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Using acoustic backscatter from a sidescan sonar to
explain fish and invertebrate distributions: a case study in
Bristol Bay, Alaska
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Yeung, C, and McConnaughey, R. A. 2008. Using acoustic backscatter from a sidescan sonar to explain fish and invertebrate distributions: a
case study in Bristol Bay, Alaska. — ICES Journal of Marine Science, 65: 242 —254.

Environmental variables that are ecologically relevant and easily measured over large areas are useful for modelling species distri-
butions and habitats. Continuous acoustic, sonar-backscatter data convey information about physical properties of the seabed,
and hence could be a valuable addition to that suite of variables. We tested the potential utility of acoustic backscatter for improving
habitat models of marine species using data from a pilot sidescan-sonar survey. Raw digital-backscatter data were processed with QTC
SIDEVIEW and CLAMS software. Resultant acoustic variables—Q-values (Q1, Q2, and Q3), representing the first three principal com-
ponents of the data derived from image analysis of backscatter echoes, and a complexity metric (compx) measuring the variance of
Q-values in a geographic area—were used in multiple linear regression to model individual species abundance from bottom-trawl
survey data. Habitat models for flathead sole (Hippoglossoides elassodon), Pacific cod (Gadus macrocephalus), walleye pollock
(Theragra chalcogramma), red king crab (Paralithodes camtschaticus), basket star (Gorgonocephalus eucnemis), and sponges
(Porifera) included acoustic variables as significant predictors. For these six taxa, full models explained 67 —86% of variability in abun-
dance, with 9-54% of that total contributed by the acoustic predictors, suggesting that acoustic data could advance habitat research

for some bottom-associated marine species.
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Introduction

Effective management and conservation of marine species requires
clear understanding of their habitat needs. In the USA, the
Sustainable Fisheries Act mandates essential fish habitat (EFH)
definitions in all federal fishery-management plans (Pautzke,
2005). In practice, systematic survey data are commonly used to
identify suitable habitat as those areas supporting high relative
abundance (e.g. Packer and Hoff, 1999; Anderson et al., 2005;
Shucksmith et al., 2006). This approach presumes that density
data reflect habitat utilization, and the degree to which a particular
habitat is utilized is considered to be indicative of habitat quality.
Initially, habitat requirements may be represented as simple ranges
in common environmental variables that are known to support a
population. Ultimately, more informative quantitative models can
be developed that spatially link fish densities with a diverse set of
environmental variables.

Environmental variables that are ecologically relevant and easily
measured over large areas are of great value to habitat research.
Overall, the value of an environmental variable in habitat-
distribution models will be related to its capacity to explain variance
in abundance or predict distributions. Temperature and depth are
perhaps the most common environmental descriptors of aquatic
habitat. They have generally been effective in explaining a substantial
portion of variability in fish distribution (e.g. Rubec et al., 1999;

Reynolds, 2003; Rooper et al., 2005), probably because of their well-
known effects on the physiology and ecology of marine organisms
(Vernberg and Vernberg, 1972). Their widespread use in habitat
models may also be related to their ready availability; for example,
standard instruments exist to measure these variables continuously
while a research vessel is underway. Other variables (e.g. salinity,
substratum, and prey availability) are also useful predictors in
many habitat models (e.g. Rogers, 1992; Maravelias, 1999;
Shucksmith et al., 2006; Vinagre et al., 2006), but such data are gen-
erally less available and their usage correspondingly limited.
Surficial sediments are known to affect the distribution and
abundance of marine fish (McConnaughey and Smith, 2000;
Nasby-Lucas et al., 2002). However, direct sampling with grabs
and cores is prohibitively inefficient for even moderately large
areas, and bedforms that are important to certain species (Tupper
and Boutilier, 1995; Norcross and Mueter, 1999; Stoner et al.,
2007) cannot be discerned. Conversely, trackline surveys with echo-
sounders and sidescan sonars can provide information about the
seabed efficiently over extensive areas with a resolution that is on
the scale of tens of metres or better. It is also known that acoustic
backscatter from multibeam and sidescan-sonar systems conveys
information about physical properties of the seabed, including por-
osity, grain size, surface wave form, roughness, and density differ-
ence between water and seafloor material, in addition to certain
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biological and chemical properties, such as faunal and organic
content (Anderson et al., 2002). As such, backscatter data collected
by sonar systems could be a valuable addition to the suite of environ-
mental predictors that are suitable for habitat modelling. However,
acoustic data are generally unproven as a proxy for sediment data in
habitat models and rigorous testing is needed.

Automated-processing methods exist to relate acoustically
acquired seabed data to surficial sediments on the seabed. There is
considerable variability in the methodology for specific tools but,
in general, echo returns are analysed digitally and decomposed
into quantitative parameters that represent physical properties of
the seabed in unspecified ways. These parameters are then assembled
into groups (sediment classes) with similar acoustic properties.
These tools fall into two broad categories, based primarily on the
expected level of knowledge about sediments in the survey area. In
supervised classification, a reference catalogue of acoustic data repre-
senting all known seabed types is generated to which subsequently
collected data are compared and classified. Unsupervised classifi-
cation, on the other hand, characterizes sediments during post-
processing, with no requirement for a priori knowledge of sediment
diversity in the survey area. In both cases, ground-truth sampling is
undertaken to characterize the identified classes of sediments.

Fish-habitat studies thus far have generally correlated species
abundances with categorical seabed classifications, resulting in
largely descriptive definitions of habitat (Gregory et al., 1997;
Nasby-Lucas et al., 2002; Freitas et al., 2003; Hewitt et al., 2004).
The question remains whether species distributions can be
explained using acoustic backscatter as a continuous, quantitative
measure of the environment, analogous to the use of temperature
and depth data. If so, we would expect the information content of
acoustic data to be greater than that for discrete bottom types pro-
duced by clustering these same data. Clearly, this would be advan-
tageous for modelling the habitats of marine species. As such, we
investigated the potential utility of continuous acoustic backscatter
in marine-habitat modelling using data from a pilot sidescan-
sonar survey in Bristol Bay, Alaska. We tested whether the addition
of backscatter parameters as predictors can improve the modelling
of species distribution, when compared with models composed
solely of conventional habitat-predictor variables (e.g. tempera-
ture, depth, and geographic position).

Bristol Bay lies between the Alaska Peninsula and the mainland
on the generally flat and featureless Bering Sea shelf (Figure 1).
Whereas the deeper shelf sediments are generally muddy, the
sediments of Bristol Bay and other partially enclosed bays on
the shelf are primarily sands and gravels (National Research
Council, 1996). The bathymetric gradient is very gentle, with
depth varying from 40 m (northeast) to 80 m (southwest) over
~400 km, suggesting that local slope (i.e. angular) effects on back-
scatter would be minimal (von Szalay and McConnaughey, 2002).
Differences in acoustic backscatter should therefore accurately
represent characteristics of the sediments. If variables derived
from acoustic-backscatter measurements contribute significantly
in habitat-distribution models, then broad-scale remote sensing
of seabed properties with acoustic systems would benefit habitat
research and fisheries management.

Methods
Acoustic data

A pilot acoustic survey was conducted in the Bristol Bay region
of the eastern Bering Sea (EBS) from 28 June to 3 July 2002

(Figure 1). A Klein model 5410, multibeam, interferometric
sidescan sonar was deployed over approximately 1375 km of track-
line using the 75 m range-scale setting (i.e. 150 m cross-track
swathe). (Note that reference to trade names does not imply
endorsement by the National Marine Fisheries Service, National
Oceanographic and Atmospheric Administration.) This trackline
intentionally crossed 26 grid cells containing fixed bottom-trawl
stations (Figure 2) that are sampled annually by the Alaska
Fisheries Science Center (AFSC), Resource Assessment and
Conservation Engineering (RACE) Division of the US National
Marine Fisheries Service (NMFS) (Acuna and Kotwicki, 2004).

The Quester Tangent Corporation (Sidney, BC, Canada) was
contracted by the AFSC to process raw digitized-sidescan imagery
with their commercially available acoustic seabed-classification
software QTC SIDEVIEW (Preston et al., 2004; Quester Tangent
Corporation, 2004). A technical report to the AFSC (Quester
Tangent Corporation, 2005) detailed the manual and automated
steps undertaken to classify objectively the Bristol Bay seabed
(unsupervised classification). In the report, unsupervised classifi-
cation results were compared with expert interpretations by a
marine geologist familiar with the Bristol Bay region, and ground-
truth data were summarized. In brief, during processing, raw
imagery was digitized and subjected to quality-control procedures,
segmented, compensated, and ultimately classified using QTC
SIDEVIEW. Rectangular patches measuring 513 pixels cross-track
(24 m) x 129 pixels along-track (17 m) were placed over areas of
high-quality data that had unusable portions of imagery masked
and that complied with a set of quality-control rules (Figure 3).
A series of algorithms was then used to compensate imagery for
angular and range effects before extracting a vector of 132 par-
ameters, called a full-feature vector (FFV), from each patch. The
parameters describe the backscatter amplitude and sediment
texture within each image patch. A FFV record was generated
for each of 214 449 patches in this dataset. The resultant vector
was georeferenced to the centre of the patch.

Subjecting the entire dataset to numerical analysis was beyond
the practical limit of computer resources at the time of analysis
(2003). A subset of the data (43 segments of trackline, with a
total of 13 259 records, or 6% of the complete dataset) was selected
that included segments that were evenly distributed over the survey
area, in addition to segments over ground-truth sites, trawl
stations, and areas of distinctive acoustic characteristics.
Principal components analysis (PCA) was conducted on this
subset. The FFVs were reduced by PCA to the first three principal
components, called Q-values (Q1, Q2, and Q3), which together
explained 96.8% of the variance in the data (77.4%, 15.9%, and
3.5%, respectively). These three Q-values were used as predictor
variables representing the acoustic-backscatter characteristics of
the benthic habitat. We also included the “complexity” (compx)
metric generated by the QTC CLAMS software as another acoustic
predictor variable in our analyses. The compx metric measures the
spread of Q-values within a specified geographic area. The spread
is defined as the square root of the sum of the Q-value variances
(root-mean-square). For each query record (patch), the
Q-values of its 20 nearest neighbours (including itself) were
used to calculate the compx value (Quester Tangent
Corporation, 2005).

Abundance data
The AFSC conducts annual bottom-trawl surveys of the EBS
continental shelf (Acuna and Kotwicki, 2004). These surveys
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Figure 1. Bristol Bay site map showing 2002 sidescan-survey tracklines (1-6) and associated video/grab ground-truth locations
(g1-g8), locations of historical grab samples from the EBSSED database (Smith and McConnaughey, 1999), and 2002 AFSC groundfish

trawl-survey stations.

provide an index of biomass for stock assessments of groundfish
resources. Between June and August each year, the EBS shelf
(~463 400 km?) is systematically surveyed at depths ranging
from 20 to 200 m. An 83-112 eastern otter trawl is deployed
from chartered vessels at 356 standard stations in a sampling
grid with 37 x 37km (20 x 20 nautical mile) cells. Each
sample consists of a 30-min tow at 3 knots. The catch is pro-
cessed to determine total weight and numbers by species and
sex, and a variety of biological measurements and samples are
collected from individual specimens. Acoustic net-mensuration
data and a global-positioning system are used to standardize
catches according to area swept (i.e. kgha™'). These standar-
dized catches (abundance) are considered to be representative
of the entire survey grid cells. We worked with a subset of 35
benthic invertebrate and groundfish taxa commonly found in
Bristol Bay, based on bottom-trawl survey data (1982-2004;
Table 1). We examined catches of these taxa in the years

2002-2004 so as to correspond with the timing and location
of the Bristol Bay acoustic data presented here.

Assigning acoustic data to trawl stations

Mismatched spatial scales and dissimilar data densities are perva-
sive issues when correlating physical and biological data. The raw
acoustic data acquired by the sidescan sonar initially have extre-
mely high resolution (3 cm cross-track x 20 cm along-track),
which is reduced substantially during segmentation processing
to 17 x 24 m. The resolution of the trawl-survey data, by compari-
son, is quite coarse, and data density is very low owing to the large
area sampled by the net. As it is unknown when individual organ-
isms enter the trawl, the catch is treated in the aggregate for the
area defined by the horizontal opening of the net (~16 m) and
the distance towed (averaged 2.7 km in 2002). The effective resol-
ution of the fish and invertebrate densities from the bottom trawl
is therefore ~43 200 m>. In our analysis, we consider the trawl
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Figure 2. Standard station grid cells (labelled) crossed by the 2002 Bristol Bay sidescan-sonar-survey trackline. The 2002 trawl-survey tow
track is drawn for each station within each cell.

Figure 3. Sidescan-sonar image of seabed in QTC SIDEVIEW image
viewer with rectangular patches placed over high quality data areas
to either side of the data mask at the centre. The mask removes
noise artefacts from the water column.

track to be a straight line, using the start and end positions of the
tow (Figure 2). The midpoint of this track was used to approxi-
mate the geographic point location of the station. Two methods
for assigning the value of an acoustic variable (Q1, Q2, Q3, and
compx) to a trawl station were compared: first, use the mean
value of the variable within a single trawl cell (1392 km?); and
second, use the inverse, distance-squared, weighted (IDW) inter-
polation of the 15 nearest neighbours to a trawl station in any
direction. These spatial-join procedures were implemented in
ArcGIS and its Geostatistical Analyst extension.

Ground-truthing of sediment properties

Ground-truth data from several sources were used to compare
acoustic variables with sediment properties. In this study,
sampling with a 0.1-m” van Veen grab and a drop video camera
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Table 1. Taxa from 2002 trawl survey selected for analysis. Some
taxa may contain more than one species.

Taxon Common name
Pacific halibut

Hippoglossus stenolepis

Empty gastropod shells Snail shells

was conducted at eight locations along the survey trackline (Figure
1; Bornhold et al., 2005). Sampling locations were selected ad hoc
so as to be representative of the different substrata encountered.
Most of these samples were collected in the northern part of the
study area where seabed variability was greatest. For these
samples, textural analysis and the calculation of grain size were
conducted according to the scheme of Folk (1980). The mean
percentage weights of gravel (>2 mm diameter), sand (0.0624—
2mm), and mud (<0.0625 mm) for all samples falling in a
trawl cell were attributed to that station.

Additional information about surficial sediments near the
survey trackline was obtained from a database of historical
samples for the EBS continental shelf (EBSSED database; Smith
and McConnaughey, 1999). These samples were classified into
seven “low-resolution” descriptive textural classes according to
their gravel-sand—mud composition: gravel, mixed gravel—sand,

C. Yeung and R. A. McConnaughey

mixed gravel-sand—mud, mixed gravel-mud, sand, mixed
sand—mud, and mud, based on a simplified form of Folk’s
(1954) standard gravel-sand—mud ternary diagram (Smith and
McConnaughey, 1999). The low-resolution scheme was developed
to utilize the maximum number of historical samples from differ-
ent sources and sampling methods, with diverse descriptions of
grain size ranging from qualitative to granulometric. This
scheme also permits an approximate comparison between histori-
cal sediment data and sediment data from this study. The class-
frequency distribution of the historical samples, i.e. the number
of samples classified to each of the seven low-resolution classes,
was used to characterize the main sediment type and the variability
in a trawl-survey cell.

Distribution models

Least-squares, multiple linear regression (MLR) was used to assess
whether acoustic data could improve species-distribution models
built using only standard environmental data collected on AFSC
trawl surveys. All analyses were carried out in the R computing
environment, using associated statistics packages. The log(x+1)-
transformed abundance estimates of the 35 chosen taxa at the 26
Bristol Bay trawl stations whose cells contained acoustic data
were derived from 2002 trawl-survey data. The habitat predictors
used in the models were the acoustic variables Q1, Q2, Q3, and
compx, and the trawl-survey variables bottom depth (Z), surface
(ST) and bottom (BT) temperatures, latitude (lat), and longitude
(lon).

In exploratory analysis, first-order MLR models without inter-
action terms, i.e. main-effects only, were compared with non-
linear models and MLR models with interaction terms. More
complex models generally did not produce significantly better
fits. Therefore, simpler main-effects models were deemed appro-
priate here. We examined all possible MLR models involving the
trawl survey and acoustic-habitat predictors to select the “best”
MLR model for a taxon, defined as the subset of predictors with
the minimum Bayes information criterion (BIC; Schwarz 1978)
value. Best MLR models that included significant acoustic terms
(partial regression coefficients) and had an > > 0.5 were selected
for further analyses. These analyses included: (i) a post-hoc power
analysis (Cohen, 1988; Green, 1991) to estimate the power of
finding an acoustic predictor significant when added to a model
already populated with the significant trawl-survey predictors
(n=26, r*=0.5, and a = 0.05); (ii) comparing the r* for the
best MLR model including acoustic predictors with a model con-
taining only trawl-survey predictors (lat, lon, BT, ST, and Z); and
(iii) validating the best MLR models based on 2002 acoustic data
using corresponding abundance and environmental observations
from 2003 and 2004 trawl surveys, respectively, making the
assumption that textural characteristics of surficial sediments on
the EBS shelf and trawl-cell means for the acoustic variables
were reasonably constant over the period 2002—-2004 (Smith and
McConnaughey, 1999).

Multicollinearity was not of major concern when comparing
the MLR models, because our objective the prediction (maximiz-
ing r*) and assessment of the marginal contribution of acoustic
predictors, rather than explaining the underlying relationships
between variables (Legendre and Legendre, 1998; Graham, 2003).
The use of “all possible subsets” of habitat predictors instead of
“stepwise” procedures to select the model mitigates some of the
negative effect of multicollinearity on the power to detect a signifi-
cant effect (Graham, 2003). Evaluating the significant acoustic
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predictor in the best model as “last one in” further isolates its
unique variance contribution over trawl predictors already in the
model, in keeping with the objective of our analysis.

Results

Model inputs

There was a high density of acoustic data in each of the 26 trawl
survey cells analysed, and a representative value was assigned to
each by a robust method. On average, a trawl cell used in the analy-
sis contained 8112 (s.d. = 3450, range = 660—17 028) of the 17 X
24 m acoustic-image patches and the associated data vectors (Q1,

Q2, Q3, and compx). For all acoustic variables except compx, the
IDW-interpolated value at the trawl station and the mean value in
the corresponding trawl cell were highly correlated (rq; = 0.71;
rq2 = 0.83; rq3 = 0.78; reompx = 0.40; Figure 4). Discrepancies
were mainly in the northern (tracklines 2, 3; stations J, K) and
southernmost parts of the survey area (Figures 1 and 2), where
compx and variability in Q-values were highest (Figure 4). For
simplicity, trawl-cell means of acoustic variables were used in
modelling species distribution.

Based on comparisons with ground-truth data from this study
and historical sediment samples, the acoustic variables showed
some qualitative correlation with sediment grain size and
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Figure 4. (a) Comparison of two methods (IDW and cell mean) for assigning a summary value of an acoustic variable (y-axis) to a trawl-survey
cell (x-axis). For each acoustic variable, the cell values are plotted by method, with the mean of all cell values indicated (cell mean, solid line;
IDW, dotted line; means generated by the two methods for Q3-values are so close that the lines overlap). The correlation (r) between the
means calculated by each method is given. (b) The number of historical samples in each of seven “low-resolution” sediment classes in each
trawl-survey cell. (c) Percentages (mean and standard deviation) of three sediment types in trawl-survey cells determined from grab samples in
this survey (Figures 1 and 2); station g4 has only one sample (replicates = 1) and therefore no statistics; station g7 straddled trawl cells K11

and K12.
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texture. Trackline 3, which crossed the K trawl cells (Figures 1 and
2), had higher-than-average Q1, Q3, and compx values (Figure
4a). The higher structural complexity or heterogeneity in the sedi-
ments of this area is consistent with existing evidence from sedi-
ment analyses (Figure 4b). Cells K12 and K13 have the largest
numbers of historical samples, and according to the data, these
two cells not only have a wide range of sediment classes but also
are unique in containing the class “gravel” (Figure 4b). K12 has
the widest range of sediment classes, because it is the only cell
that also contains the class “mud”. Besides K12 and K13, all
other cells have relatively few samples, and all were classified as
sand except for a few which were classified as mixed gravel—
sand, or mixed sand—mud. Overall, sand is the predominant sedi-
ment class except in K12 and K13.

Grab samples collected during the survey (Figure 4c) supported
the general sediment classifications derived from historical data,
particularly with respect to sand being the predominant substra-
tum. Regarding the gravel fraction, some discrepancy exists
between historical sediment data and sediment data from this
study: K12 had almost no gravel according to the few (6) sediment
samples from this study, but many historical samples in this cell
(84), as well as historical samples and samples from this study in
neighbouring K cells, were classified as containing gravel (Figure
4b and c¢). K12 is probably more gravelly than grab samples
from this study suggest, and high Q1- and perhaps also high
Q3-values (e.g. in the K cells) are likely correlated with the hard-
ness and thus higher backscatter of gravelly surficial sediment.
There is no obvious explanation for the fluctuation of Q2-values
in relation to sediment texture. The discrepancy in sediment
class depicted by different sources is likely caused by the spatial
heterogeneity of the substratum within a trawl cell. Different
scales of sampling would then offer different perspectives of the
substratum type in the cell—more samples with wider spatial cov-
erage, such as achieved by acoustic survey, would be expected to
provide a more representative picture. For example, in the south-
ernmost trawl cell of D10 (Figure 1), the three grab samples from
this study and the three historical sediment samples available to us
indicate a sandy substratum (Figure 4b and c), whereas the rela-
tively high Q1- and compx-values (Figure 4a) suggest the presence
of gravel and spatial heterogeneity in the substratum. In this case,
the acoustic information is more consistent with the generalization
that nearshore sediments in Bristol Bay proper consist of extremely
poorly sorted gravel and coarse sand (Sharma, 1979).

MLR models

The best MLR models for six taxa included significant acoustic-
predictor terms and had an 1> > 0.5: flathead sole (Hippoglossoides
elassodon), Pacific cod (Gadus macrocephalus), walleye pollock
(Theragra chalcogramma), red king crab (Paralithodes camtschati-
cus), basket star (Gorgonocephalus eucnemis), and sponges
(Porifera) (Table 2). Overall, these six best models include 1-2
acoustic predictors out of a total of 3—4 predictors, excluding the
regression constant. These models explained 67-86% of the varia-
bility in taxon abundance, with the contribution of a single acoustic
predictor being 6—31% of that total, or a combined 9-54% by all
acoustic predictors in the model (Table 3). Based on the algorithms
and tables in Cohen (1988), for a cumulative model 7* 0f 0.5 (50% of
variability explained), the statistical power of detecting a significant
7% increment of 0.06 when a new (acoustic) predictor is added, given
1-3 significant (trawl) predictors already present in the MLR model,
is ~0.3, and 0.9 for an r* increment of 0.31.

C. Yeung and R. A. McConnaughey

Table 2. Best MLR models of species-habitat relationships that
contain significant (« = 0.05) acoustic predictors, and that have
model r> > 0.5.

Parameter Estimate s.e. t-value  p(>]t|)

Flathead sole

Q3 11768 03593 3.276 0.0035

z 00772 00102 7538 156e-07
Red king crab
(r* = 0.6804)

0.6676)

0.0796

The predictors are listed in the order they entered the model.

Analysis of variance (ANOVA) shows that all taxa have best
models that significantly improve (reduce variance of) abundance
prediction compared with versions with the acoustic variable(s)
removed (Table 3). For all six taxa, the best model also had a
higher r* than a model with only the five trawl-survey predictors,
despite fewer parameters (Table 4). The difference between the r*
of the best model (0.67) and that of the trawl-predictors-only
model (0.18) was largest for the basket star.

Based on diagnostic procedures, it is appropriate to use MLR
models with these data. Residuals plotted against fitted values
showed no obvious trends, standardized residuals mostly con-
formed to a normal distribution, and fitted values modelled
observed data reasonably well. The exceptions were basket star
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Table 3. ANOVA tables that show marginal contribution of
acoustic predictors to reducing variance (sum of square error) in
the model, given the trawl predictors already in the model.

Parameter d.f. Sum of Mean F-value p(>F) % sum
squares square of
squares

Flathead

crab

..... o
..... s (O A e
e B B 0
_____ i
_____ e . A
_____ e e e e
_____ o e e
_____ T O SR
o S P IEELOPE S P
_____ T T
_____ O A S
_____ T
_____ S O
_____ o L e

The predictors are listed in the order they entered the model.

and sponges, where a large proportion of zero catches (73% and
50%) impaired model fit. In each of the four other species, three
outliers were identified in the normal quantile plot. With the out-
liers removed from the data and the best model re-run, the r>
increased substantially. In that case, the full models would
explain 79-94% of the variability in abundance (Table 4).

The best model for flathead sole included two significant trawl-
survey predictors (lon and Z) and two significant acoustic-
predictors (compx and Q3); this model explained 86% of the
total variation in flathead sole abundance (r* = 0.86; Table 2).
The trawl-survey variables accounted for 71% of the data variance

(total sum of squares; Table 3), with marginal contributions of
40% (lon) and 31% (Z). The acoustic predictors added another
16%, with marginal contributions of 10% (compx) and 6%
(Q3). We report marginal contributions by acoustic variables as
the last variables to enter the best model, in the order listed in
Table 3. The best model for walleye pollock included two signifi-
cant trawl-survey predictors (Z and BT) and one significant acous-
tic predictor (Q3); this model explained 75% of the total variation
in pollock abundance (> = 0.75; Table 2). The trawl-survey vari-
ables accounted for 64% of the data variance, with marginal con-
tributions of 53% (Z) and 11% (BT). The acoustic predictor Q3
added another 12%. The best model for red king crab included
two significant trawl-survey predictors (BT and lat), one margin-
ally significant trawl-survey predictor (ST), and one significant
acoustic predictor (Q1); this model explained 68% of the total
variation in crab abundance (r* = 0.68; Table 2). The trawl-survey
variables accounted for 50% of the data variance, with marginal
contributions of 43% (BT), 3% (lat), and 3% (ST). The acoustic
predictor Q1 added another 19%. The best model for Pacific
cod included three significant trawl-survey predictors (Z, lat,
and BT) and one significant acoustic predictor (compx); this
model explained 67% of the total variation in cod abundance
(r> = 0.67; Table 2). The trawl-survey variables accounted for
58% of the data variance, with marginal contributions of 43%
(Z), 10% (lat), and 5% (BT). The acoustic-predictor compx
added another 9%. For basket star, the best model included two
significant trawl-survey predictors (ST and lat) and two significant
acoustic predictors (Q3 and Q1); this model explained 67% of the
total variation in starfish abundance (r*= 0.67; Table 2). The
trawl-survey variables accounted for 12% of the data variance,
with marginal contributions of 10% (ST) and 2% (lat). The acous-
tic predictors added another 54%, with marginal contributions of
31% (Q3) and 23% (Q1). For sponges, the best model included
two significant trawl-survey predictors (Z and ST), one significant
acoustic predictor (compx), and one marginally significant acous-
tic predictor (Q2); the model explained 67% of the variability in
sponge abundance (* = 0.67; Table 2). The trawl-survey variables
accounted for 48% of the data variance, with marginal contri-
butions of 37% (Z) and 11% (ST). The acoustic predictors
added another 19%, with marginal contributions of 13%
(compx) and 6% (Q2). This was the only “best model” of the
six considered in which Q2 appeared as a (marginally) significant
acoustic predictor.

Overall, best MLR models based on 2002 data were validated
except for taxa with substantial zero catches. Best-model predic-
tions of flathead sole abundance in 2003 and 2004 correlated
well with observed abundance (r=0.9; Figure 5). For Pacific
cod and red king crab, the correlations were also consistently
high (0.6 < r < 0.7). Model predictions were, however, unreliable
for basket stars and sponges because of the large proportions of
zero catches. Zeros may also have affected the pollock model:
the correlation between predicted and observed abundance was
lower in 2003 (r = 0.5, 15% zeros) than in 2004 (r= 0.8, no
Z€ros).

Discussion

Processed backscatter from a sidescan sonar explained a significant
but variable portion of fish and invertebrate abundance in the
Bristol Bay region of the EBS. The derived acoustic variables
accounted for 9—16% of the variance in fish abundance (flathead
sole, Pacific cod, and walleye pollock) and 19—54% of the variance
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Table 4. Comparison of variance in species distribution explained by best MLR model with significant acoustic term(s), and MLR model
containing only trawl predictors (lat, lon, Z, BT, and ST): predictors in best model, r* of best model, outliers (stations) in data as identified
in normal quantile plot of standardized residuals from best model, r? if outliers were removed (basket star and sponges are not analysed
for outliers because of the large number of zeros and consequent poor model fit), and r* of MLR model with only trawl predictors.

Taxon Best r? best

Outliers r? best, outliers removed r? trawl only

Q3 + compx + lon + Z

E12, F12, 114 0.9384

Sponges Q2 + compx + Z + ST 0.6676

in invertebrate abundance (red king crab, basket stars, and
sponges). The simple MLR models we used provided clear
answers to our question about the utility of acoustic data,
which, when other environmental data were included, explained
67-86% of the total variability for these six taxa. Given the rela-
tively low power of the analysis, in part due to the small sample
size, it is reasonable to expect that an underlying influence of
acoustic habitat predictors on the distributions of additional
taxa in the group of 35 may not have been detected.

The QTC statistical algorithms that we used for processing
sonar-backscatter data have also provided useful information in
a number of other studies (Gregory et al., 1997; Hamilton et al.,
1999; Morrison et al., 2001; Anderson et al., 2002; Ellingsen
et al., 2002; Freitas et al., 2003; Hewitt et al., 2004; Brown et al.,
2005). These studies used habitat classes resulting from clustering
acoustic-backscatter parameters or principal components derived
from those parameters (e.g. Q-values), not the parameters or the
principal components themselves, to seek qualitative habitat
descriptions or correlations with species distribution or faunal
communities. Our use of continuous acoustic data (the principal
components), as opposed to the more common use of categorical
results, has the advantage of avoiding the complexities of heuristic
clustering methods (Anderson and Clements, 2000; Legendre
et al., 2002; Preston and Kirlin, 2003).

Various theoretical models and empirical field studies have
shown that seabed backscatter is related to sediment properties,
and that backscatter may therefore serve as a proxy for more
direct measurements with grabs and coring devices. Although
this is an active field of research in both military and academic
sectors, the details of the relationships between sediment proper-
ties and seabed backscatter have not been established. With this
study, we have demonstrated the utility of backscatter data for
habitat characterization, and the relative efficiency with which
these data can be collected and processed. It therefore seems
reasonable, for the time being at least, to consider the acoustic
data as suitable for incorporation into continental-shelf-scale
habitat models as a “blind” variable related to marine-sediment
characteristics. The statistical processing methods applied here
can reasonably be extended to modelling marine-species habitats
in other geographic areas. We would still need to find the appro-
priate method(s) of ground-truthing to establish the relationships
between acoustic variables (e.g. Q-values, this study) and seabed
properties for the ecological definition of habitat.

Limited ground-truthing in this study and the results of similar
field studies suggest that sediment characteristics are an important
component of the backscatter signal. Generally, high faunal abun-
dances in Bristol Bay were negatively correlated with the acoustic

variables Q1 (red king crab and basket star) and compx (flathead
sole, Pacific cod, and sponges), and positively correlated with Q3
(walleye Pollock and basket star). Lower Q1-values corresponded
with softer sediment texture (i.e. higher mud content, porosity,
and bulk density) at the Great Barrier Reef of Australia
(Hamilton er al., 1999). Other work suggests that QI is related
to the magnitude of backscatter, higher values indicating coarser,
denser sediments (Goff et al., 2004). In using sonar-backscatter
values with multibeam-bathymetric data and submersible obser-
vations to characterize seafloor habitat, Nasby-Lucas et al.
(2002) also found high backscatter values to be associated with
mixed substrata of pebble, cobble, and boulder—essentially large
particles with high reflectivity; low values were associated with
mud bottoms with low reflectivity. Similarly, our analyses
suggest a correlation between high Q1 (and perhaps Q3) and the
higher backscatter associated with harder, gravelly sediment.
Although myriad factors can affect the qualities of acoustic back-
scatter in a particular survey area (e.g. sonar frequency and extant
geological processes), the consistencies found in these studies
nevertheless support the theoretical underpinnings that link
acoustic data to marine-sediment properties.

The importance of sediments as a habitat-defining character-
istic is well known for a diverse group of groundfish and benthic
invertebrates, notably crabs. It therefore is not surprising that
acoustic variables are significant predictors of their distributions.
Juvenile snow crabs preferentially occupy mud in the laboratory,
which presumably is adaptive for burrowing to avoid predation
(Dionne et al., 2003). Adult red king crabs are found in sand—
mud habitat and debris (Jewett and Onuf, 1988; Zhou and
Shirley, 1998). Assuming that high Q1-values mean higher back-
scatter or harder substratum would mean that red king crab and
basket stars in this study were in greater abundance on softer sub-
strata, which is generally consistent with what is known about their
distributions (Jewett and Onuf, 1988; Yeung and McConnaughey,
2006). The distribution and abundance of rockfish is statistically
related to variability in sediment properties (Nasby-Lucas et al.,
2002). Atlantic cod at different ontogenetic stages and seasons
prefer specific habitat types that are a combination of sediment
grain size, bathymetric relief, water depth, and algae presence
(Gregory et al., 1997). Strong associations between pleuronectid
flatfish and sediment type have been demonstrated using grab
and core-sample data (McConnaughey and Smith, 2000; Rooper
et al., 2005). Rooper et al. (2005) found increased abundance of
flathead sole at higher mud—sand ratios. Flathead sole preference
for this sediment type may be attributed to the high density of
ophiuroid prey (McConnaughey and Smith, 2000). Stoner and
Titgen (2003) found in laboratory experiments that juvenile
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Figure 5. Predicted abundance (log-transformed kg ha™ ') for 2003 and 2004 using best MLR models built with 2002 data (Table 2) vs.

observed abundance for those years.

halibut and northern rock sole preferred highly structured habitat,
and concluded that habitat models would benefit from the
inclusion of some measure of habitat complexity.

Interestingly, our MLR model for Pacific cod (all ages) included
acoustic complexity as a significant predictor of distribution. In
our study, acoustic complexity had a negative relationship with
abundance (Table 2), whereas young-of-the-year Pacific cod
apparently prefer substratum of high complexity (Abookire
et al., 2007). This discrepancy may reflect age/stage specificity in

habitat preference (Shucksmith et al., 2006), because mostly
adult rather than young cod were caught in the AFSC trawl
survey used for this study. Acoustic “complexity” as an index of
backscatter variability in this study may also be distinct from com-
plexity as a qualitative descriptor of habitat types (e.g. Stoner and
Titgen, 2003; Stoner et al., 2007). Results of these past studies
and our present one in Bristol Bay show that habitat preferences
and the relative importance of sediments vary directly and
indirectly according to a number of factors, including species,
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life-history stage, geography, population density, and competition
(McConnaughey, 1995; McConnaughey and Smith, 2000), and
environmental factors such as hydrodynamics and temperature
(Abookire and Norcross, 1998). Ultimately, habitat definitions
and the importance of any specific component must be evaluated
in the context of life history and in light of relevant ecological
information (Fielding and Bell, 1997).

This study suggests that a broad-scale, acoustic-mapping pro-
gramme that is coordinated with systematic abundance sampling,
such as the AFSC annual bottom-trawl survey on the EBS conti-
nental shelf, would advance our understanding of EFH. We have
demonstrated the potential value of this work using simple
models applied to acoustic data collected in a limited geographic
area. Admittedly, our findings are confined to Bristol Bay and
we recognize that the relative importance of habitat predictors
could change when considered over a considerably larger area. It
is nevertheless encouraging that we were able to build distribution
models that explained such a large proportion of the fish and
invertebrate biomass, despite relatively homogeneous environ-
mental conditions and correspondingly limited variability in the
populations.

There are important issues to consider before fully endorsing a
shelf-scale, acoustic-habitat-mapping survey. The first one is the
matching of spatial and temporal scales between environmental
and abundance data. Here, the acoustic and abundance data
were not acquired concurrently, nor were they co-located.
Acoustic data (metre-scale or less) were continuously collected
over tracklines, and needed to be aggregated to correlate with
lower resolution, point-abundance data (kilometre-scale). The
scale and the method of data aggregation will likely influence
model results (Levin, 1992; Irvine et al., 2004; Thrush et al,
2005; Brind’Amour and Boisclair, 2006). The spatial extent over
which the independent variable is aggregated can change its rela-
tive contribution to a fish-habitat model (Brind’Amour and
Boisclair, 2006), because heterogeneity in the variable may be
smoothed over or accentuated. Although the two simple
methods of aggregating acoustic data (mean and IDW) tested
here gave comparable results, more sophisticated spatial
methods such as variogram analysis to determine the maximum
distance for the aggregation of variables (Brown et al., 2005)
may be appropriate for larger-scale studies. A second issue is
that the MLR models we used here are relatively simple, and
although generally effective with Bristol Bay data were quite sensi-
tive to zero values of abundance. As zero catch is a common
feature of trawl-survey data (McConnaughey and Conquest,
1992), alternative model types may be required. Finally, although
sonar is more efficient than traditional grab-sampling for deter-
mining surficial-sediment properties, there are substantial costs
associated with acoustic-data acquisition, processing, and the
requisite ground-truthing. The universal applicability of acoustic
backscatter needs to be validated with more extensive experimen-
tation. Ultimately, the balance between costs and benefits will be a
determining factor in the use of acoustic data in marine-habitat
models.
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