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Acoustic detection of a scallop bed from a single-beam
echosounder in the St. Lawrence

Estelle Hutin, Yvan Simard, and Philippe Archambault

Hutin, E., Simard, Y., and Archambault, P. 2005. Acoustic detection of a scallop bed from
a single-beam echosounder in the St. Lawrence. e ICES Journal of Marine Science, 62:
966e983.

Single-beam seabed echoes combined with epi-macrobenthos photographs were used to
remotely detect a scallop bed and characterize the specific acoustic signal of Iceland scallop
(Chlamys islandica). A dense scallop bed was surveyed in 2002, with a QTC VIEW Series
IV acoustic ground-discrimination system (AGDS) connected to a 38 kHz, 7( split-beam
SIMRAD EK60 scientific echosounder. In 2003, a 50 kHz, 42( single-beam SUZUKI ES-
2025 echosounder was connected to a QTC VIEW Series V AGDS. The QTC VIEW data
were analysed with QTC IMPACT following the standard procedures and classified into
acoustic classes. Several approaches were tested: unsupervised and supervised survey
strategies directed to specific benthic communities. The SIMRAD EK60 seabed volume-
backscattering strength (Sv) was submitted to a principal component analysis (PCA), before
and after removal of a depth trend, and the scores on the first 10 principal components were
classed by a K-means cluster analysis. The same seabed Sv data were submitted to stepwise
discriminant analysis whose training data sets were defined with the ground-truth
photographs using different groupings: biotope types, community types, and finally
scallop-density classes. All the QTC AGDS approaches failed to reveal the scallop bed,
community structures, or biotopes. The QTC classifications mimicked the bathymetry with
a strong correlation of the acoustic classes with depth. The seabed Sv PCACK-means
approach presented similar depth-dependence, but, the PCACK-means on the Sv residuals
revealed the scallop bed. The discriminant analysis was the best solution for the scallop
density with a general classification success rate of 75% and up to 91% for the highest
density class. The Sv signature of the scallop bed is presented, and the most discriminant
part of the acoustic signal is identified.
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Introduction

Seafloor mapping becomes more and more essential for

the effective management of the marine environment and

especially for fisheries as the exploitation of marine

biological resources increases. Physical-, geological-, and

biological-resource maps have proved to be essential aids

in sustainable management by allowing the monitoring of

environmental fluctuations and the estimation of anthropo-

genic influence on benthic communities and habitats

(Siwabessy et al., 1999; Kostylev et al., 2001). However,

accessing submarine landscapes has never been easy as

sampling gears are remotely controlled and, consequently,

often blind. Traditionally, many of the earlier mapping
1054-3139/$30.00 Published
studies relied on physical sampling, for example with grabs,

dredges, or both gears. This approach is not only time

consuming and costly, but also highly disturbing for the

benthic biotopes (i.e. habitats and their associated commu-

nities) and provides only separated, discrete data across

the study area. Recent improvements in single-beam

echosounders, sidescan sonar, swath-bathymetric systems,

and signal processing now provide effective tools to explore

the seabed as a complement to the physical sampling

methods traditionally used to carry out benthic surveys

(Kenny et al., 2003). More recently, ‘‘acoustic ground-

discrimination systems’’ (AGDS) have been developed to

detect the acoustic-reflectance properties of seabeds.

Different reflectances are linked to differences in the
by Elsevier Ltd on behalf of International Council for the Exploration of the Sea.
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physical and occasionally biological nature of these

seabeds. Indeed, the nature of the bottom echoes is-

influenced not only by basic sediment grain-size parame-

ters, sediment sorting, microtopography, sediment density,

and porosity, but also by the presence, concentration, and

type of benthic fauna and flora (Tsemahman and Collins,

1997; Collins and Galloway, 1998; Bornhold et al., 1999;

Hamilton et al., 1999; Kloser et al., 2001; Anderson et al.,

2002).

RoxAnn (Chivers et al., 1990) and QTC VIEW (Collins

et al., 1996) are two widely used AGDSs for surveying

biotopes. They extract shape, energy, or both features

contained in the bottom acoustic signals (Siwabessy et al.,

2000). RoxAnn systems derive two parameters E1 and E2,

respectively, the energy of the tail of the first echo, often

related to the roughness of the sediment, and the total

energy of the second echo, often related to hardness of the

sediment (Burns et al., 1989). By associating the relation-

ship between E1 and E2 with a substratum type, distinct

bottom types can be mapped. It has been shown that

RoxAnn performance is highly dependent on ship speed

(Hamilton et al., 1999). In contrast, QTC VIEW systems

examine the shape characteristics of the first echo and use

a series of algorithms to translate it to an array of 166

descriptive variables (Collins et al., 1996), which are then

reduced through principal component analysis (PCA) to

three Q-values, Q1, Q2, and Q3 (Collins andMcConnaughey,

1998). These three Q-values are plotted in three-dimensional

Q-space and then run through a cluster analysis to

distinguish acoustically distinct bottom types. The QTC

VIEW classification accuracy has been shown to be greatly

affected by bottom slopes exceeding approximately 5e8(
(von Szalay and McConnaughey, 2002). According to

Hamilton et al. (1999), QTC VIEW appears to be the more

consistent and reliable of the two systems. Compared with

traditional physical sampling, acoustic tools permit rapid,

broad-scale, and non-intrusive sampling of the seabed.

However, resulting AGDS classifications must be ground-

truthed with physical sampling to assess their accuracy. In

the so-called ‘‘supervised’’ approach, the classification

process is trained a priori on a ground-truth data set.

Most of the acoustic classifications carried out in

previous studies focused on identifying and mapping

seafloor sediments, which were then associated with

benthic habitats and ground-truthed to establish the

distribution of organisms on the seabed (Greenstreet

et al., 1997; Siwabessy et al., 2000; Kostylev et al.,

2001; Anderson et al., 2002; Ellingsen et al., 2002; Freitas

et al., 2003a). However, some studies have clearly

identified influences from epi-benthic assemblages (e.g.

urchin, cockle) in acoustic backscatter (Jumars et al., 1996;

Self et al., 2001). Assuming that dense assemblages of

benthic fauna and flora could modify the seabed acoustic

backscatter, this study aims at detecting the specific signal

of Iceland scallop and a known scallop bed located in the

St. Lawrence Estuary, Canada. Several acoustic approaches
are compared: QTC VIEW systems (Series IV and V)

processing using QTC IMPACT software and custom

processing of the SIMRAD EK60 scientific echosounder

seabed volume-backscattering strength.

Material and methods

Study area

This study was conducted off Ile Rouge located in the

St. Lawrence Estuary, Québec, Canada (Figure 1). The

study area is approximately 22 km2 and the associated

Iceland scallop bed is the most upstream one of the St.

Lawrence Estuary (Arseneau et al., 2003). This scallop bed

is located on Ile Rouge bank, at depths varying between 20

and 60 m. It is bounded by the 250e300 m deep Laurentian

Channel in the north and the 100 m deep South Channel in

the south. The northern part of the scallop bed is located in

the Saguenay-St. Lawrence Marine Park. It has one of the

highest scallop densities in the Gulf of St. Lawrence. From

dredge samples, the mean density of the scallop bed was

estimated at 0.53 scallops m�2 and the maximal density

was 2.58 scallops m�2 (MPO, 2000; Hartog et al., 2001).

The bed has been exploited by commercial fishers since

1998, including the part located in the Marine Park

(Arseneau et al., 2003).

Acoustic surveys

Two surveys with different acoustic equipment were run over

the study area. The first survey occurred on July 15, 2002

aboard NGCC ‘‘F.G. Creed’’, an acoustic SWATH vessel

particularly stable and relatively silent. Nineteen survey

lines, orientated north/south, were run at an average speed of

16.7 km h�1 (4.6 m s�1) (Figure 2a). The acoustic equipment

comprised a SIMRAD EK60 echosounder operating at 38,

120, and 200 kHz. Only data from the 38 kHz sounder are

presented here. The 38 kHz sounder had a 7( split-beam

transducer and was operated with a 1-ms pulse length

triggered every second. The navigation system, connected to

both the echosounder and the QTC VIEW� system, was

a Differential Global Positioning System (DGPS), providing

positional accuracy of G3 m. A vessel-attitude system

(POSMV, Applanix, TX, USA) was connected to the EK60

system, which took the heave into account in bottom-depth

measurement. A QTC VIEW Series IV (Collins, 1996) was

connected to one quadrant of the split-beam transducer. This

system detected, processed, and digitized the raw bottom

echo trace read from the transducer cable, and extracted 166

echo-shape features from a five-pings, stacked echo with

a series of algorithms for energy and shape characteristics in

both frequency and time domains (Collins, 1996; Collins

et al., 1996). Preston et al. (2004) defined the five algorithm

families used to generate the 166 features as following: (i)

‘‘cumulative amplitude and ratios of samples of cumulative

amplitude’’; (ii) ‘‘amplitude quantiles’’; (iii) ‘‘amplitude
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Figure 1. A map of the study area indicating the scallop-bed’s location and extent.
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histogram’’; (iv) ‘‘power spectrum’’, and (v) ‘‘wavelet packet

transform’’. Furthermore, conductivityetemperatureedepth

profiles were made with an SBE-19 CTD (Seabird Electron-

ics Inc.) during the survey to compute the actual sound speed

and absorption coefficient profiles for the analysis of the

EK60 data.

The second acoustic survey was run in June 2003 aboard

the trawler NGCC ‘‘Calanus II’’. Forty transects were

surveyed at an average speed of 13 km h�1 (3.6 m s�1)

(Figure 2b). Some tighter lines were also run in areas

known as being representative of a particular bottom type

or benthic faunal community (Figure 2c). A SUZUKI ES-

2025 echosounder operating at the single frequency of

50 kHz with a 42( single-beam transducer and emitting

0.60-ms pulses every 2 s was used. The QTC VIEW system

was the Series V, which achieves faster digitization of the

signal with a better resolution and dynamic range (Freitas

et al., 2003b), and permit classification over a depth
range that includes very shallow waters, according to the

manufacturer. In addition, Series V raw data are the full

bipolar waveform of the echo trace, while the Series IV raw

data are the pre-processed set of echo descriptors. The main

differences between the acoustic equipments used for the

two acoustic surveys are given in Table 1.

Ground-truth sampling

Biological data were collected in June 2002 aboard the RV

‘‘A.C. Horth’’. Seafloor photographs were taken with a high-

resolution (4.2 megapixels) still camera fitted with a wide-

angle lens and placed in a waterproof case and remotely

controlled from the vessel. Two 250 W light sources allowed

adjustment of the illumination according to the water

turbidity, the position of the camera to the bottom, or both

factors. The system was mounted on a tetrapod frame that

included a reference ruler to evaluate the size of material of
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Figure 2. Survey maps. (a) 2002 Acoustic-survey lines; (b) 2003 acoustic-survey lines; (c) 2003 acoustic-survey tighter lines over different

benthic-communities areas; (d) 2002 seafloor-photograph stations. Note that the maps in Figures 2e7 are stretched horizontally by a factor

of 1.5 for clearer separation of the transect lines; the scale provided is for the horizontal axis.
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the seabed. Throughout the study area, 40 stations, located on

a regular grid, but actually sampled slightly away from the

plan because the ship driftedwith the currents, were surveyed

(Figure 2d) and, at each station, five 0.25 m2 images of the

seafloor were collected when the camera reached the bottom.

Furthermore, Smith-McIntyre grab (0.1 m2 area) and dredge

samples were collected. Granulometry of the sediment was

done at each station and used to compare grab samples and

seafloor photographs (Arseneau et al., 2002). The grab

samples underestimated large boulders and rocks, compared

with photographs. Seafloor photographs were, therefore,

used here since they are more appropriate to identify the

relevant biotope characteristics.

Data analysis

The seafloor photographs were analysed through the image

analysis software Image Pro Express v4.0 to quantify the

surface covered by the sediment and the epi-macrobenthos.
A grid of 100 uniformly distributed points was

superimposed on the photographs, and what was under

each point was identified to give an estimate of the

percentages of the surface covered by each component.

This is a modified method of that used by Archambault

et al. (2001) directly in the field. For each station, these

aerial percentages were averaged over the five photographs.

For comparison with the acoustic classification, stations

were first classed by their dominant organism, which

represented more than 50% of the total aerial percentage

represented by the macrobenthos. These biological domi-

nance classes were: ‘‘scallop’’, ‘‘hydrozoa’’, ‘‘ophiuridae’’,

or ‘‘encrusting algae’’, which were the four most common

taxa. When there was no predominance, the station was

then assigned to a ‘‘non-predominance’’ class. This allowed

the generation of a single map showing the principal

biological feature at each station. Furthermore, in the

quantification of the epi-macrobenthos, the distinction

between live and dead scallops was based on the presence
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of visible ocelli and a non-eroded shell margin. Second, the

aerial percentages were submitted to multivariate statistical

analyses to classify the stations by their similarity and to

compare these results with the acoustic classification. The

matrix of 40 stations by 49 variables, corresponding to the

species- and sediment-type aerial percentages, was used to

compute similarity matrices on selected variables using the

BrayeCurtis index (Clarke and Warwick, 1994). The

similarity matrices were then submitted to average linkage

hierarchical clustering to classify the stations (Legendre

and Legendre, 1998). For each resulting classification, the

mean relative aerial density and percentage of contribution

to within groups similarity were computed for the main

components of the group (for details, see Clarke and

Warwick, 1994). Third, another classification for compar-

ison with the acoustic classification was based on the aerial

percentage of living scallops, which was objectively

partitioned in homogenous classes by K-means clustering.

The QTC VIEW full-feature vectors data (FFV) were

first analysed using an unsupervised classification method

Table 1. A comparison of the settings for the echosounder and the

QTC VIEW systems on the acoustic surveys in 2002 and 2003.

Parameter

Setting

2002 2003

Echosounder SIMRAD EK60 SUZUKI ES-2025

Operating

frequency

38 kHz 50 kHz

Beam width 7(* 42(
Footprint diameter

and area in 40-m

water depth

5 m, 19 m2,

2.5 m, 5 m2*
30 m, 741 m2

Transmit power 2 000W 100W

Pulse duration 1 ms 0.60 ms

Ping rate 1 s�1 2 s�1

Time-varied gain 20 log RC 2aRy 20 log (ct/2)C actz
Heave-corrected

depth

Yes No

QTC VIEW IV V

Sample rate 20 kHz 5 000 kHz

Resolution 8 bits 12 bits

Raw data Full-features

vectors (*.FFV)

Full-waveform

features (*.FWF)

Acoustic

classification

Real-time and

post-processing

Post-processing

*One the four quadrants of the split-beam transducer was

connected to the QTC VIEW IV system.

yFor the SIMRAD EK60 data, R is the range and a is the

absorption coefficient, taking into account the actual sound speed

and absorption profiles. For the QTC VIEW IV, see below.

zProvided by the QTC system, c is a nominal speed of sound in

water (1500 m s�1), t is the elapsed time since the transmit pulse

(in seconds) and a is a nominal absorption coefficient fixed at

5.5 dB km�1 according to QTC (2002a).
(Bornhold et al., 1999). The 166 variables, resulting from

the QTC VIEW echo description, were reduced to three

main dimensions (Q1, Q2, and Q3) using principal

component analysis (PCA, cf. Legendre and Legendre,

1998) for sorting out the echoes (Collins and McCon-

naughey, 1998), which generally account for 90% or more

of the total variance in a data set (Prager et al., 1995;

Legendre et al., 2002). This reduced data matrix was

submitted to K-means clustering based on a progressive-

splitting process using QTC IMPACT v3.0 post-processing

software. The detailed procedure of QTC IMPACT

processing is described in Freitas et al. (2003b). The

decision to split and merge clusters was assisted by

provision of statistical information of each cluster, notably

the total score and the Cluster Performance Index rate

(CPI). The total score corresponds to the sum of the scores

of the individual classes, while the individual score of each

class is the product of the number of records and a ‘‘chi-

square’’ value (c2) (Ellingsen et al., 2002). The total score

should first decrease rapidly and then stabilize when the

optimal split level is reached (QTC, 2002b), but see

Legendre et al. (2002). The CPI is a measure of the ratio of

the distance between the centres of clusters and the extent

of the clusters in the Q-space. The CPI rate is defined as

CPI(n)Z (CPI(n)�CPI(n� 1))/CPI(n� 1), where n is the

split number. The CPI rate tends to be maximum at the

optimal split level (QTC, 2002b). These two descriptors

were taken into account, as recommended by QTC, to

decide how to further subdivide the data set. At the end of

the procedure, echoes with similar characters formed

clusters that defined acoustic classes, which were mapped

throughout the surveyed seabed. In addition, as the QTC

classification accuracy can be affected by slopes (von

Szalay and McConnaughey, 2002), data records corre-

sponding to steep and moderate slopes at the margin of the

study area were trimmed off before the analysis. The

analysis was also done with all data and the resulting

patterns (not shown here) pointed to similar conclusions.

Only depths shallower than 70 m were kept and submitted

to cluster analysis.

Following the supervised approach, a specific catalogue,

which took into account a set of three, pre-determined

seabed classes from the biological samples, was created.

The FFV data within 150 m from a ground-truth station

were assigned to that station and its dominant macro-

benthic group (‘‘scallop’’, ‘‘hydrozoa’’, and ‘‘ophiuridae’’).

These data were then used through QTC IMPACT to create

a catalogue of known seabed classes, which served to

classify the whole survey FFV data.

A separate acoustic classification was performed from

the EK60 scientific echosounder seabed echo (only avail-

able for the 2002 acoustic survey). The volume-backscat-

tering coefficient acoustic metric (Sv, m�1) used in

echointegration (MacLennan and Simmonds, 1992) was

estimated for 40 intervals of 75 cm around the echo return

from the seafloor to get the seabed echo. The echosounder
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was calibrated with the standard-sphere method (Foote

et al., 1987). The EK60 raw data were first converted into

standard HAC format through CH1 software (Simard et al.,

1998). The Sv seabed-echo shape and amplitude were

computed using CH2 (Simard et al., 2000), which took into

account a time-varied gain (TVG) correction estimated

from the measured sound-speed and absorption profiles.

Thus, each ping was described by a multivariable com-

posed of 40 Sv values. The entire study area represented

22 031 pings, which formed a data matrix of 22 031 rows

and 43 columns including latitude, longitude, and depth.

The 40 Sv variables were log transformed into volume-

backscattering strength (Sv, dB re 1 m�1). As for the QTC

classification, only depths shallower than 70 m were

retained for the analysis. The Sv echo shape was smoothed

by a moving average on five pings. Then, this data matrix

was submitted to two types of multivariate statistical

analyses. First, a PCA was performed on the correlation

matrix of the Sv variables. Similarly, these Sv variables

were also regressed on depth and the residuals were

submitted to a second PCA. Then, the scores on the PCA

components representing more than 2.5% (i.e. 1/40) of

the total variance were submitted to a K-means cluster

analysis. Several acoustic classes were obtained this way.

The optimal split level was intuitively determined by

the observer as it best matched the biological pattern. The

associated acoustic classes were then imported into a

GIS and superimposed on the biological results. Second,

discriminant analyses (Legendre and Legendre, 1998) were

also applied to these seabed Sv data to determine an

acoustic-classification solution for a set of pre-determined

seabed classes from the biological samples. The pings

within 150 m from a ground-truth station were assigned to

the macro-benthic class of that station. A new acoustic-

station matrix was then generated with the same above

40 Sv variablesC 3 columns which included 2105 rows

corresponding to the extracted pings. This Sv matrix was

subjected to discriminant analysis using a series of pre-

determined seabed classes obtained from several different

hierarchical and K-means clustering on the ground-truth

data set defined above. The classes’ assignments were

added to the acoustic-station matrix, which then formed the

training set for the discriminant analysis. A stepwise

analysis was used, in which only those variables which

contribute the most to the discriminant function are

included, one at a time. The discriminant solutions were

then generalized to the whole survey area. The final

classifications were mapped and superimposed with

biological results.

Results

Ground-truth data

From analysis of the photographs, seafloor sediments on Ile

Rouge bank are rather coarse with a dominance of gravel
(O2 mm) and medium sands (0.25e0.5 mm). The gravel

proportions in sediments decrease downstream from Ile

Rouge, from 97% to less than 55%. Big boulders (O40 cm)

were common (up to 20%) in the east/southeast of the bank.

Scallop shells variably occurred over the study area with

a maximum proportion of about 25% in the dredging area.

The results of analysis of the photographs are well

corroborated by the grab- and dredge-samples analysis,

but these observations are not shown here. The sediment

inter-sites variability was rather low. Consequently, the

sediment pattern itself was not sufficiently variable to

compare with an acoustic classification. Several benthic

communities were identified from the analysis of the

photographs and they tended to be distributed over distinct

areas. The most common groups on the bank were

ophiuridae, Iceland scallops, calcareous-encrusting algae,

and hydrozoa. Two species of Ophiuroidea were observed,

Ophiura robusta and Ophiopholis aculeate. They were

combined for the analyses. These species were very

abundant, especially in the northern and eastern parts of

the bank and commonly in the crevices of rocks among

scallops or under rocks and shells. They may form dense

beds in high-energy, tidal area. They avoid light and prefer

to hide beneath rocks and under shells. They were often

observed attached to other animals through their adapted,

long, flexible arms. Calcareous encrusting algae were

observed on the shallower part of the bank relatively close

to Ile Rouge, generally fixed on pebbles and boulders,

which are rarely overturned. Hydrozoa, which populated

the southern part of the bank, were observed on boulders

(10 cm and more) and sometimes attached to living scallop

shells. These organisms could be very abundant and reach

a height O10 cm above the seafloor. These four groups of

organisms were retained to map the macrobenthos domi-

nance from the surveyed stations (Figure 3a).

Among the several similarity analyses and hierarchical

clusterings realized with the ground-truth data matrix, only

the ones which gave the best similarity with the

discriminant analyses of the acoustic data were retained.

First, the hierarchical clustering applied to the similarity

matrix computed from the combination of sediments and

macrobenthos aerial percentages identified five groups and

one singleton that are detailed in Table 2 and mapped in

Figure 3b. The five groups are actually mainly sorted by

their sediment composition. Some of them can be compared

with the previously described macrobenthos spatial distri-

bution (Figure 3a) as follows: group 2 can be related to

calcareous-encrusting algae habitat, group 4 to ophiuridae

habitat, and group 6 to scallop habitat. Second, hierarchical

clustering applied to the similarity matrix computed with

only the aerial percentages of macrobenthos provides six

groups and three singletons (Table 3 and Figure 3c). Those

groups are characterized by one dominant taxon (groups 1

and 2) or macrofauna assemblages (groups 4, 6, 8, and 9)

but, in this last case, one taxon is always predominant

vs. the other taxa of the community. Thus, scallops are
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Figure 3. Maps of the ground-truth stations. (a) Map of the macrobenthos dominance over the study area showing the scallop bed: :

predominance of ophiuridae; : predominance of scallops; : predominance of encrusting algae; : predominance of hydrozoa; : no

predominance. (b) Spatial distribution of the affinity groups identified by hierarchical clustering on the similarity matrix of macrobenthos

and sediments combined: five identified affinity groups and one singleton. (c) Spatial distribution of the affinity groups identified by

hierarchical clustering on the similarity matrix of macrobenthos only: six identified affinity groups and three singletons. (d) Spatial

distribution of the density groups identified by K-means clustering on living scallops aerial percentages: three identified density groups.
024
predominant in groups 6 and 9 but are also present in

groups 4 and 8. In summary, these two cluster analyses

gave consistent results that are both interesting to compare

with the discriminant analyses applied to the acoustic data

to compare the influence of sediments and macrobenthos

combined on the one hand, and only macrobenthos on the

other hand. In addition, K-means clustering was also

applied to the living scallop aerial percentages only to

identify scallop density for a third discriminant analysis

with the acoustic data. Several density groups were

produced, but only the results for three groups were kept

because they best matched our prior knowledge of scallop
spatial distribution throughout the survey area. These

results are shown in Table 4 and mapped in Figure 3d.

Acoustic classifications

The results of the acoustic classifications of both QTC

VIEW systems are given in Table 5. The optimal K-means

split level of the QTC VIEW IV data unsupervised

classification was already reached at the second split, as

the total score began to stabilize and the CPI rate was

maximal. Only Q1 and Q2 components contributed to the

classification (Figure 4b). The optimal classification



973Acoustic detection of a scallop bed

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/62/5/966/858289 by guest on 25 April 2024
solution corresponded to three acoustic classes largely

dominated by acoustic class 1. These three acoustic classes

are superimposed with the dominance pattern at the

biological stations in Figure 4a. This map did not indicate

a close correspondence between the acoustic pattern and the

main biological assemblages. It rather indicated a correla-

tion of the Q-values with depth, which was significant for

the Q1 and Q2 components responsible for the classification

(Table 6). For the supervised classification, a specific

catalogue was created with the selected training FFV data

set for three biological dominances, i.e. ‘‘scallop’’,

‘‘ophiuridae’’, and ‘‘hydrozoa’’. The resulting QTC

IMPACT specific catalogue was used to classify the whole

survey. This supervised classification, also dominated by

acoustic class 1 (Figure 4c), appeared as inconclusive as the

above unsupervised classification. No correspondence

between these QTC acoustic classification and the bi-

ological assemblages was found in this way. The results of

the QTC VIEW V data classification up to the third split are

Table 2. The mean relative aerial density and contribution to

within-group similarity for the macrobenthos and sediments aerial

percentages in each group identified with hierarchical clustering.

Species

Relative aerial

density (%)

Contribution to

similarity (%)

Group 1

One station only d d

Group 2

Boulders 10e80 mm 46.7 52.5

Boulders 1e10 mm 30.2 32.5

Boulders O80 mm and

encrusting algae

14.3 7.12

Group 3

Boulders 10e80 mm 50.1 59.1

Dead shells 15.1 14.4

Boulders 1e10 mm 13.4 13.4

Boulders O80 mm and

encrusting algae

6.3 4.6

Group 4

Dead shells 61.4 73.6

Sand 9.1 9.1

Ophiuridae 8.6 6.4

Living scallops 8.5 5.7

Group 5

Dead shells 44.6 53.5

Boulders 10e80 mm 23.5 25.6

Boulders 1e10 mm 6.6 16.0

Sand 9.7 5.5

Group 6

Boulders 10e80 mm 28.5 29.2

Dead shells 24.4 26.7

Sand 21.3 21.8

Boulders 1e10 mm 12.0 12.9
presented in Table 7a for the 2003 data set. The total score

and the CPI rate indicate that the optimal split level was

reached at the second split. The QTC VIEW V system

provided a classification pattern very similar to that of the

QTC VIEW IV, with the same relationship with the

bathymetry (Figure 5a). Here again, the Q-values were

highly correlated with depth (Table 8). The results for the

specific benthic-community area classification up to the

third split are given in Table 7b and Figure 5c. The optimal

split level was the second. The first class was dominant

again, and the third class contained only a few cases. The

resulting spatial distribution of this classification does not

match the biological pattern either (Figure 5c).

The PCA results for the Sv depth-filtered data set are

presented in Table 9. The first 10 principal components

explained 76.4% of the total variance. The reduced matrix of

the scores on these first 10 principal components was

subdivided into groups by K-means clustering in order to

produce acoustic classes. The optimal split level was

Table 3. The mean relative aerial density and contribution to

within-group similarity for the macrobenthos aerial percentages in

each group identified with hierarchical clustering.

Species

Relative aerial

density (%)

Contribution to

similarity (%)

Group 1

Calcareous-encrusting algae 10.9 97.5

Group 2

Hydrozoa 17.2 93.9

Group 3

One station only d d

Group 4

Hydrozoa 4.2 75.8

Scallops 1.1 7.5

Sponges 0.5 7.1

Group 5

One station only d d

Group 6

Scallops 2.9 67.0

Hydrozoa 0.8 11.3

Ophiuridae 0.7 9.4

Sponges 0.5 6.3

Group 7

One station only d d

Group 8

Ophiuridae 10.2 65.9

Scallops 2.8 19.7

Urchin 1.0 6.0

Group 9

Scallops 8.3 69.5

Ophiuridae 3.8 19.7

Urchin 0.8 5.7
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subjectively determined for KZ 4. The resulting acoustic

classification did not show any correspondence with the

biological pattern (Figure 6a). The map suggested a high

correlation of the principal components with depth. This

correlation was significant for the 10 principal components.

Comparatively, when this depth relation was removed

through a regression of Sv variables on depth and the

residuals were submitted to PCA, 79.4% of the variance was

explained by the first 10 principal components. The scores

on these PCA were then separated in groups with K-means.

The resulting acoustic classification matched the biological

pattern better (Figure 6b). Only the partition with five

identified acoustic classes is presented here because this is

the one which best fitted the biological classification. The

scallop-bed centre appears rather clearly (in red). The few

stations with no biological predominance (blue crosses) that

are included in this scallop-bed centre were not dominated by

scallops but they still hold significant scallop concentrations.

The results of the three best discriminant analyses are

summarized in Table 10, which shows the number of

Table 4. Scallop-density groups defined with K-means clustering

on living scallops: aerial percentages for three groups.

Scallop relative

aerial density (%)

Group 1 [0; 3.8]

Group 2 [4.2; 8.8]

Group 3 [14.2; 15]

Table 5. QTC IMPACT classification statistics for the 2002 QTC

VIEW IV data. Optimal split level in bold.

Split

Total

score CPI

CPI

rate Class Members c2 Score

0 1 655 404 d d 1 5 788 286.0 1 655 404

1 134 503 1.8 d 1 4 352 18.3 79 776

2 1 436 38.1 54 728

2 69 722 10.6 4.7 1 3 613 10.3 37 245

2 718 9.3 6 713

3 1 457 17.7 25 764

3 47 235 39.2 2.7 1 3 079 8.4 25 866

2 341 3.8 1 282

3 858 12.8 10 954

4 1 510 6.0 9 132

4 30 465 76.2 0.9 1 2 532 6.7 16 856

2 313 3.4 1 071

3 514 2.7 1 368

4 697 6.6 4 585

5 1 732 3.8 6 586
samples correctly assigned to each group (in the column

assigned the same number as the row), the number of

misclassifications (in other columns), and the good

classification rates (in the last column). The attributes (i.e.

the Sv bins variables) contributing the most to the

discrimination between groups were also identified. The

0.75-m Sv bins were numbered from 1 to 40 according to

their altitude, the last bins corresponding to the water

column. With a mean sound speed of 1470 m s�1 at

acquisition, each bin corresponds to 5! 10�4 s. First,

Table 10a shows the results for the training data set

obtained from the similarity analysis and hierarchical

clustering on the sediments and macrobenthos percentages

combined. Second, Table 10b shows the results for the

training data set obtained from the similarity analysis and

hierarchical clustering on the macrobenthos aerial percen-

tages. Three of the first most discriminating variables in this

analysis are the same as in the previous analysis (variables

40, 35, and 11), and the others are adjacent, which points

towards the same part of the seabed signatures contributing to

the discrimination. These two discriminant analyses gave

comparable results with a rather good success rate, re-

spectively, 69% and 66%. To classify thewhole acoustic data

set, the results from Table 10a and b were generalized to the

whole survey area and the resulting classifications mapped

(Figure 7a and b). Both maps highlighted rather well the

centre of the scallop bed, from the acoustic classes 6 and 9,

respectively, as well as the general spatial pattern of biotope

or macrobenthos. Finally, Table 10c shows the discriminant

classification results for the scallop-density, training data set.

This is the best scallop classification so far. Altogether, 75%

of the members from the three subgroups were correctly

classified and 91% from the scallop were the richest group.

The generalization to the whole survey area is mapped in

Figure 7c. This classification probably gives a good idea

of the scallop bed extent as defined by high concentration

spots.

The scallop-specific acoustic signature was extracted

from the ground-truth training data set comprising the

scallop-density classes. Box-plots of the Sv values for each

bin are presented in Figure 8 to highlight the seabed echo

changes from the lowest to the highest density class to

identify the specific ‘‘scallop signal’’ and the ‘‘no-scallop

signal’’. The amplitude of the echo largely depends on the

beam-pattern of the SIMRAD ES 38B 7( transducer. The

peak on each plot (bin 33) corresponds to the backscattering

from the surface of the seabed. Before the peak, i.e. just

before reaching the seafloor (bin 35), the scallop-signal

energy was weaker than the no-scallop signal. The seabed-

echo tail is not discriminating between groups until a delay

of 6.5 ms (bin 27). As the tail ended its steep decrease,

between the time delays for seabed-surface echoe inciden-

ces of w20e30(, where the most discriminant features are

concentrated, the scallop signal held stronger energy content

than the no-scallop signal. This situation reverses a little

later, at a delay of 9 ms (bin 22), i.e. O30( incidence.
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Figure 4. QTC VIEW IV classifications. Maps of the three QTC IMPACT acoustic classes with the biological classification of Figure 3a

superimposed. (a) Unsupervised classification with (b) three-dimensional scatter plot of the associated Q1, Q2, and Q3 values, classified

into three clusters. (c) Supervised classification.
st on 25 April 2024
Discussion

The ground-truth analysis of photographs showed that the

inter-site variability of the sediment types was too low to be

discriminated acoustically contrary to the benthic-taxa

distribution. To a certain extent, however, this substratum

Table 6. Pearson correlation coefficients between depth and the

three Q-values from QTC VIEW IV. The correlations are all

significant (p! 0.05).

Unsupervised classification Supervised classification

Q1 �0.77 �0.75

Q2 0.46 0.24

Q3 �0.08 �0.28
pattern determines the benthic-communities distribution as

the sediment types (or substrata) are one of the main

environmental descriptors that defines benthic habitats and,

consequently, influences the composition of the communi-

ties. As the species encountered in our study live in

preferred sediment types, we assumed that the sediment

distribution is implicitly involved in the acoustic discrim-

ination of the benthic communities, but is generally not

controlling the observed patterns. Some ancillary factors

are also used to characterize a habitat such as water depth,

seafloor geomorphology, habitat complexity, current speed,

food supply, temperature range, predation pressure, and

disturbance by fishing activities (Kostylev et al., 2001,

2003). These environmental factors certainly influence the

pattern of scallop distribution and should be taken into

account in the interpretation of acoustic classifications. On

Ile Rouge bank, scallops were found on areas with strong
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currents and gravel substratum two factors that are essential

for larval dispersion and larval settlement (Bousfield,

1960). The region is also well known as an upwelling

region that is very productive (Therriault and Levasseur,

1985) and where concentration processes are very active

along topographic features (e.g. Cotté and Simard, in

press). This could provide a large source of food for the

scallops, and the hydrodynamic regime observed in this

area (Simard et al., 2002) could favour the retention of this

scallop population in this specific area. The hydrodynamic

regime of this region is known to aggregate and retain large

biomasses of swimming species such as krill (Lavoie et al.,

2000).

The QTC AGDS classifications failed to highlight the

benthos distribution. Actually, both QTC-unsupervised

classifications were significantly related to bottom depth.

But previously, as it was commonly observed that, in general,

benthic communities and sediment structure changed with

depth. In our case, however, no correlations between

sediments or spatial patterns of communities and depth were

found in the ground-truth data. Von Szalay and McCon-

naughey (2002) have shown that even modest bottom slopes

could greatly affect the QTC performance. We removed all

the data located on steep andmoderate slopes from our initial

Table 7. QTC IMPACT classification statistics for the 2003 QTC

VIEW V data. Optimal split level in bold.

Split

Total

Score CPI

CPI

rate Class Members c2 Score

(a) Whole survey area

0 535 645 d d 1 13 122 40.8 535 645

1 122 651 1.8 d 1 11 137 10.5 117 048

2 1 985 2.8 5 603

2 29 786 5.6 2.3 1 6 316 1.5 9 248

2 4 861 3.2 15 681

3 1 945 2.5 4 856

3 34 975 14.4 0.8 1 6 285 2.2 14 048

2 4 871 3.1 15 089

3 543 2.4 1 278

4 1 423 3.2 4 560

(b) Specific benthic-community sites

0 85 110 d d 1 12 054 7.1 85 110

1 35 091 0.7 d 1 8 798 1.2 10 932

2 3 256 7.4 24 159

2 25 503 3.5 3.7 1 9 065 1.2 10 883

2 2 820 5.0 14 226

3 169 2.3 394

3 28 825 5.5 0.6 1 8 576 1.0 8 640

2 1 598 4.3 6 942

3 193 2.9 569

4 1 687 7.5 12 673
QTCVIEW IV and QTCVIEWV data sets, but the resulting

new QTC classifications were still dependent on depth.

Similar depth-dependence with QTC AGDS classifications,

have been encountered in previous studies. Anderson et al.

(2002) demonstrated a high ‘‘depth-dependence’’ in the Q-

values for some of their classifications,whereas Foster-Smith

et al. (2004) encountered, in shallow waters, a marked depth

trend of Q-values (especially Q1). This depth-dependence

was also mentioned by Greenstreet et al. (1997) for the

RoxAnn system, the performance of which might be affected

by water depth, and by Bax et al. (1999), who reported the

depth-dependence of the RoxAnn habitat indices E1 and E2.

Reporting the case of a study whose first components from

the QTC-extracted features were highly correlated with

depth, Legendre (2003) interpreted this correlation with

depth as being partly related to theQTC IMPACT processing

that ‘‘only uses three axes in determining its partition [which]

makes it especially sensitive to depth’’. To deal with this

specific issue, Legendre (2003) recommended using all the

principal components required to explain 95% or more of the

variance in the data set. However, Preston (2003) asserted

that the QTC IMPACT resampling process to standardize

echo duration removes the dependence on depth. Though this

may help to align echoes with angles of incidence, the

problem of the footprint increasing with depth still remains

when the transducer is fixed on the vessel for any acoustic

systems, as noted by Morrison et al. (2001) and von Szalay

and McConnaughey (2002). The QTC process averages the

backscatter signal of five consecutive pings to generate

a single-record to reduce ping-to-ping variability that may

cloak sediment contribution to the echo (Preston et al., 2004).

For the SIMRAD EK60 of the 2002 survey, given the vessel

speed and the ping rate, this averaged QTC footprint (one

quadrant of the 7( split-beam transducer) was equivalent to

w7.3 m2 in 50-m depths with no overlapping between two

individual pings. The equivalent for the SUZUKI ES-2025

echosounder of the 2003 survey was w1157 m2 in 50-m

depths, i.e. 157 times more than in the 2002 survey, and with

a very important overlapping percentage ofw95% between

two individual pings. Legendre (2003) stressed that a corre-

lation with depth is ‘‘not avoidable because the size of the

sonar footprint is a function of depth’’. The relationship

between our QTC classifications and depth might be related

to the increasing size of the averaged footprint with depth as

the acoustic acquisition of this study was made in a relatively

wide range of depths (48e70 m for the depth-filtered data).

Large-footprint sizes also hinder the resolution of small-scale

patterns in benthos and bottom habitat, thus limiting the

ability of the equipment to accurately discriminate, as

mentioned by Kenny et al. (2003). Moreover, the supervised

classification within the QTC VIEW IV data processing was

not conclusive either, as the procedure failed to recognize the

pre-determined subset of known seabed types in the rest of

the survey area. The above dependence on depth of the QTC

data is not likely to be one of the reasons behind this

misclassification because even data in the same water depth
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Figure 5. QTC VIEW V unsupervised classification. Map of the three QTC IMPACT acoustic classes with the biological classification of

Figure 3a superimposed. (a) Whole survey area with (b) three-dimensional scatter plot of the associated Q1, Q2, and Q3 values classified

into three clusters. (c) Specific benthic-communities sites with (d) three-dimensional scatter plot of the associated Q1, Q2, and Q3 values

classified into three clusters.
 by guest on 25 April 2024
were incorrectly classified. Other influences, such as the use

of too small a fraction of total variance with only three

principal components, or ineffective extraction of proper

discriminant features, might be involved.

The bottom Sv data processing through PCA and

K-means clustering first showed a similar dependence of

the classification with depth in spite of the accurate TVG of

Table 8. Pearson correlation coefficients between depth and the

three Q-values from QTC VIEW V. The correlations are all

significant (p! 0.05).

Whole survey area

Specific benthic-

community sites

Q1 �0.26 0.04

Q2 0.62 �0.18

Q3 0.27 0.43
the SIMRAD EK60 echosounder corrected for actual sound

speed and absorption profiles, which properly compensated

for spreading and absorption losses. Yet, a moving average

was also performed on five pings to stabilize the signal

(Lurton and Pouliquen, 1992; Sternlicht and de Moustiers,

2003). This finally provided an average footprint per ping of

w29 m2 at 50 m. The comments made earlier on depth-

dependence and footprint-size effects also apply here.

Removing the depth trend by a regression was effective for

the PCACK-means clustering, and the resulting unsuper-

vised acoustic classification matched rather well the bi-

ological classification. This partitioning of the acoustic

variability was done with the first 10 principal components,

which represented 79.4% of the variability in the data set.

This is less than the 95% recommended by Legendre (2003),

but all the significant components (eigenvalueO 1) were

included. The statistical removal of the masking trend with

depth through a regression produced a better classification,

but the acoustic interpretation of this filter and its effect on
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distorting the seabed-discriminant information are unknown.

The unsupervised approach is effective in partitioning the

total variability in a study area, but it is not turned to

highlight particular habitat or biotope, as our study hoped to

do.

The discriminant analyses performed on the bottom Sv
data allowed the percentage of classification success and

the mean Sv signal of each group to be determined. They

also permitted the identification of the variables responsible

for the discrimination between the groups in order to help

in understanding the relevant acoustic-scattering classifica-

tion process. They provided the most interesting acoustic

classifications. Indeed, the accuracy of this method strongly

relies on the presence of discriminant features in the

training data set. Several training data sets were tested

without success. In descending order, the best correspon-

dence between the resulting discriminant analysis, acoustic

classification, and the associated biological classification

was found for the three scallop-density classes, then for the

six sediment-community classes, and finally for the nine

community classes. The number of classes may influence

the classification by increasing the overlap between the class

signatures. Increasing the range of habitats or biotopes will

surely enlarge the possibility of overlapping signatures and

consequently reduce the discrimination. The classification

accuracy may be improved by grouping habitats or biotopes

in broader categories, but with the risk of missing small-

scale but significant units (Foster-Smith and Sotheran,

2003). Nevertheless, the information extracted by the

discriminant analysis for the three scallop-density classes,

with a percentage of correct classification of 91% for the

areas that hold the greatest scallop densities, is significant

Table 9. Bottom Sv PCA results. A: the percentage of total variance

explained by the first 10 principal components (PC) and their

correlation with depth (all significant, p! 0.05), and B: the

percentage of total variance explained by the first 10 principal

components of the residuals after removal of the depth trend of the

Sv data by regression.

PC

A B

% Variance Pearson r with depth % Variance

1 29.60 0.76 31.21

2 10.79 �0.06 12.41

3 8.21 0.52 9.08

4 6.27 0.39 7.05

5 5.08 0.07 4.92

6 4.59 0.22 4.92

7 3.40 0.14 3.34

8 3.23 0.09 2.08

9 2.70 0.11 2.41

10 2.50 �0.28 1.99

Total 76.40 d 79.40
for the objectives of this study. The extent of the scallop bed

was thus well defined, revealing patchiness in the distribu-

tion with some very high-density spots, essentially in the

centre of the bank and extending to the south and west.

Actually, commercial-size scallops were very abundant in

the surveyed area with a mean dredge density of 0.75 and

m�2, higher values in the centre of the bed, whereas in the

other parts of the St. Lawrence, the highest density was

0.4 m�2 (MPO, 2000). This species is characteristic of cold-

water regions (Eckman, 1953). It lives in areas with

sediments characterized by a mixture of gravel and !10%

Figure 6. Acoustic classification resulting from the EK60 seabed

Sv processing superimposed on the biological classification of the

Figure 3a. (a) PCACK-means clustering: example with four

acoustic classes. (b) Regression on depth of the EK60 seabed

SvC PCA on the residualsCK-means clustering on the first 10

principal components: five identified classes retained.
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sand (Fader et al., 1982). Gilkinson and Gagnon (1991)

observed a high density of C. islandica associated with

coarse sediment (dense gravelecobble). It is generally

found attached by byssal threads to coarse substrata in areas

with strong currents (Vahl and Clausen, 1980). However,

the part of the discriminant information due to the presence

of scallop and that attributable to the associated sediment

composition remain to be determined. Verifications by

additional ground truth at the discontinuities between

classes would help validate the generalized classification

for the whole survey area. Intense a priori and a posteriori

Table 10. Discriminant analysis from EK60 Sv seabed data. Cases

in rows classified into columns. The total percentage of correct

classification corresponds to the sum of the diagonal of the table

over the ‘‘sum of the columns’’ totals.

(a) Classification matrix for the training data set corresponding to

the six macrofauna and sediments aerial percentage assemblages

Group 1 2 3 4 5 6 % Correct

1 52 0 2 0 1 0 95

2 0 275 3 0 7 0 96

3 8 59 422 93 187 82 50

4 0 0 10 119 5 21 77

5 7 2 63 9 326 30 75

6 4 0 24 14 28 252 78

Total 71 336 524 235 554 385 69

(b) Classification matrix for the training data set corresponding to

the nine dominant taxa groups

Group 1 2 3 4 5 6 7 8 9 % Correct

1 89 0 0 1 1 0 2 0 0 96

2 0 180 5 2 3 16 4 4 0 84

3 0 0 63 0 0 1 0 0 0 98

4 1 4 1 117 0 7 2 12 8 77

5 0 1 0 0 58 6 1 3 1 83

6 2 33 56 22 43 140 2 7 53 39

7 0 3 0 0 0 1 90 10 0 87

8 49 16 1 19 31 13 9 259 38 52

9 8 0 3 54 22 25 1 50 392 71

Total 149 237 129 215 158 209 171 345 492 66

(c) Classification matrix for the training data set corresponding to

the three scallop-density classes

Group 1 2 3 % Correct

1 1 083 276 62 76

2 96 421 75 71

3 1 7 84 91

Total 1 180 704 221 75
ground-truthing is essential to verify the effectiveness and

accuracy of all seabed acoustic-classification methods.

We can speculate on the causes of the specific scallop

acoustic signature and the differences with the no-scallop

acoustic signature and infer some characteristics of the

scallop biotopes. First, there are only slight differences

between the acoustic signatures of the seabed classes in this

area, probably because the sediment across the whole area

is fairly similar and relatively hard and reflective. The main

particularity of the scallop signal vs. the no-scallop signal

occurs just before the acoustic pulse encounters the

seafloor. In areas with scallops, the slope effect on the

signal may be less important than in areas without scallop,

thus suggesting a flatter bottom for the scallop-rich areas, as

the echo starts to return earlier and lasts longer over sloping

bottoms. The roughness of the seabed at a small scale might

be smaller in high-density scallop areas, or perhaps the

interaction between the slope and the roughness of the

seabed differs there. The second particularity occurred in

the echo tail when the scallop signal appeared stronger than

the no-scallop signal. This may be attributable to stronger

interface backscattering detected from the first side-lobes of

the SIMRAD ES 38B transducer, suggesting a higher

roughness in scallop areas detected at incident angles

between 20( and 30(, as the sampling surface becomes

larger. Alternatively, this may be linked to the seabed

volume backscattering in the presence of scallops that

significantly differs from the volume backscattering in

coarse sediments (e.g. sand) alone (cf. Sternlicht and de

Moustiers, 2003). Finally, the third and last difference

identified between the two signals occurred beyond 30(
incidences, where higher backscatter was detected for areas

with few or no scallops. One reason for this result could be

that the sampling surface becomes larger, thus considering

roughness variability at broader scales, which can then

include boulder occurrence. The observation from ground-

truth samples that boulders were more common outside the

high-density scallop area is in agreement with this

hypothesis. Once again, the potential interaction with

volume backscattering at angles O30( cannot be over-

looked, and may also contribute to the signal patterns.

In the light of these diverse results, we can draw some

conclusions about the relative efficiency of each acoustic

approach considered in our study. Both QTC systems

(Series IV and V) failed to provide conclusive acoustic

classifications compared with our prior knowledge of the

benthic characteristics of the surveyed area, and this was

the case for both sediment pattern, and for the community

pattern. QTC results held a strong depth-dependence, which

could not easily be filtered out because of the awkward

access to the QTC 166 features. However, both QTC

systems used in this study have been shown to be effective

in mapping other marine benthic habitats (Collins and

Galloway, 1998; Hamilton et al., 1999; Preston et al., 1999;

Smith et al., 2001; Ellingsen et al., 2002; Freitas et al.,

2003b). Furthermore, as suggested by Hamilton et al.
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Figure 7. Generalization to the whole survey area of the EK60

seabed Sv discriminant-analysis solutions based on the training data

sets defined with a similarity analysis and hierarchical clustering on

(a) both macrobenthos and sediments aerial percentages combina-

tion; (b) macrobenthos aerial percentages only; (c) scallop-density

classes sorted out by K-means clustering. (The corresponding

training data set is superimposed on each part figure a, b, and c.)
(1999), who compared the performance of RoxAnn and

QTC VIEW and found not only useful results but also

misclassifications with the two systems, AGDSs remain

empirical systems that may be efficient for some bottoms

and inefficient for others. As an alternative to AGDS, the

bottom Sv processing provided several different interesting

acoustic classifications within the limits of the methods and

equipment as mentioned above. The discriminant-analysis

approach is attractive because it can be adapted to the

specific objective of the classification looked for, such as

sediments, communities, biotopes, or even a particular

species, by organizing a posteriori the training data set

accordingly. This is indeed not possible with the un-

supervised approaches that are used to partition the total

acoustic variability observed in a given area into different

groups, or with the a priori-defined training data sets.

Besides, the discriminant-analysis solution provides the

level of uncertainty of the classification, which is not

available for unsupervised approaches of the bottom Sv
processing. It also identifies the variables that are largely

contributing to the discrimination, which is helpful for

understanding the related acoustic process. The use of

simple acoustic signatures expressed in standard units, such

as the Sv used here, is also essential for comparing results

with other areas and for generalizing solutions.

In conclusion, the acoustic equipments and processing

used in the present study can be of certain efficiency in the

remote sensing of the nature of a given seabed. However, as

extrapolation to non-surveyed areas is required because the

coverage is not 100%, classification uncertainty is unavoid-

able. AGDS might be expected to detect differences

between a limited number of very different biotopes that

are well demarcated in space. However, large numbers of

subtly different biotopes that merge into each other will be

poorly discriminated by such systems (Brown et al., 2001).

Given the fairly uniform sediments distribution over the

whole study site, the limited resolution of the systems used

in this study combined with the partial coverage of the

study area might lead to underestimating the small-scale

heterogeneity of the benthic habitats. To compensate for the

shortcomings of the method using high-resolution acous-

tics, gears such as sidescan sonar (Brown et al., 2002) or

multibeam systems (Kostylev et al., 2003) become more

appropriate when looking for a complete coverage of the

site. Those systems provide a more precise mapping of the

seafloor topography, which could contribute to better

estimates of scallop distribution and abundance, as notably

shown by Kostylev et al. (2003) with a multibeam. The use

of such a system is envisaged for future study of this area.

However, the distance between the instrument and the

seafloor affects spatial resolution for all systems. A

constant-altitude platform is required to obtain a constant-

sampling resolution. The distinction between the effect of

the seabed slopes and the seafloor composition on the

strength of the backscatter at different incident angles is

another difficulty that is common to all gears.
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