted by dat in
Equation (9). The same estimates, obtained with stock-

dependent natural mortality, are presented in Table 4. The

variations within cohorts in this table are the estimated

effects of stock-dependent and irregular variations in

natural mortality.

Table 3. Smoothed estimates of exp(rat) for Icelandic cod when
variation with age of stock-dependent catchability is estimated.

Year

Million fish

1-yr olds 2-yr olds 3-yr olds 4-yr olds

1985 201 225 101 117
1986 154 211 217 101
1987 77 152 221 217
1988 94 73 162 215
1989 92 94 77 156
1990 107 90 101 71
1991 104 106 84 106
1992 54 106 112 81
1993 101 55 107 117
1994 145 103 57 102
1995 64 142 105 57
1996 107 65 137 111
1997 59 111 67 139
1998 139 58 107 70
1999 131 143 50 121
2000 145 133 144 47
2001 158 137 132 139
2002 56 161 132 131

Table 4. Smoothed estimates of exp(rat) for Icelandic cod when
variation with age of stock-dependent natural mortality is
estimated.

Year

Million fish

1-yr olds 2-yr olds 3-yr olds 4-yr olds

1985 254 266 101 117
1986 176 245 234 101
1987 69 165 238 217
1988 91 68 170 215
1989 87 93 74 156
1990 109 87 100 71
1991 105 107 82 106
1992 44 106 113 81
1993 101 48 108 117
1994 161 103 53 102
1995 55 151 105 57
1996 109 59 142 111
1997 49 112 64 139
1998 156 52 108 70
1999 143 154 47 122
2000 160 140 149 47
2001 183 146 135 138
2002 46 177 136 131
The Kalman filter provides standard deviations of the

estimated values of rat. They refer to the relative size of the

cohort at age a in year t. These values are also predictions

of the size of the cohort when it reaches age A but the

standard deviations of the predictions are bigger because

of irregular variations in natural mortality from t until

tþ A� a. In the estimation with g ¼ 0, these standard

deviations for cod are as follows:

a 1 2 3 4
ra;2002 0:13 0:05 0:06 0:06
n4;2002þ4�a 0:18 0:11 0:09 0:06

The last row of Table 3 shows the predictions of the

stock size at 4 years of age in the years 2005, 2004, 2003,

and 2002, obtained from the survey values of 2002. Table 5

shows similar predictions obtained with survey indices

ending in 1998e2002 and the corresponding stock estimates

ending in 1997e2001. The specifications were the same as

in Table 3, but the parameters were reestimated for each

data set.

For comparison with these results and the results from

Myers and Cadigan (1993a, b) we also analysed haddock

indices from the same survey. The time period was the

same but the age range was from 1 to 3 years. The

estimated standard deviation of the log-value of the stock at

3 years of age in 2002 from catch-at-age analysis was 0.23.

Catchability of haddock at 1 year of age is much higher

than for cod and the joint variations in catchability,

represented by k3t, were included at all ages. No evidence

of stock-dependent catchability or natural mortality appears

in the haddock results, i.e. 41 is not significantly different

from 1 and q and g are not significantly different from 0.

The test statistics show no evidence of non-normality or

serial correlation in the analyses of these data sets.

Discussion

The data employed in the present work could also be used

with other methods currently applied to predict recruitment.

Table 5. Recruitment predictions of Icelandic cod at age 4 years.

Million fish

exp(r1T) exp(r2T) exp(r3T) exp(r4T) N̂4t

1998 127 62 106 67 73
1999 126 143 55 111 140
2000 189 138 148 50 46
2001 151 143 135 141 145
2002 56 160 132 131

s(pred) 0.18 0.11 0.09 0.06

The Kalman filter provides estimates of the standard deviation of
raT but the error in the prediction of the logarithmic value of the
stock at 4 years of age also includes the uncertainty caused by
irregular natural mortality. This is included in s(pred).
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But unless random variations of natural mortality and joint

catchability variations are negligible, these methods are not

fully efficient because assumptions of independent residuals

in their specifications are violated.

Our description and examples of this procedure were in

terms of indices from a single survey. The basic theory is

the same with indices from more than one survey for some

or all of the ages, provided they are carried out at the same

time. In view of the large correlations between the residuals

associated with the present survey indices, the possibility of

correlations between indices of different surveys should be

investigated and taken into account. There are no methodo-

logical difficulties in carrying this out.

Joint analysis of indices from surveys, carried out at

different times in the year, requires more extensive modi-

fication of the methodology. In order to keep variations in

natural mortality separate from measurement errors and

variations in catchability, the state variables rat should be

updated at the time of each survey so we would no longer

be working with time intervals of 1 year. However, the

results of Myers and Cadigan (1993b) and the present paper

indicate that irregular variations in natural mortality may

often be so small that it is harmless to ignore them in

recruitment predictions. It is not necessary that each survey

includes all ages or that they all start in the same year.

Our results for cod differ in two respects from those of

Myers and Cadigan (1993a, b). We find a small but sig-

nificant irregular variation in natural mortality and a strong

stock-dependence in catchability. In both cases, the dif-

ference rests upon the information in the series of stock

estimates from the catch-at-age data, included in our anal-

ysis but not in the work of Myers and Cadigan. If we reduce

the effect of this series by assigning a bigger variance (sn
2)

to the stock estimates, the estimated variance in natural

mortality (sd,2e4
2) becomes insignificant. Myers and

Cadigan (1993a) assume that the estimated abundance in

the survey is proportional to the true abundance, i.e.

41 ¼ 1. According to our results, this assumption is

untenable for Icelandic cod. However, this conclusion also

rests upon the information from the catch-at-age estimation.

It was carried out with the traditional assumption of

a constant natural mortality (0.2 year�1) in the catchable

ages. If this assumption is wrong and the natural mortality

is in fact strongly stock-dependent, then the stock estimates,

based on the assumption of a constant natural mortality, are

systematically wrong and the evidence for stock-dependent

catchability could vanish. It is difficult to estimate the

magnitude or the variations in natural mortality in ages

with high fishing mortality. At the moment, we have

no presentable evidence for or against the hypothesis of

stock-dependent natural mortality of Icelandic cod in the

catchable sizes and ages (O50 cm, R4 years).

For Icelandic haddock, we find no significant irregular

variation in natural mortality. The precision of this

estimation is lower for haddock than for cod because we

have one age less in the survey data and less accurate catch-
at-age estimates. It is therefore not possible to infer from

the present analysis that the actual variations are in fact

smaller for haddock than for cod. There is no indication of

stock-dependent catchability or natural mortality for

haddock. This is in agreement with the results from most

of the haddock stocks investigated by Myers and Cadigan

(1993a). In view of the difference between the results from

Icelandic cod and haddock in these respects, it is worth

noting that catchability in our survey is much higher for

haddock than for cod. The stock in numbers of cod is bigger

than the stock of haddock, but the survey catches five times

more haddocks than cods.
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Appendix 1

The Kalman filter algorithm

For each year, we have a vector of observations,

it ¼ ði1t;.; iAt; n̂AtÞ#:

The observed series are connected with the unobserved

series of state variables,
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rt ¼ ðr1t;.; rAtÞ#;

by the relationship

it ¼Hrt þQþ 3t:

The coefficient matrix H is determined by Equations (7)

and (8). The diagonal elements are 4a in the first A rows.

The Ath element in row Aþ 1 is 1. All remaining elements

are 0. The first A elements of the vector Q are Qa and the

last is 0. The residuals have covariance matrix Et. The first

A rows and columns are occupied by the covariance matrix

of the residuals 3at. The last diagonal element is the

variance of 3n,t and the off-diagonal elements in the last row

and column are 0 if the stock estimates n̂At are independent

of the survey indices.

The state vectors in year t are connected with previous

values by

rt ¼Grt�1 þ r0 þ dt:

The coefficient matrix G has elements g21 ¼ . ¼
gA;A�1 ¼ 1 and the remaining elements are 0. The first

element of the vector r0 is r0 and the remaining elements 0.

The covariance matrix of dt is Dt.

Suppose now that we have estimated rt�1 by r̂t�1 with

covariance matrix Pt�1. We can then predict the next state

variables by
rtKt�1 ¼Gr̂t�1 þ r0:

The error of this estimate has covariance matrix

PtKt�1 ¼GPt�1G#þDt:

We predict the vector of observations in year t by

ı̂t ¼HrtKt�1 þQ:

The prediction errors,

dt ¼ it � ı̂t;

have covariance matrix

Ft ¼HPtKt�1H#þEt:

The prediction errors contain additional information

about rt and we update the predicted value by

r̂t ¼ rtKt�1 þPtKt�1H#F�1
t dt;

with covariance matrix

Pt ¼ PtKt�1 �P
tKt�1

H#F�1
t HPtKt�1:

The log-likelihood function is

log L¼ const:� 1

2

XT

t¼1

½logKFt Kþ dt#F
�1
t dt�:
/article/61/2/176/620104 by guest on 19 April 2024
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